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Abstract

We consider the n-dimensional random temporal hypercube, i.e., the n-dimensional hypercube
graph with its edges endowed with i.i.d. continuous random weights. We say that a vertex w is
accessible from another vertex v if and only if there is a path from v to w with increasing edge
weights. We study accessible “direct” paths from a fixed vertex to its antipodal point and show
that as n → ∞, the number of such paths converges in distribution to a mixed Poisson law with
mixture given by the product of two independent exponentials with rate 1. Our proof makes
use of the Chen-Stein method, coupling arguments, as well as combinatorial arguments which
show that typical pairs of accessible paths have small overlap.

1. Introduction

In a temporal graph, each edge is endowed with a weight that we interpret as a time-stamp;
an edge is inactive before the time-stamp is reached, after which point it is active. We say that
a path in a temporal graph is accessible if it is increasing with respect to the edge weights, and a
vertex w is accessible from v if there is some accessible path from v to w in the graph. The graph
is temporally connected if all vertices are pairwise accessible from one another. Temporal graphs
provide a natural and perhaps more realistic model for a variety of dynamic network processes.
For instance, in a dynamically evolving social network, information can only pass from one node
to another after they have formed a connection in the network. On the theoretical side, extending
basic graph theoretic properties such as connectivity and diameter to the temporal setting is an
interesting technical challenge. We refer to [20] for a broad overview of the topic.

In this paper, we are interested in the setting in which edge weights are assigned randomly.
We remark that when edge weights are sampled i.i.d. from any continuous distribution, the model
is equivalent to one in which the edges are ordered by a random permutation (an equivalence we
exploit throughout the paper). Of particular interest in the literature has been the length of a
longest accessible path in a randomly weighted temporal graph. Using the second moment method,
[17] showed that a randomly edge-ordered complete graph Kn contains an accessible Hamiltonian
path with probability at least 1

e + o(1), and additionally that it contains accessible paths of length
0.85n with high probability1. They conjecture that an accessible Hamiltonian path also exists
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w.h.p., a problem which remains open. We note that on the deterministic side, [12] showed that for
any edge ordering of Kn there exists an accessible path of length at least

√
n− 1, and [8] construct

orderings for which the longest accessible path has length at most (1 + o(1))n2 .
There are also significant recent results on temporal random graphs [1, 3, 7, 9]. For the temporal

Erdős-Rényi random graph G(n, p) with connection probability p, [9] establish that there are several
phase transitions: at p = logn

n , any fixed pair of vertices is mutually accessible w.h.p.; at p = 2 logn
n ,

for any fixed v, all vertices are accessible from v w.h.p.; and at p = 3 logn
n , the graph is temporally

connected with high probability. [1] shows that for logn
n ≪ p ≪ 1 the longest accessible path in

G(n, p) has length in [(1 − ε)enp, (1 + ε)enp] w.h.p. for any fixed ε > 0; [7] extend this result to
the regime p = c logn

n , showing (among other results) that the longest accessible path has length
in [(1 − ε)α(c) log n, (1 + ε)α(c) log n] w.h.p. for an explicit constant α(c). For the d-dimensional
Random Geometric Graph, it was proven [6] that the threshold for temporal connectivity occurs
when the degrees are Θ(n1/(d+1)), which is much higher than the Θ(log n) threshold for the Erdős-
Rényi random graph.

It is easy to see that the hypercube cannot be w.h.p. temporarily connected. For example, we
expect one vertex with all incident edges with weights more than 1

2 and one with all weights less than
1
2 . With probability bounded away from zero we have at least one vertex of each type which implies
that there is no accessible path from one of them to the other. Hence, in this work we study the
following variant of the problems mentioned above. Consider the n-dimensional hypercube graph,
with vertex set given by the power set of [n] = {1, 2, . . . , n} and edge set given by pairs v, v′ ⊆ [n]
with |v∆v′| = 1. We say that a path from v to v′ in the hypercube is direct if it has length equal
to the graph distance of v and v′. Assign i.i.d. Unif[0, 1] weights to the edges, and define Xn to be
the random variable which counts the number of accessible direct paths from ∅ to [n]. We remark
that Xn is a particularly critical random variable: there are n! direct paths from ∅ to [n], and
each of them is accessible with probability exactly 1

n! , which means E[Xn] = 1. If the correlations
between different paths are negligible, then it is reasonable to expect Xn to converge to a Poisson
random variable with parameter 1. On the other hand, the presence of one directed path increases
chances for other overlapping direct paths. If this correlation is strong, we may have Xn = 0
w.h.p. and E[Xn | Xn > 0] → ∞, so that E[Xn] = 1. These correlations, however, are highly non-
trivial. Understanding this critical scenario was proposed as one of the open problems during the
17th Annual Workshop on Probability and Combinatorics, McGill University’s Bellairs Institute,
Holetown, Barbados (April 7–14, 2023). Our main result, Theorem 1.1, shows that both conjectures
above are false: it establishes that Xn converges in distribution to a mixed Poisson random variable
Poi(Z ·Z ′), where Z and Z ′ are independent exponential random variables of rate 1. In particular,

P(Xn = 0) → δ, where δ =
∫∞
0

e−z

1+z dz ≈ 0.596347 is the Gompertz constant [11].
While there is some previous work on the temporal hypercube (e.g., [10]), our result shares more

significant similarities with the vertex-weighted version of the problem, which has been studied
extensively [4, 5, 14, 15, 19]. Interest in the vertex-weighted hypercube comes from the field of
evolutionary biology, where each vertex of the hypercube corresponds to a potential genetic code.
One typically fixes the weight of vertex [n] to 1 and the weight of ∅ to x ∈ [0, 1), and considers the
distribution of the number of accessible paths from one to the other. This process is sometimes also
referred to as accessibility percolation [19]. As in the edge-weighted case, there are n! direct paths
from ∅ to [n]; in order for such a path to be increasing, all of the n− 1 interior vertex weights must

be at least x and be in increasing order, which occurs with probability (1−x)n−1

(n−1)! . Thus we expect

n(1− x)n−1 accessible paths.
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[13] establish a phase transition x = logn
n , the point at which the expected number of increasing

paths is 1 + o(1): for ω = ω(n) tending to infinity arbitrarily slowly, if x = logn−ω
n then there is

no accessible direct path w.h.p., and if x = logn+ω
n then an accessible direct path exists w.h.p. [18]

proves a similar result when backtracking is allowed. When x = c/n for constant c ≥ 0, [5] show
that the number of accessible direct paths from ∅ to [n], rescaled by n, converges in distribution
to e−cZ · Z ′, where Z and Z ′ are independent exponential random variables of rate 1. Our main
result and proof techniques bear some similarity to this one, a connection we explore in more detail
in Section 1.3.

Our proof strategy makes use of the Chen-Stein method, which bounds the difference between
the distribution of a sum of indicators and the Poisson distribution [2]. The Chen-Stein method is
typically used to prove Poisson limit laws, but has also been used to prove mixed Poisson limits [22]
like our main result.

1.1. Notation. We consider a hypercube on 2n vertices. Let [n] = {1, . . . , n} denote the set
of dimensions. Each of the 2n vertices of the hypercube can be identified with a subset of [n],
corresponding to the set of nonzero coordinates of the vertex. This way, the vertex-set corresponds
to the power set V = P([n]) of [n]. For v ∈ V , we refer to |v| (the number of nonzero coordinates
of v) as the level of v, and we denote the set of vertices with level k by Vk. We are interested in
paths between the two endpoints ∅ and [n]. Two vertices v, v′ ⊆ [n] are connected if they differ by
a single coordinate, i.e., if |v△v′| = 1, where A△B = (A \B)∪ (B \A) is the symmetric difference
of two sets, A and B. Because every vertex has degree n, the hypercube has 2n−1n edges in total.
If v ⊂ v′ ⊆ [n], then there exists a (not necessarily accessible) direct path from v to v′. We denote
the set of direct paths from v to v′ by Π(v, v′). Each of these paths corresponds to a permutation
of the directions v′ \ v, so that |Π(v, v′)| = (|v′| − |v|)! if v ⊆ v′ and |Π(v, v′)| = 0 otherwise. For
U,U ′ ⊆ V , we write Π(U,U ′) =

⋃
u∈U,u′∈U ′ Π(u, u′) to denote the collection of direct paths from U

to U ′.
We denote the set of hypercube edges by E. We say that an edge has level k if it connects a

vertex of level k − 1 to a vertex of level k, and let Ek denote the set of hypercube edges at level k.
We let W (e) denote the weight of edge e ∈ E. Each of the weights are independently drawn from
a uniform distribution on [0, 1]. For a path π, let vk(π) ∈ Vk denote the level-k vertex of the path
π. Similarly, let Wk(π) denote the weight of the k-th edge along this path, and let |π| denote the
length of the path (i.e., the number of edges). We say that a path π is accessible if

W1(π) < · · · < W|π|(π),

and we denote the indicator of this event by I(π). We are interested in the number of accessible
paths from ∅ to [n]. That is, we study the distribution of

Xn =
∑

π∈Π(∅,[n])

I(π).

We use standard asymptotic notation throughout. For a real sequence an and nonnegative real
sequence bn, we write an = O(bn) if |an| ≤ Cbn for some C > 0. Similarly, an = Ω(bn) if |an| ≥ cbn
for some c > 0 and n sufficiently large. If both an = O(bn) and an = Ω(bn) hold, then we write
an = Θ(bn). If lim

n→∞
an/bn = 0, then we write an = o(bn) or an ≪ bn. Finally, if lim

n→∞
bn/an = 0,

then we write an = ω(bn) or an ≫ bn.
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x P(X = x) Rounded

0 δ 0.596347
1 2δ − 1 0.192695
2 7

2δ − 2 0.087216
3 17

3 δ −
10
3 0.045968

4 209
24 δ −

31
6 0.026525

5 773
60 δ −

23
3 0.016275

100 1.78264 · 10−9

200 3.85980 · 10−13

300 5.97185 · 10−16

Table 1: The first few values of the limiting probability distribution and a few larger ones; δ =∫∞
0

e−z

1+z dz is the Gompertz constant [11].

1.2. Main results.

Theorem 1.1. The number of accessible direct paths in the temporal hypercube converges in dis-
tribution to a mixed Poisson distribution, where the mixture corresponds to the product of two
independent exponential random variables with rate 1. That is,

P(Xn = x) → E
[
(Z · Z ′)x

x!
e−Z·Z′

]
,

for x ∈ N and Z,Z ′ ∼ Exp(1) independently. More explicitly, the limiting distribution is given by

P(X = x) =

x∑
k=0

(
x

k

)
δ −

∑k−1
r=0(−1)rr!

k!
, (1)

where P(X = 0) = δ =
∫∞
0

e−z

1+z dz ≈ 0.596347 is the Gompertz constant [11].

Theorem 1.1 allows us to compute the limiting probability mass function for any x. The first
few values are shown in Table 1.

Similarly to the result about the supercritical vertex-weighted hypercube from [5], it turns out
that the distribution of Xn is largely determined by the weights close to the endpoints of the
hypercube. The contribution of the weights close to the endpoint ∅ corresponds to the exponential
random variable Z, while the contribution of the weights close to endpoint [n] corresponds to Z ′.

While Theorem 1.1 is formulated in terms of the fixed vertices ∅ and [n], it is easy to see that
this result applies for any two vertices v, w at distance d ≤ n as d = d(n) → ∞, since all direct
paths from v to w are contained in a d-dimensional hypercube. In particular, Theorem 1.1 also
applies to v, w chosen uniformly from an n-dimensional hypercube, since the distance between v
and w is concentrated around n/2.

We note that the convergence in distribution of Theorem 1.1 does not necessarily imply con-
vergence in moments, although we can obtain an explicit formula for the moments of the limiting
distribution. Indeed, if Y is a random variable and X ∼ Poi(Y ), then by Proposition 1 of [16], the
moments of X are given by

E[Xk] =

k∑
j=0

{
k

j

}
E[Y j ]
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where
{
k
j

}
is a Stirling number of the second kind, that is, the number of ways to partition a set

of k objects into j nonempty parts. In our case, the mixing distribution has moments given by
E[(Z · Z ′)k] = E[Zk]2 = (k!)2, so that

E[Xk] =
k∑

j=0

{
k

j

}
(j!)2.

The sequence above is the Stirling transform of the sequence (k!)2. At present, we can only prove
that E[Xk

n] → E[Xk] for k ∈ {1, 2}. As mentioned above, E[Xn] = 1 = E[X] for all n, and
E[X2

n] →
∑2

j=0

{
2
j

}
(j!)2 = 5, as summarized in the following lemma.

Lemma 1.2. The second moment of Xn converges to the second moment of X ∼ Poi(Z ·Z ′). That
is,

E[X2
n] → E[X2] = 5.

The limiting distribution is heavy-tailed, in the sense that its tail decays slower than any expo-
nential [21]. A nonnegative random variable is heavy-tailed whenever

lim
x→∞

etxP(X > x) → ∞,

for all t > 0. For X ∼ Poi(Z · Z ′), this can be seen from

P(X > x) ≥ P(Z,Z ′ >
√
x) · P

(
X > Z · Z ′ ∣∣ Z,Z ′ >

√
x
)
∼ 1

2
e−2

√
x = e−o(x).

1.3. Proof overview. Here we give an overview of the proof of Theorem 1.1, beginning with an
observation which helps us understand the structure of the union of accessible direct paths from
∅ to [n]. A byproduct of our second moment computations in Section 2 and Appendix A is the
following result, which we do not prove explicitly but which is easily derived from Lemma 2.2. Let
k = k(n) ≤ ⌊n/2⌋ grow to infinity arbitrarily slowly. W.h.p., any pair of accessible direct paths has
the following structure: the paths travel together from ∅ until they diverge at some level 0 ≤ ℓ ≤ k,
and are edge-disjoint until they meet again at some level n − k ≤ ℓ′ ≤ n, after which point they
travel together again to the terminal vertex [n]. In fact, a mild extension of our arguments shows
that “edge-disjoint” can be replaced with “vertex-disjoint” in the preceding statement. The same
structure was observed for the vertex-weighted case in [5] and [13], where similar second moment
calculations are carried out.

Thus, the set of edges which are part of an accessible direct path from ∅ to [n] induces a tree
on the first k levels and another tree on the last k levels w.h.p., for any k = k(n) ≤ ⌊n/2⌋ tending
to infinity. Moreover, no accessible direct paths intersect between levels k and n − k w.h.p. This
motivates splitting our analysis into two parts: one dealing with the “tree segments” at the ends
of the hypercube, and one dealing with the “middle segment” in which leaves of the two trees are
joined by compatible paths. We treat each part separately in Sections 3 and 4.

Motivated by the observations above, for the tree segments our strategy is to greedily find a
large tree in the first k = k(n) levels of the hypercube, with root vertex ∅, such that every path
from ∅ to a leaf is increasing, and such that the weights along the tree paths are small. We also
find a symmetric counterpart to this tree in the last k levels rooted at [n], this time with all paths
decreasing and consisting of large weights. Each non-leaf vertex in these trees has r children.
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The children of a given vertex v in the bottom tree are selected by choosing the r directions with
smallest weight which (i) have weight larger than the weight on the edge leading into v in the tree,
and (ii) have not already been chosen by an ancestor of v in the tree. We use an analogous rule
to construct the top tree. In Lemma 3.2, we show that if k → ∞ and k4r2 log r ≪ n, then (a
transformation of) the weights along the tree edges converge almost surely to sums of exponential
random variables. A similar tree construction for the vertex-weighted hypercube appears in [5],
but instead of a fixed number of offspring they use a weight threshold to select children at each
vertex. The fixed-offspring trees have additional structure, which we use in our proofs. We note
that [5] proves a scaling limit while we characterize the exact limiting distribution, which requires
more precise asymptotics for these tree segments.

For our purposes, choosing r = ⌈32 log k⌉ will be enough to ensure that the trees are large
enough to capture all accessible direct paths with high probability. With this choice for r, we let
Π∗

k ⊂ Π(∅, [n]) denote the set of paths where the first and last k edges correspond to paths in the
trees. Note that Π∗

k is a random set, which depends only on the weights in the first and last k
levels. We then define the random variable

X∗
k,n =

∑
π∈Π∗

k

Iπ.

Clearly, X∗
k,n ≤ Xn. We will prove in Section 3 that the paths outside Π∗

k are negligible:

Lemma 1.3. For 1 ≪ k ≪ logn
log logn → ∞, it holds w.h.p. that Xn = X∗

k,n.

Thus it will suffice to consider only the “tree paths” counted by X∗
k,n. Let E

∗
k denote the set of

edges in the first and last k levels of the hypercube, that is,

E∗
k =

⋃
ℓ∈[k]

(Eℓ ∪ En−ℓ+1).

Let λk,n = E[X∗
k,n|(W (e))e∈E∗

k
]. (The definitions of the trees and the random variable X∗

k,n will be
made precise in Section 3.) We remark that λk,n is a random variable which depends only on the
edge weights in the first and last k levels. The main result of Section 3 is the following:

Lemma 1.4. There exists a coupling so that, λk,n
P−→ ZZ ′ as 1 ≪ k ≪ logn

log logn → ∞, where

Z,Z ′ ∼ Exp(1) independently.

The interpretation of Lemma 1.4 is that each side of the hypercube contributes an exponentially
distributed factor to the conditional expectation of X∗

k,n.
Using the Chen-Stein method, we prove the following lemma about the middle segment in

Section 4:

Lemma 1.5. Let 1 ≪ k ≪ n and define λk,n = E
[
X∗

k,n

∣∣∣ (W (e))e∈E∗
k

]
. There exists a coupling

between X∗
k,n and a (mixed) Poisson random variable Yk,n with parameter λk,n, so that

P(X∗
k,n ̸= Yk,n) → 0.

The above lemmas can be combined to prove our main result:
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Proof of Theorem 1.1. We first use Lemma 1.3 to write

P(Xn = x) = P(Xn = x = X∗
k,n) + P(Xn = x,X∗

k,n ̸= x) = P(X∗
k,n = x) + o(1).

Then, we use Lemma 1.5 to write

P(X∗
k,n = x) = E

[
e−λk,n

λx
k,n

x!

]
+ o(1).

Since e−λλx is bounded, we can apply Lemma 1.4 and the continuous mapping theorem to obtain

E
[
e−λk,n

λx
k,n

x!

]
→ E

[
e−ZZ′ (ZZ ′)x

x!

]
,

which completes the proof. The alternative expression (1) is derived in Lemma C.1.

2. The second moment

Throughout this section, we let πn ∈ Π(∅, [n]) denote the canonical direct path from ∅ to [n]
given by

∅, [1], [2], . . . , [n].

Consider any π ∈ Π(∅, [n]). We will encode π relative to πn. First, we specify the gap vector a of
π with respect to πn. If π and πn do not share any edges, then a has only 1 coordinate, a0 = n.
Assume then that these paths overlap at some point. The coordinates of a are defined as follows:
let a0 be the size of the gap, measured by number of edges of π (or πn), between vertex ∅ and the
bottom vertex on the first edge e1 which is shared by π and πn. For i ≥ 1, let ai be the gap between
the top vertex of the ith shared edge ei and the bottom vertex of the (i+1)st shared edge ei+1, or
[n] if there are no more shared edges. If π shares exactly s edges with πn, then a has exactly s+1
coordinates, and these coordinates sum to n−s. Moreover, ai ̸= 1 for all i, but we can have ai = 0.
In particular, πn itself has a gap vector of length n+ 1 and consists of only zeros. See Figure 1 for
an illustrated example.

Second, we specify the subpaths that π follows between its edge-intersections with πn. For
i = 0, 1, . . . , the subpath of π which traverses the ith gap is (isomorphic to) a path in an a − i-
dimensional hypercube which is edge disjoint from the canonical path πai . Thus we may represent
the collection of gap subpaths with a tuple G = (π̄0, π̄1, . . . , π̄s), where π̄i is a path of length ai
from ∅ to [ai] in the ai-dimensional hypercube, which is edge disjoint from πai . The path π can be
completely recovered from its pair (a,G). Moreover, it is clear that any such pair (a,G) specifies
a unique path π which shares exactly s edges with πn.

We can express the probability that a pair of paths is accessible using the gap vector a.

Lemma 2.1. Let π be a path which has gap vector a = (a0, a1, . . . , as) relative to πn. Then the
probability that both π and πn are accessible is

E[IπIπn ] =

∏s
i=0

(
2ai
ai

)
(2n− s)!

.

Proof. The edge weights induce a random permutation of the edges of πn ∪ π, and either path is
increasing with respect to the edge weights if and only if it is increasing with respect to the order
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Figure 1: The hypercube with n = 5 with its canonical path π5 (red) along the left boundary. The
blue path shares one edge (purple) with π5 and has gap vector a = (2, 2); the green path shares
two edges (brown) with π5 and has gap vector a = (0, 3, 0).

of the corresponding permutation. There are (2n−s)! possible permutations of the edges of πn∪π.
Thinking of a permutation as a labeling of the edges with labels from the set {1, 2, . . . , 2n− s}, we
observe that in any permutation for which both πn and π are increasing, the labels of the s shared
edges are completely determined, i.e., there is exactly 1 way these edges can be labeled. Similarly,
the set of labels which can be assigned to edges in the ith gap (of both π and πn) is also determined
for i = 0, 1, . . . , s. For each i, there are 2ai labels to assign to the edges in gap i, and precisely

(
2ai
ai

)
assignments result in both πn and π being increasing across the gap. Indeed, once we distribute
labels between πn and π, there is only one way to assign them to edges. Hence there are

∏s
i=0

(
2ai
ai

)
permutations for which both πn and π are increasing.

The nonzero coordinates of a gap vector a = (a0, a1, . . . , as) correspond to the (nontrivial) gaps
between π and πn, i.e., segments where π and πn diverge from one another. If π has a gap vector
of length s+ 1 with g nonzero coordinates, we say that π and πn share s edges with g gaps. More
generally, we may speak of arbitrary pairs of paths (π, π′) from Π(∅, [n]) which share s edges with
g gaps. For a path π, we define

Ps,g(π) = {π′ : π ∈ Π(∅, [n]), π and π′ share s edges with g gaps}

and we let
Ps,g =

⋃
π∈Π(∅,[n])

⋃
π′∈Ps,g(π)

{
(π, π′)

}
. (2)

So Ps,g is the set of all pairs of paths (π, π′) which share s edges with g gaps. Note that Ps,g is
nonempty precisely when s ∈ {0, 1, 2, . . . , n − 2} and 1 ≤ g ≤ min

{
s+ 1,

⌊
n−s
2

⌋}
, or s = n and

g = 0. (It is impossible for a pair of paths to share exactly n− 1 edges.)
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For s ∈ {0, 1, . . . , n− 2} and 1 ≤ g ≤ min
{
s+ 1,

⌊
n−s
2

⌋}
, or s = n and g = 0, define

cs,g =
∑

(π,π′)∈Ps,g

E[IπIπ′ ]. (3)

Note that by symmetry we may write

cs,g = n!
∑

π∈Ps,g(πn)

E[IπnIπ] =
∑

π∈Ps,g(πn)

E[Iπ | Iπn = 1]. (4)

Thus we have the following simple interpretation of the term cs,g: conditioned on the path πn being
accessible, we expect cs,g accessible paths which share s edges and have g gaps with πn. Lemma 2.2
below computes the second moment of Xn by carefully summing the terms cs,g over all valid s and
g. In light of the above, we may interpret Lemma 2.2 as stating that, conditioned on πn being
accessible, for any k = k(n) tending to infinity, in expectation there are 4 + o(1) accessible paths
that share at most k = k(n) edges with πn and have a single gap. Moreover, we show that, w.h.p.,
there are no accessible paths which have more than one gap, or which share more than k edges
with πn.

Lemma 2.2. The following three properties hold:

1.

n−2∑
s=1

min{s+1,⌊n−s
2 ⌋}∑

g=2

cs,g = o(1);

2. for any k = k(n) → ∞,
n−2∑
s=k

cs,1 = o(1); and,

3. for any k = k(n) → ∞,
k∑

s=0

cs,1 = 4 + o(1).

The proof is heavily computational, so we postpone it to Appendix A. We remark that as a
corollary, Lemma 2.2 implies Lemma 1.2:

E[X2
n] = cn,0 +

n−2∑
s=0

min{s+1,⌊n−s
2 ⌋}∑

g=1

cs,g = 1 + (4 + o(1)) + o(1) = 5 + o(1).

3. Tree segments

In this section, we will prove Lemma 1.4 in two main steps. First, we construct trees consisting
of the edges that are most likely to be part of accessible paths near each endpoint. In Lemma 3.1, we
will introduce a coupling that proves that the weights of these tree edges converge almost surely to
sums of exponential random variables. Second, we will construct two random variables Zk, Z

′
k that

are functions of the weights in the first and last k levels, respectively. We will prove in Lemma 3.6
that Zk, Z

′
k converge in probability to two independent exponentially distributed random variables.

Lemma 3.7 additionally proves λk,n − ZkZ
′
k

P→ 0, which will lead to the proof of Lemma 1.4.
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3.1. Tree coupling. In this section, we construct a coupling between exponential random vari-
ables and the ‘best’ weights in the first few levels. To do so, we first transform the uniform weights
to exponential random variables. Notice that if U ∼ Unif([0, 1]), then − log(1− U) ∼ Exp(1). Let
us denote these transformed weights by

W̃ (e) = − log(1−W (e)). (5)

A nice advantage of these transformed weights is that among ℓ edges, the smallest weight will
follow the Exp(ℓ) distribution. Moreover, the difference between the smallest and second smallest
weight is Exp(ℓ − 1) and so forth. This can be seen from the fact that the remaining ℓ − 1
weights are each Exp(1) distributed conditioned on being larger than the smallest weight. By
the memorylessness property of the exponential distribution, the difference between each of these
weights and the smallest weights is independently Exp(1) distributed, so that the minimum of them
is indeed Exp(ℓ− 1) distributed.

To construct a tree from the most important edges, we use an approach similar to [5] and exclude
directions that have been taken by an ancestor node. The main difference is that we consider a
fixed number of offspring r, while they consider weight thresholds. For i1, . . . , iℓ ∈ [r], we denote
by π(i1, . . . , iℓ; r) a path from ∅ to some v ∈ Vℓ where, in the first step, we make a step in the
direction with the i1-th smallest weight. After that, the path makes a step in the direction of the
i2-th smallest weight that is larger than the current weight and excludes the r directions that had
the smallest weights in the first step. In the third step, we consider all weights larger than the
current weight, excluding the 2r ‘best’ directions of its ancestors and pick the i3-rd smallest among
those, and so forth. Note that such a path π(i1, . . . , iℓ; r) may not exist for all r, ℓ and i1, . . . , iℓ. In
particular, such a path does not exist if (ℓ− 1)r > n.

Let W̃n,r(i1, . . . , iℓ) denote the weight of this path (i.e., W̃ (e) of the last edge e in this path) if

the path π(i1, . . . , iℓ; r) exists and W̃n,r(i1, . . . , iℓ) = ∞ otherwise. We will omit the subscript n, r
whenever the relevant values are clear from the context. We will abbreviate i = (i1, . . . , iℓ) and
will denote the predecessor of i ̸= (1) as

i− =

{
(i1, . . . , iℓ−1, iℓ − 1) if iℓ ≥ 2,

(i1, . . . , iℓ−1) if iℓ = 1,

and define the set of predecessors of i as

P (i) = {(i1, . . . , iℓ′−1, j) : ℓ′ ∈ [ℓ], j ∈ [iℓ′ ]}.

We define ∆W̃n,r(i) = W̃n,r(i)− W̃n,r(i
−), so that

W̃n,r(i) =
∑

j∈P (i)

∆W̃n,r(j). (6)

Given k and r, if the path corresponding to i = (i1, i2, . . . , ik) ∈ [r]k exists, then after transforming
back to uniform edge weights using (5), the weight on the last edge e of i is distributed as

Wn,r(i) = 1− exp

−
∑

j∈P (i)

∆W̃n,r(j)

 .
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We may built a symmetric tree rooted at [n] in the top of the cube in a similar manner as above,
except that at each step we choose the largest available weight rather than the smallest. By our
construction, if the path i ∈ [r]k exists in the top cube, then for the last edge e on i we have

Wn,r(e) = exp

−
∑

j∈P (i)

∆W̃ ′
n,r(j)


where the ∆W̃ ′

n,r(j)’s are the increments of the top tree. We remark that ∆W̃ ′
n,r(j) has the same

distribution as ∆W̃n,r(j) for all j. Moreover, if k ≤ ⌊n/2⌋, then the bottom tree and the top tree
are independent, as they depend on disjoint edge sets. Most of our attention in this section is
devoted to understanding the behavior of the sums

∑
j∈P (i)∆W̃n,r(j) for i ∈ [r]k. To this end,

below we describe a useful coupling between for the increments ∆W̃n,r(j).

We will couple ∆W̃n,r(j) to independent Exp(1) random variables (∆(i))i∈N∞ , where N∞ =⋃
ℓ∈NNℓ is the set of integer sequences. For k, r ∈ N our coupling is as follows. For i1 ∈ [r], we

couple

∆W̃n,r(i1) =
1

n− (i1 − 1)
∆(i1),

(Note that 1
n−(i1−1)∆(i1) is distributed as Exp(n− (i1 − 1)) for any i1 ∈ [r].) To couple ∆W̃n,r(i)

for i ∈ [r]ℓ with ℓ ≥ 2, we first sample a binomial random variable for its parent i′ = (i1, . . . , iℓ−1)
as

Nn,r(i
′) ∼ Bin(n− (ℓ− 1)r, 1− e−W̃n,r(i′)), (7)

and then couple

∆W̃n,r(i) =

{
∆(i)

n−(ℓ−1)r−(iℓ−1)−Nn,r(i′)
if Nn,r(i

′) < n− (ℓ− 1)r − (iℓ − 1),

∞ else.
(8)

(Note that the parent i′ is not (necessarily) the same as the predecessor i−.)

Lemma 3.1. The coupling defined by (7) and (8) is valid.

Proof. We start with level ℓ = 1 and consider i1 ∈ [r]. If i1 = 1, then ∆W̃ (1) = W̃ (1) and

P(W̃ (1) ≥ w) = e−wn,

which corresponds to the tail probability of an exponential random variable with rate n, so that
n∆W̃ (1) ∼ Exp(1). Now, for i1 ≥ 2, we know that there are n− (i1 − 1) edges from ∅ to V1 with

weight larger than W̃ (i1 − 1), so that

P(W̃ (i1) ≥ W̃ (i1 − 1) + w) = e−w(n−(i1−1)),

so that indeed (n− (i1 − 1))∆W̃ (i1) ∼ Exp(1).
For ℓ ≥ 2, we first note that among the n directions of the hypercube, (ℓ − 1)r need to be

excluded as each of the ℓ − 1 ancestors have expanded in r unique directions that we exclude for
the remainder of the subtree. Among the n − (ℓ − 1)r remaining directions, we need to find the

11



iℓ-th smallest weight that is larger than W̃ (i1, . . . , iℓ−1). Let N(i1, . . . , iℓ−1) denote the number of

edges that are smaller than this. Then, given W̃ (i1, . . . , iℓ−1) = w, we have

N(i1, . . . , iℓ−1) ∼ Bin(n− (ℓ− 1)r, 1− e−w).

Then, given N(i1, . . . , iℓ−1) < n− (ℓ− 1)r − (iℓ − 1), W̃ (i1, . . . , iℓ) is the iℓ-th smallest among the

n− (ℓ− 1)r weights that are each at least W̃ (i1, . . . , iℓ−1), so that

(n− (ℓ− 1)r − (iℓ − 1)−N(i1, . . . , iℓ−1)) ·∆W̃ (i1, . . . , iℓ) ∼ Exp(1),

as required. Whenever N(i1, . . . , iℓ−1) ≥ n − (ℓ − 1)r − (iℓ − 1), the path π(i1, . . . , iℓ; r) does not

exist, so that W̃ (i1, . . . , iℓ) = ∞.

From (8), it is clear that we have nW̃n,r(i) ≥
∑

j∈P (i)∆(j) for all i ∈ [r]k. In the next lemma,

we show a nearly-matching upper bound for the nW̃n,r(i)’s which holds with high probability
provided 1 ≪ r ≪ k.

Lemma 3.2. Let 1 ≪ r ≪ k. There exists a coupling and a sequence nk,r, so that with probability
at least 1− 1

k2
,

nW̃n,r(i) ≤
1

k
+
∑

j∈P (i)

∆(j)

holds for all i ∈ [r]k and n ≥ nk,r. Equivalently,

P

∃i ∈ [r]k, n ≥ nk,r : nW̃n,r(i) >
1

k
+
∑

j∈P (i)

∆(j)

 <
1

k2
. (9)

Proof. We will use induction on k to prove that for any k, r ∈ N and ε > 0, there is a random
variable Mk,r(ε) with P(Mk,r(ε) < ∞) = 1 so that

n ≥ Mk,r(ε) ⇒ ∀i ∈ [r]k : n∆W̃n,r(i) ≤ ∆(i) + ε, (10)

where [r]k =
⋃k

ℓ=1[r]
ℓ. For k = 1, we have

n∆W̃n,r(i1) =
∆(i1)

1− i1−1
n

= ∆(i1) +
i1 − 1

n− (i1 − 1)
∆(i1) < ∆(i1) +

r

n− r
max
i1∈[r]

∆(i1).

We solve
r

n− r
max
i1∈[r]

∆(i1) ≤ ε ⇒ n ≥ r +
r

ε
max
i1∈[r]

∆(i1),

so that the induction hypothesis (10) holds for k = 1 and any r ∈ N with the random variable
M1,r(ε) = r + r

ε maxi1∈[r]∆(i1).
For the induction step, we assume (10) holds up to k and prove that it also holds for k+1. Let

us pick i ∈ [r]k+1 and denote its parent by i′ ∈ [r]k. For n ≥ Mk,r(ε), the induction hypothesis
tells us that

n∆W̃n,r(j) ≤ ∆(j) + ε

12



for all j ∈ P (i′) ⊂ [r]k. Summing over j ∈ P (i′), we obtain

nW̃n,r(i
′) ≤ |P (i′)|ε+

∑
j∈P (i′)

∆(i),

so that the binomial random variable Nn,r(i
′) defined in Eq. (7) is stochastically dominated by the

Poisson random variable

Yε(i
′) ∼ Poi

|P (i′)|ε+
∑

j∈P (i′)

∆(j)

 .

Note that Yε(i
′) does not depend on n, k, r. This means that for any n ≥ Mk,r(ε), we can couple

Nn,r(i
′) to Yε(i

′) in a way that ensures Nn,r(i
′) ≤ Yε(i

′). This means that

n∆W̃n,r(i) = ∆(i)

1− kr+iℓ−1

n
− 1

n
Nn,r(i′)

≤ ∆(i)

1− (k+1)r
n − 1

nYε(i
′)

= ∆(i) + (k+1)r+Yε(i′)
n−(k+1)r−Yε(i′)

∆(i) ≤ ∆(i) + ε,

for n ≥ ((k + 1)r + Yε(i
′))(1 + ∆(i)/ε). This leads to

Mk+1,r(ε) = max

{
Mk,r(ε), max

i∈[r]k+1

{
((k + 1)r + Yε(i

′))(1 + ∆(i)/ε)
}}

,

which is the maximum of a finite number of random variables, so that P(Mk+1,r(ε) < ∞) = 1,
which completes the induction proof.

The random variable Mk,r(ε) can be rewritten as follows:

Mk,r(ε) = max
ℓ∈[k],i∈[r]ℓ

{
(ℓr + Yε(i

′))

(
1 +

∆(i)

ε

)}
.

To complete the proof, we consider the random variable Mk,r(k
−2r−1) and pick nk,r such that

P(Mk,r(k
−2r−1) > nk,r) <

1

k2
.

If there is some n ≥ nk,r such that

∃i ∈ [r]k : nW̃ (i) >
1

k
+
∑

j∈P (i)

∆(j),

then there must be some j ∈ P (i) with n∆W̃n,r(j) > ∆(j) + k−2r−1. But by (10), this implies
Mk,r(k

−2r−1) > n. Hence,

P

∃i ∈ [r]k, n ≥ nk,r : nW̃ (i) >
1

k
+
∑

j∈P (i)

∆(j)

 ≤ P(Mk,r(k
−2r−1) > nk,r) <

1

k2
,

as stated in the lemma.

The following lemma derives an admissible sequence nk,r, which we prove in Appendix B.

Lemma 3.3. For 1 ≪ r ≪ k, there exists a coupling and a sequence nk,r ∼ 2k4r2 log r that
achieves (9).

In particular, Lemma 3.3 tells us that rk = ⌈32 log k⌉ and k ≪ logn
log logn is sufficient to ensure

n ≫ nk,r.
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3.2. Tree functionals. In this section, we introduce the functional Zk = Zn,k,rk , which is a

function of the tree weights (W̃n,rk(i))i∈[rk]k and its inverted counterpart Z ′
k, which is a function

of the tree weights from the other endpoint of the hypercube.

Corollary 3.4. Define

Zn,k,r =
∑
i∈[r]k

e−nW̃ (i), and Z∞,k,r =
∑
i∈[r]k

exp

−
∑

j∈P (i)

∆(j)

 .

Then, there is some sequence nk ≥ k as k → ∞ so that

Znk,k,rk

Z∞,k,rk

a.s.→ 1,

as k → ∞, where rk = ⌈32 log k⌉. Moreover, E[Znk,k,rk ] → 1.

Proof. We pick nk = nk,rk , for nk,r as given by Lemma 3.2. This means that with probability at
least 1− 1

k2
,

0 ≤ nW̃nk,rk(i)−
∑

j∈P (i)

∆(j) ≤ 1

k
,

holds for all i ∈ [rk]
k. By monototonicity of Zn,k,r, we get

e−
1
kZ∞,k,rk ≤ Znk,k,rk ≤ Z∞,k,rk .

The remainder of the convergence proof follows from the Borel-Cantelli lemma.
For the expectation, we use the dominated convergence theorem with bound Znk,k,rk ≤ Z∞,k,rk

and compute

E[Z∞,k,rk ] =
∑
i∈[rk]

2−iE[Z∞,k−1,rk ],

by independence of the ∆(i) and E[e−∆(i)] = 1
2 . Solving this recursion leads to

E[Z∞,k,rk ] =
(
1− 2−r

)k
= 1−O(k2−rk).

Our choice rk = ⌈32 log k⌉ ensures k2−rk ≤ k1−
3
2
log 2 → 0 since 1− 3

2 log 2 ≈ −0.0397 < 0.

Lemma 3.5. There exists a random variable Z ∼ Exp(1), so that Z∞,k,rk
P→ Z, as k → ∞ and

rk = ⌈32 log k⌉.

Proof. For i ∈ [r], define

Z
(i)
k−1,r =

∑
(i2,...,ik)∈[r]k−1

exp

−
k∑

ℓ=2

iℓ∑
j=1

∆(i, i2, . . . , iℓ−1, j)

 .

Then note that Z
(1)
k−1,r, . . . , Z

(r)
k−1,r are independent copies of Z∞,k−1,r, since they are functions of

disjoint sets of ∆(i)’s. Moreover,

Z∞,k,r =
r∑

i=1

e−
∑i

j=1 ∆(j)Z
(i)
k−1,r.
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This tells us that

E[Z∞,k,rk ] = (1− 2−rk)E[Z∞,k−1,rk ] = (1− 2−rk)k → 1.

We now show that the limiting random variable Z = limk→∞ limr→∞ Z∞,k,r exists. To show
that the inner limit exists, note that [r]k ⊂ [r + 1]k, so that Z∞,k,r+1 − Z∞,k,r > 0. Moreover, the
Markov inequality allows us to bound

P
(
Z∞,k,r+1 − Z∞,k,r > r−2

)
≤ r2E[Z∞,k,r+m − Z∞,k,r]

= r2
(
(1− 2−r−1)k − (1− 2−r)k

)
= O(r2k2−r).

This yields
∞∑
r=1

P
(
Z∞,k,r+1 − Z∞,k,r > r−2

)
= k

∞∑
r=1

O(r22−r) < ∞.

We then use the Borel-Cantelli lemma to conclude that Z∞,k,r converges almost surely as r → ∞
to some random variable Z∞,k,∞.

To prove that Z∞,k,∞ converges as k → ∞, we show that it is a martingale:

E
[
Z∞,k+1,∞

∣∣∣ (∆(i))i∈
⋃

1≤ℓ≤k Nℓ

]
=
∑
i∈Nk

exp

−
∑

j∈P (i)

∆(j)

 · E

 ∞∑
a=1

exp

−
∑

1≤b≤a

∆(i, b)


=
∑
i∈Nk

exp

−
∑

j∈P (i)

∆(j)

 ·
∞∑
a=1

2−a

=
∑
i∈Nk

exp

−
∑

j∈P (i)

∆(j)

 · 1 = Z∞,k,∞.

In the second line, we used that if ∆ ∼ Exp(1), then E[exp(−∆)] = 1
2 , and thus by independence

E [exp (−
∑a

b=1∆(i, b))] = 2−a. Since Z∞,k,∞ is a nonnegative martingale, Doob’s martingale
theorem ensures that it converges almost surely to some random variable Z.

Next, we show that Z ∼ Exp(1). To do so, we first rewrite Z∞,k,∞. Note that 1 ∈ P (i) for all
i ∈ Nk. Therefore,

Z∞,k,∞ = e−∆(1)
∑
i∈Nk

exp

−
∑

j∈P (i)\{1}

∆(j)


= e−∆(1)

∑
i∈Nk : i1=1

exp

−
∑

j∈P (i)\{1}

∆(j)

+ e−∆(1)
∑

i∈Nk : i1>1

exp

−
∑

j∈P (i)\{1}

∆(j)


D
= e−∆(1)Z∞,k−1,∞ + e−∆(1)Z∞,k,∞.

Since ∆(1) ∼ Exp(1), we have e−∆(1) ∼ Unif([0, 1]). Taking the limit k → ∞ on both sides tells us
that

Z
D
= U · (Z ′

1 + Z ′
2),
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where U ∼ Unif([0, 1]) and Z ′
1, Z

′
2 are independent copies of Z. We now derive the moment-

generating function (MGF) of Z.

M(t) = E[e−tZ ] = E
[
E
[
etU ·(Z′

1+Z′
2)
∣∣∣ Z ′

1, Z
′
2

]]
= E

[∫ 1

0
etu·(Z

′
1+Z′

2)du

]
= E

[
et·(Z

′
1+Z′

2) − 1

t · (Z ′
1 + Z ′

2)

]
.

Taking the derivative with respect to t yields

M ′(t) = E

[
(Z ′

1 + Z ′
2) · et·(Z

′
1+Z′

2)

t · (Z ′
1 + Z ′

2)

]
− E

[
et·(Z

′
1+Z′

2) − 1

t2 · (Z ′
1 + Z ′

2)

]
=

M(t)2 −M(t)

t
.

This is a separable differential equation:

M ′(t)

M(t)2 −M(t)
=

1

t
.

Integrating both sides yields

log(1−M(t))− logM(t) = log(t) + c ⇒ 1−M(t)

M(t)
= tec ⇒ M(t) =

1

1 + tec
.

The constant ec is determined by 1 = E[Z] = M ′(0) = −ec, so that ec = −1. We conclude that
E[etZ ] = (1− t)−1, so that indeed Z ∼ Exp(1).

Finally, we prove Z∞,k,rk
P→ Z for our choice of rk. Since Z∞,k,r is increasing in r, we have

Z∞,k,∞ − Z∞,k,rk > 0. The Markov inequality allows us to bound

P(Z∞,k,∞ − Z∞,k,rk > ε) ≤ 1

ε

(
1− (1− 2−rk)k

)
= O(k2−rk) → 0.

This proves Z∞,k,∞ − Z∞,k,rk
P→ 0, so that Z∞,k,rk

P→ Z.

Lemma 3.6. Consider Zk = Zn,k,rk and its inverted counterpart Z ′
k for rk = ⌈32 log k⌉. There

exists a coupling so that

Zk
P→ Z, and Z ′

k
P→ Z ′,

as 1 ≪ k ≪ logn
log logn → ∞, where Z,Z ′ ∼ Exp(1) are independent exponential random variables.

Proof. We take Zk = Znk,k,rk as defined in Corollary 3.4, which is a function of the weights of the
first k levels. For Z ′

k, we take the inverted variant of Zn,k,rk . That is, we invert the hypercube
by mapping every vertex v ∈ V to its opposite [n] \ v, and replacing every edge weight W (e) by
1−W (e). Let Z ′

n,k,rk
denote the function Zn,k,rk applied to this inverted hypercube. Hence, Z ′

n,k,rk
is a function of the last k levels of the original hypercube.

We take the limit Z from Lemma 3.5 and use Corollary 3.4 to write

Zk

Z
=

Znk,k,rk

Z
=

Znk,k,rk

Z∞,k,rk

Z∞,k,rk

Z

P→ 1,

so that indeed Zk
P→ Z. The proof for Z ′

k is identical.
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To prove Lemma 1.3 and Lemma 1.4, we will make use of the following lemma, which is proven
in Appendix B. Recall that λk,n = E[X∗

k,n|(W (e))e∈E∗
k
].

Lemma 3.7. Let Zk = Zn,k,rk as defined in Corollary 3.4 and its inverted counterpart Z ′
k. Then

E[|λk,n − ZkZ
′
k|] → 0,

for 1 ≪ k ≪ logn
log logn → ∞.

Proof of Lemma 1.3. From E[ZkZ
′
k] → 1 (Corollary 3.4) and E[|λk,n − ZkZ

′
k|] → 0 (Lemma 3.7),

it follows that E[λk,n] → 1. This means that the nonnegative random variable Xn − X∗
k,n has

vanishing expectation, so that it follows from the Markov inequality that Xn = X∗
k,n with high

probability.

Proof of Lemma 1.4. The result follows directly by combining Lemma 3.6 and Lemma 3.7.

4. Middle part

To prove the coupling result from Lemma 1.5, we use the Chen-Stein method [2] to prove that
there exists a coupling between Yk,n and X∗

k,n where P(Yk,n ̸= X∗
k,n) is small. The Chen-Stein

method is typically formulated in terms of the Total Variation distance. However, for our purpose,
it is not necessary to formally introduce the concept of total variation. We use the following ‘local’
version of the Chen-Stein method, as presented in [23]:

Theorem 4.1 (Theorem 4.7 of [23]). Let (Iθ)θ∈Θ be a set of indicators, and let Γ(θ) ⊂ Θ be the
set of indicators that are dependent on Iθ. Define X =

∑
θ∈Θ Iθ, λ = E[X] and Z ∼ Poi(λ). There

exists a coupling between X and Z so that

P(X ̸= Z) ≤ min

{
1,

1

λ

}∑
θ∈Θ

∑
θ′∈Γ(θ)

(
E[Iθ]E[Iθ′ ] + 1[θ ̸=θ′]E[IθIθ′ ]

)
.

Let us define Π∗
k as the set of paths π from ∅ to [n] so that the first k steps of π are contained in

the rk-ary tree rooted at ∅ and the last k steps are contained in the tree rooted at [n]. We consider

X∗
k,n =

∑
π∈Π∗

k

Iπ ≤ Xn.

To simplify the notation, we abbreviate

Pk(·) = P(·|(W (e))e∈E∗
k
), and Ek[·] = E[·|(W (e))e∈E∗

k
].

Proof of Lemma 1.5. We consider the equivalent statement

E
[
Pk(X

∗
k,n ̸= Yk,n)

]
→ 0,

which we prove by bounding Pk(X
∗
k,n ̸= Yk,n) using the Chen-Stein method. To apply Theorem 4.1,

we need to construct a set of dependent events for each π. Two indicators Iπ, Iπ′ are dependent in

17



Pk if they share an edge in the middle levels. For each π ∈ Π∗
k, we define Γ(π) as the set of such

overlapping paths. Applying Theorem 4.1 yields

Pk(X
∗
k,n ̸= Yk,n) ≤ min

{
1,

1

λk,n

} ∑
π∈Π∗

k

∑
π′∈Γ(π)

(
Ek[Iπ]Ek[Iπ′ ] + 1[π ̸=π′]Ek[IπIπ′ ]

)
≤
∑
π∈Π∗

k

∑
π′∈Γ(π)

(
1

λk,n
Ek[Iπ]Ek[Iπ′ ] + 1[π ̸=π′]Ek[IπIπ′ ]

)
. (11)

We start by bounding the first part of the sum. We write∑
π∈Π∗

k

∑
π′∈Γ(π)

1

λk,n
Ek[Iπ]Ek[Iπ′ ] ≤ max

π∈Π∗

∑
π′∈Γ(π)

Ek[Iπ′ ].

Let vk(π) ∈ Vk denote the k-th vertex of π. Define

V ∗
k = {vk(π) : π ∈ Π∗

k},

and define V ∗
n−k similarly. For a path π, Ek[Iπ] depends on the gap between the tree weights. This

gap only depends on the endpoints u = vk(π) and u′ = vn−k(π). Let us denote this weight gap by
w(u, u′). Then

Ek[Iπ] =
w(u, u′)n−2k

(n− 2k)!
.

For u ∈ Vk, u
′ ∈ Vn−k, we define

Γ(π;u, u′) = {π′ ∈ Γ(π) : vk(π
′) = u, vn−k(π

′) = u′}.

This allows us to write

Ek

 ∑
π′∈Γ(π)

Iπ′

 =
∑
u∈V ∗

k

∑
u′∈V ∗

n−k

w(u, u′)n−2k |Γ(π;u, u′)|
(n− 2k)!

.

We now bound |Γ(π;u, u′)|/(n− 2k)! uniformly over u ∈ V ∗
k , u

′ ∈ V ∗
n−k, and π ∈ Π∗

k. We do this by
a union bound. Let Γℓ(π;u, u

′) be the subset of Γ(π;u, u′) containing the paths that share an edge
at level k + ℓ with π. By the union bound,

|Γ(π;u, u′)| ≤
∑

ℓ=1,...,n−2k

|Γℓ(π;u, u
′)|.

Then

|Γℓ(π;u, u
′)| = (ℓ− 1)! · (n− 2k − ℓ)!1[w(u,u′)>0,u⊂vk+ℓ(π)⊂u′]

≤ (ℓ− 1)! · (n− 2k − ℓ)!

=
(n− 2k − 1)!(

n−2k−1
ℓ−1

) .

18



This leads to

|Γ(π;u, u′)|
(n− 2k)!

≤ 1

n− 2k

n−2k∑
ℓ=1

(
n− 2k − 1

ℓ− 1

)−1

∼ 2

n
.

Thus,

Ek

 ∑
π′∈Γ(π)

Iπ′

 =
∑
u∈V ∗

k

∑
u′∈V ∗

n−k

w(u, u′)n−2k |Γ(π;u, u′)|
(n− 2k)!

≤
Ek[X

∗
k,n]

n− 2k

n−2k−1∑
ℓ=0

(
n− 2k − 1

ℓ

)−1

∼
2λk,n

n
.

Since this bound holds for all π ∈ Π∗
k uniformly, we have obtained

max
π∈Π∗

∑
π′∈Γ(π)

Ek[Iπ′ ] = O
(
λk,n

n

)
.

We now bound the second part of the sum in (11). We first take the expectation:

E

∑
π∈Π∗

k

∑
π′∈Γ(π)

1[π ̸=π′]Ek[IπIπ′ ]

 =
∑

π∈Π(∅,[n])

∑
π′∈Π(∅,[n])

1[π ̸=π′]E[IπIπ′1[π∈Π∗
k,π

′∈Γ(π)]].

The condition π′ ∈ Γ(π) implies that π and π′ share an edge in
⋃n−k

ℓ=k+1Eℓ. This implies that π
and π′ have g ≥ 2 gaps or that they share more than k edges. (See Section 2.) Therefore, we can
bound by simply summing over all pairs

(π, π′) ∈ P∗
k =

⋃
s≥1
g≥2

Ps,g

 ∪

 ⋃
n−2≥s>k

g≥1

Ps,g

 ,

where Ps,g is the set of ordered pairs of paths sharing exactly s edges with g gaps as defined in (2).
We also recall the definition cs,g =

∑
(π,π′)∈Ps,g

E[IπIπ′ ] in (3). We have the bound∑
π∈Π(∅,[n])

∑
π′∈Π(∅,[n])

1[π ̸=π′]E[IπIπ′1[π∈Π∗
k,π

′∈Γ(π)]]

≤
∑

(π,π′)∈P∗
k

E[IπIπ′ ] =
∞∑

s=k+1

cs,1 +
∞∑
g=2

∞∑
s=1

cs,g = o(1),

by Lemma 2.2. In conclusion, we can bound

P(X∗
k,n ̸= Yk,n) ≤ O

(
E[λk,n]

n

)
+ o(1) → 0,

which finishes the proof of the theorem.
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A. Proof of Lemma 2.2

Here we prove Lemma 2.2. We break up the proof into a series of smaller lemmas for readability.
We begin by deriving an explicit expression for the term cs,g. For n ∈ N0, let wn denote the number
of paths in Π(∅, [n]) which are edge disjoint from πn. We take w0 = 1 by convention, w1 = 0, and
in general we have wn ≤ n!. For N, j, b ∈ N0, define

C(N, j; b) =

{
(x1, x2, . . . , xj) ∈ Nj

0 :

j∑
i=1

xi = N, xi ≥ b∀ i

}
.

In other words, C(N, j; b) is the set of natural number compositions of N with j parts of at least b.
We write C(N, j) for C(N, j; 0). For future reference, we observe

|C(N, j; b)| =
(
N − (b− 1)j − 1

j − 1

)
(where the binomial coefficient on the right is 0 whenever N − (b− 1)j − 1 < j − 1).
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Lemma A.1. For s ∈ {0, 1, . . . , n− 2} and 1 ≤ g ≤ min
{
s+ 1,

⌊
n−s
2

⌋}
,

cs,g =

(
s+ 1

g

)
n!

(2n− s)!

∑
x∈C(n−s,g;2)

g∏
i=1

wxi

(
2xi
xi

)
.

Proof. We encode paths π ∈ Ps,g(πn) by the pairs (a,G) as outlined at the beginning of Section 2.
By definition, the vector a has length s + 1 and exactly g nonzero coordinates, all at least 2,
summing to n−s. To specify one uniquely we may thus choose a composition x = (x1, x2, . . . , xg) ∈
C(n−s, g; 2), then choose g coordinates out of s+1 total in a for x to occupy. If some π ∈ Ps,g(πn)
has gap vector a = (a0, a1, . . . , as) with nonzero coordinates (x1, x2, . . . , xg) ∈ C(n − s, g; 2), then
by Lemma 2.1 we have

E[IπnIπ] =
1

(2n− s)!

s∏
i=0

(
2ai
ai

)
=

1

(2n− s)!

g∏
i=1

(
2xi
xi

)

since
(
2ai
ai

)
= 1 if ai = 0. Moreover, given a, there are exactly

s∏
i=0

wai =

g∏
i=1

wxi

choices for G. It follows that∑
π∈Ps,g(πn)

E[IπnIπ] =

(
s+ 1

g

)
1

(2n− s)!

g∏
i=1

wxi

(
2xi
xi

)
,

and the proof of the lemma is finished.

We also establish a convenient upper bound on cs,g which we will use repeatedly.

Lemma A.2. For any 0 ≤ s ≤ n− 2 and 1 ≤ g ≤ min
{
s+ 1,

⌊
n−s
2

⌋}
, we have

cs,g ≤
(
2(n−s)
n−s

)(
2n−s
n

) (s+ 1

g

)
2g−1

(g − 1)!(n− s− g)g−1

Proof. We begin by writing

∑
x∈C(n−s,g;2)

g∏
i=1

wxi

(
2xi
xi

)
≤

∑
x∈C(n−s,g;2)

g∏
i=1

(xi)!

(
2xi
xi

)

= (n− s)!
∑

x∈C(n−s,g;2)

(
n− s

x1, x2, . . . , xg

)−1 g∏
i=1

(
2xi
xi

)
(12)

where we use wx ≤ x! for any x in the first line. It is straightforward to show that

max
x∈C(n−s,g;2)

g∏
i=1

(
2xi
xi

)
≤ max

x∈C(n−s,g)

g∏
i=1

(
2xi
xi

)
=

(
2(n− s)

n− s

)
, (13)
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i.e., the maximum of the product in the middle above occurs at the point x = (n− s, 0, 0, . . . , 0) ∈
C(n− s, g). Similarly,

min
x∈C(n−s,g;2)

(
n− s

x1, x2, . . . , xg

)
=

(
n− s

n− s− 2(g − 1), 2, . . . , 2

)
=

(n− s)!

2g−1(n− s− 2(g − 1))!
.

Since |C(n− s, g; 2)| =
(
n−s−g−1

g−1

)
, we see

∑
x∈C(n−s,g;2)

(
n− s

x1, x2, . . . , xg

)−1

≤
(
n− s− g − 1

g − 1

)
· 2

g−1(n− s− 2(g − 1))!

(n− s)!

≤ 2g−1

(g − 1)!
· (n− s− g − 1)!

(n− s)!
· (n− s− 2(g − 1))!

(n− s− 2g)!

≤ 2g−1

(g − 1)!
· (n− s− 2g + 2)(n− s− 2g + 1)

(n− s− g)g+1

≤ 2g−1

(g − 1)!

1

(n− s− g)g−1
. (14)

For the final inequality we need that g ≥ 2, which implies n− s− 2g+1, n− s− 2g+2 ≤ n− s− g.
Even so, the inequality (14) clearly still holds (with equality) for g = 1, since in this case there is

only the single summand
(
n−s
n−s

)−1
= 1. Substituting the bounds (13) and (14) into (12) yields

∑
x∈C(n−s,g;2)

g∏
i=1

wxi

(
2xi
xi

)
≤ (n− s)!

(
2(n− s)

n− s

)
2g−1

(g − 1)!(n− s− g)g−1

from which point the result easily follows using the expression for cs,g in Lemma A.1.

Below we give a more precise expression for the exponential factor of cs,g.

Lemma A.3. For s ≥ 0 satisfying n− s ≫ 1, we have(
2(n−s)
n−s

)(
2n−s
n

) = O(1)e−nf(s/n)

where f(x) = log
(

(2−x)2−x

(4(1−x))1−x

)
for x ∈ [0, 1]. The function f satisfies f(0) = f(1) = 0, f is strictly

increasing on [0, 2/3] and strictly decreasing on [2/3, 1], and f(x) ≥ x
2 for 0 ≤ x ≤ 1

3 .

Proof. We will obtain the asymptotic expression for the ratio with Stirling’s formula (s! = (1 +
o(1))

√
2πs(s/e)s). We first simplify the ratio as(

2(n−s)
n−s

)(
2n−s
n

) =
(2(n− s))!n!

(2n− s)!(n− s)!
.

We apply Stirling’s formula to each factorial on the right-hand side individually. The total sub-
exponential factor is given by √

4π(n− s) · 2πn
2π(2n− s) · 2π(n− s)

≤
√
2
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where we used 2n− s ≥ n. The exponential factor is(
2(n−s)

e

)2(n−s) (
n
e

)n(
2n−s

e

)2n−s (n−s
e

)n−s
=

(
(2(1− s/n))2(1−s/n)

(2− s/n)2−s/n(1− s/n)1−s/n

)n

=

(
(4(1− s/n))1−s/n

(2− s/n)2−s/n

)n

=e−nf(s/n)

This establishes the asymptotic expression in the statement of the lemma.
We can evaluate f(0) = 0, and we use the convention that f(1) = lim

x→1
f(x) = 0. For x ∈ [0, 1),

we have

f ′(x) = log(1− x)− log(2− x) + log 4 and f ′′(x) =
1

2− x
− 1

1− x
.

It is easily checked that f ′(2/3) = 0. Since f ′′(x) < 0 for x ∈ [0, 1), f is concave on [0, 1) and
hence f must be strictly increasing on [0, 2/3] and strictly decreasing on [2/3, 1]. Moreover, by the

concavity of f , for x ∈ [0, 1/3] we have that f(x) ≥ f(1/3)
1/3 · x ≥ x

2 .

Lemma A.4. We have
0.99n∑
s=1

min{s+1,n−s
2 }∑

g=2

cs,g = o(1)

and, for any k = k(n) → ∞,
0.99n∑
s=k

cs,1 = o(1).

Proof. Note that for s ≤ 0.99n and g ≤ min
{
s+ 1, n−s

2

}
, we have

s+ g ≤ s+min

{
s+ 1,

n− s

2

}
= min

{
2s+ 1,

n+ s

2

}
≤ 1.99n

2
,
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and so n− s− g ≥ 0.005n = n
200 . Using Lemmas A.2 and A.3, we may write for any 1 ≤ s ≤ 0.99n:

min{s+1,n−s
2 }∑

g=2

cs,g =O(e−nf(s/n))

min{s+1,n−s
2 }∑

g=2

(
s+ 1

g

)
1

(g − 1)!

(
400

n

)g−1

=O(se−nf(s/n))

min{s+1,n−s
2 }∑

g=2

(
s

g − 1

)
1

(g − 1)!

(
400

n

)g−1

≤O(se−nf(s/n))
∞∑
g=2

1

(g − 1)!2

(
400s

n

)g−1

=O
(
s2

n
e−nf(s/n)

) ∞∑
g=2

1

(g − 1)!2

(
400s

n

)g−2

≤O
(
s2

n
e−nf(s/n)

) ∞∑
g=2

400g−2

(g − 1)!2

=O
(
s2

n
e−nf(s/n)

)
.

Thus, to show the first statement of the Lemma, it suffices to show that the sum
∑0.99n

s=1
s2

n e
−nf(s/n)

is o(1). For 1 ≤ s ≤ n
3 , by Lemma A.3 we have that f(s/n) ≥ s/2n and so we may write

n/3∑
s=1

s2

n
e−nf(s/n) ≤

n/3∑
s=1

s2

n
e−s/2 = O(1/n) = o(1).

For n
3 ≤ s ≤ 0.99n, we have that f(s/n) ≥ min{f(1/3), f(0.99)} = f(0.99) = 0.04223... ≥ 0.04,

and hence
0.99n∑
s=n/3

s2

n
e−nf(s/n) = O(n2e−0.04n) = o(1).

This proves the first statement in the Lemma. For the second, again using Lemmas A.2 and A.3
we can write

cs,1 ≤ O
(
se−nf(s/n)

)
for 1 ≤ s ≤ 0.99n. Note that, similar to above, we have

0.99n∑
s=n/3

se−nf(s/n) ≤ O(n2e−0.04n) = o(1).

So the second statement holds for any k = k(n) in [n/3, 0, 99n]. Suppose ω(1) = k ≤ n/3. Then,

we have
∑n/3

s=k se
−nf(s/n) ≤

∑n/3
s=k se

−s/2. Note that the ratio of successive terms in the sum is
(s+ 1)e−(s+1)/2/se−s/2 = s+1

s e−1/2 = (1 + o(1))e−1/2 < 0.61, since s ≥ k ≫ 1. Thus,

∞∑
s=k

se−s/2 ≤ ke−k/2
∞∑
ℓ=0

(0.61)ℓ = O
(
ke−k/2

)
= o(1),

which completes the proof of the second statement.
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Lemma A.5. We have
n−2∑

s=0.99n

min{s+1,n−s
2 }∑

g=1

cs,g = o(1).

Proof. Clearly we have min
{
s+ 1, n−s

2

}
= n−s

2 for 0.99n ≤ s ≤ n− 2. We write(
2(n−s)
n−s

)(
2n−s
n

) ≤ 4n−s

(n+ n− s)(n−s)/(n− s)!
≤
(
4

n

)n−s

(n− s)!,

where (n)k = n · (n− 1) · · · (n− k + 1) ≥ (n− k)k denotes the falling factorial. For s ≤ n− 2 and
g ≤ n−s

2 , we have n− s− g ≥ 1. Thus by Lemma A.2 and the above inequality,

n−s
2∑

g=1

cs,g ≤
(
4

n

)n−s

(n− s)!

n−s
2∑

g=1

(
s+ 1

g

)
2g−1

(g − 1)!

≤
(
4

n

)n−s

(n− s)!

(
n

n−s
2

) ∞∑
g=1

2g−1

(g − 1)!

≤ e2
(
4

n

)n−s

(n− s)!
n

n−s
2(

n−s
2

)
!

≤ e2
(
16(n− s)

n

)n−s
2

.

Then we have

n−2∑
s=0.99n

cs,g ≤ e2
n−2∑

s=0.99n

(
16(n− s)

n

)n−s
2

= e2
0.01n∑
ℓ=2

(
16ℓ

n

)ℓ/2

= o(1),

and the proof of the lemma is finished.

Lemma A.6. For any k = k(n) → ∞,

k∑
s=0

cs,1 = 4 + o(1).

Proof. We remark that cs,1 is given by

cs,1 = (s+ 1)
n!

(2n− s)!

(
2(n− s)

n− s

)
wn−s. (15)

by Lemma A.1. It will suffice to prove the result for k = o(
√
n). Indeed, given this, for arbitrary

k → ∞ we may choose h ≤ k with h = o(
√
n); then

k∑
s=0

cs,1 =

h∑
s=0

cs,1 +

k∑
s=h+1

cs,1 = 4 + o(1),
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where we use Lemma A.4 to conclude that
∑k

s=h+1 cs,1 = o(1).
Now, let k = o(

√
n). We claim that wn−s = (1+ o(1))(n− s)!, uniformly over 1 ≤ s ≤ k. To see

this, first observe that wn−s is lower bounded by the number of paths of length n−s from ∅ to [n−s]
which are vertex disjoint from πn−s on the interior of the n− s-dimensional hypercube, i.e., vertex
disjoint except at ∅ and [n−s]. Suppose we sample a path of length n−s from ∅ to [n−s] uniformly
at random. The probability that the path goes through any particular vertex on level h of the

hypercube is
(
n−s
h

)−1
. Hence, by a union bound, the probability that the path intersects with πn−s

on the interior of a n−s-dimensional hypercube is at most
∑n−1

h=1

(
n−s
h

)−1
= O((n−s)−1) = O(n−1).

It follows that there are (1 − O(n−1))(n − s)! paths which are vertex disjoint from πn−s on the
interior, so we have (1 + o(1))(n− s)! ≤ wn−s. Trivially, wn−s ≤ (n− s)!, and this establishes the
claim.

We plug wn−s = (1 + o(1))(n− s)! into (15) to reach

cs,1 = (1 + o(1))(s+ 1)
n!

(n− s)!
· (2(n− s))!

(2n− s)!

for 1 ≤ s ≤ k. Since k = o(
√
n), we have n!

(n−s)! = (1+ o(1))ns and (2(n−s))!
(2n−s)! = (1+ o(1)) 1

(2n)s . Thus

in total we get cs,1 = (1 + o(1)) s+1
2s uniformly over 1 ≤ s ≤ k, so that finally

k∑
s=0

cs,1 = (1 + o(1))
k∑

s=0

s+ 1

2s
= 4 + o(1),

and the proof of the lemma is finished.

B. Proofs for Section 3

Proof of Lemma 3.3. We bound Mk,r(ε) in order to derive an admissible sequence nk,r. First we
bound

Mk,r(ε) ≤ max
ℓ∈[k],i∈[r]ℓ

{
(ℓr + Yε(i

′))
}
·
(
1 +

1

ε
max

ℓ∈[k],i∈[r]ℓ
∆(i)

)
.

The parameter of the Poisson random variable Yε(i) is |P (i)|ε plus a sum of exponential random
variables. Recall that a mixed Poisson distribution with exponential mixture follows the geometric
distribution, while a sum of geometric distributions follows a negative binomial distribution. This
allows us to decompose Yε(i) into Y (i) ∼ Poi(|P (i)|ε) and B(i) ∼ NB(|P (i)|, 12), where NB denotes
the negative binomial distribution; the number of failed trials until the |P (i)|-th success. This leads
to

Mk,r(ε) ≤ max
ℓ∈[k],i∈[r]ℓ

{
(ℓr + Y (i′) +B(i′))

}
·
(
1 +

1

ε
max

ℓ∈[k],i∈[r]ℓ
∆(i)

)
.

We will pick
nk,r = (kr + yk + bk)(1 + ε−1dk),

where yk, bk, dk are chosen in order to guarantee

P
(

max
ℓ∈[k],i∈[r]ℓ

Y (i′) > yk

)
,P
(

max
ℓ∈[k],i∈[r]ℓ

B(i′) > bk

)
,P
(

max
ℓ∈[k],i∈[r]ℓ

∆(i) > dk

)
≤ 1

3k2
,
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so that P(Mk,r(ε) > nk,r) ≤ 1
k2
. We will now derive the desired asymptotics of yk, bk, dk. Firstly

note that ∣∣∣∣∣∣
⋃
ℓ∈[k]

[r]ℓ

∣∣∣∣∣∣ = rk+1 − 1

r − 1
∼ rk.

For yk, we use the fact that Y (i′) is stochastically dominated by Poi(rkε) and use the Chernoff
inequality to bound

P(Y (i′) > yk) ≤
(
erkε

yk

)yk

e−rkε.

Then, by the union bound, it suffices to have

rk+1 − 1

r − 1

(
erkε

yk

)yk

e−rkε ≤ 1

3k2
.

We pick yk to satisfy this constraint with equality. We take the log to determine the asymptotics
of yk.

k log r + o(1) + yk (1 + log r + log k − log yk)− rkε = − log 3− 2 log k.

The main asymptotics are determined by

k log r ∼ yk (log yk − log k) ⇒ yk ∼ k
log r

log log r
.

For bk, we make use of the fact that each of the B(i′) is stochastically dominated by NB(rk, 12).
In addition, the event that the rk-th failure occurs before the ak-th trial is equivalent to the event
that the first ak trials contain less than rk successes. This allows us to use Hoeffding’s inequality
to bound

P(B(i′) + rk > ak) ≤ P(Bin(ak, 12) < rk) ≤ e
−2ak

(
1
2
− rk

ak

)2

.

Again, by the union bound it suffices to have

rk+1 − 1

r − 1
e
−2ak

(
1
2
− rk

ak

)2

=
1

3k2
.

We pick ak to satisfy this constraint with equality and set bk = ak−rk. We inspect the asymptotics
of ak:

k log r + o(1)− 2ak

(
1

2
− rk

ak

)2

= O(1)− 2 log k.

We rewrite this to
ak
2

+
2r2k2

ak
= k log r + 2 log k + 2rk +O(1) ∼ 2rk,

which leads to ak ∼ 2rk, so that bk ∼ rk.
Finally, we choose rk so that

rk+1 − 1

r − 1
e−dk =

1

3k2
,

which has asymptotics dk ∼ k log r. Putting everything together, we obtained

nk,r = (kr + yk + bk)(1 + ε−1dk) ∼ 2kr · ε−1k log r = 2k4r2 log r,

for ε = k−2r−1.
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Proof of Lemma 3.7. We take Zk = Zn,k,rk as defined in Corollary 3.4 and its inverted counterpart
Z ′
k (see proof of Lemma 3.6).
We write

λk,n =
∑
π∈Π∗

k

Ek[Iπ].

Recall that Wk(π) is the k-th weight of π. Note that

Ek[Iπ] =
(Wn−k+1(π)−Wk(π)))

n−2k

(n− 2k)!
,

since each of the n − 2k weights need to be in (Wk(π),Wn−k+1(π)), and they need to be ordered
correctly.

We denote the set of level-k vertices that are reachable from ∅ via a tree path by V ∗
k = {vk(π) :

π ∈ Π∗
k}. Similarly, we will write V ∗

n−k = {vn−k(π) : π ∈ Π∗
k} to denote the set of level-(n − k)

vertices from which there is a tree path to [n]. Each such vertex u ∈ V ∗
k corresponds to a path

π ∈ Π∗
k. We let w(u) = Wk(π) denote the weight of the edge leading to u in π. We also define

w′(u′) = 1−Wn−k+1(π) for u
′ ∈ V ∗

n−k, so that the distribution w′(U ′) is equal to the distribution
of w(U) for U ∈ V ∗

k and U ′ ∈ V ∗
n−k drawn uniformly at random.

This leads to the alternative expression

λk,n =
∑
u∈V ∗

k

∑
u′∈V ∗

n−k

1[u⊂u′,w(u)+w′(u′)≤1]

∑
π∈Π(u,u′)

(1− w(u)− w′(u′))n−2k

(n− 2k)!

=
∑
u∈V ∗

k

∑
u′∈V ∗

n−k

1[u⊂u′,w(u)+w′(u′)≤1](1− w(u)− w′(u′))n−2k,

where the indicator is needed to ensure the possibility of an increasing path from u to u′. The final
step follows from the fact that |Π(u, u′)| = (|u′| − |u|)! whenever u ⊂ u′.

Similarly, ZkZ
′
k can be written as

ZkZ
′
k =

∑
u∈V ∗

k

∑
u′∈V ∗

n−k

(1− w(u))n
(
1− w′(u′)

)n
,

and we need to show that the difference between these expressions vanishes in probability.
We draw the vertices U ∈ V ∗

k and U ′ ∈ V ∗
n−k uniformly. Note that |V ∗

k | = |V ∗
n−k| = rkk . This

allows us to write

λk,n − ZkZ
′
k = r2kk Ek[1[U⊂U ′,w(U)+w′(U ′)≤1](1− w(U)− w′(U ′))n−2k − (1− w(U))n(1− w′(U ′))n].

Note that every vertex v ∈ Vk is equally likely to be in V ∗
k (i.e., to have a tree path). This means

that U is uniform over Vk, and U ′ is uniform over Vn−k. Furthermore, both trees are independent
since they depend on a disjoint set of weights. Hence, U and U ′ are independent.

To prove that the difference between these random variables vanishes, we separate this difference
into several nonnegative components and prove that each of their expectations vanishes. Firstly,
we bound the influence of the indicator

ε1 = ZkZ
′
k − r2kk Ek[1[U⊂U ′,w(U)+w′(U ′)≤1] · (1− w(U))n

(
1− w′(U ′)

)n
] ≥ 0.
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Secondly, we use

(1− w(U))(1− w′(U ′)) = 1− w(U)− w′(U ′) + w(U)w′(U ′) ≥ 1− w(U)− w′(U ′)

and define

ε2 = r2kk Ek

[
1[U⊂U ′,w(U)+w′(U ′)≤1] ·

(
(1− w(U))n

(
1− w′(U ′)

)n −
(
1− w(U)− w′(U ′)

)n)] ≥ 0.

Finally, we consider the change in exponent

ε3 = r2kk Ek

[
1[U⊂U ′,w(U)+w′(U ′)≤1]

((
1− w(U)− w′(U ′)

)n−2k −
(
1− w(U)− w′(U ′)

)n)] ≥ 0,

so that
λk,n − ZkZ

′
k = ε3 − ε2 − ε1.

Since each of these errors is nonnegative, we have

|λk,n − ZkZ
′
k| ≤ ε1 + ε2 + ε3,

so that it suffices to prove that each of these errors vanish in expectation.

Vanishing ε1.

Note that E[ε1] ≤ E[ZkZ
′
k] ≤ 1, so that by the dominated convergence theorem, we only need to

show that P(U ̸⊂ U ′ or w(U) + w′(U ′) > 1) → 0. By the independence of U and U ′, we have

P(U ⊂ U ′) =

(
n−k
k

)(
n
k

) ∼ (n− k)k/k!

nk/k!
=

(
1− k

n

)k

→ 1

for k ≪
√
n. Furthermore, by Lemma 3.2, we have

−n log(1− w(u)) ≤ 1

k
+

∑
j∈P (i(u))

∆(j),

for all u ∈ V ∗
k with probability at least 1− k−2, where i(u) is the index corresponding to u ∈ V ∗

k .
Together with −n log(1− w(u)) ≥ nw(u) and the Markov inequality, we obtain the bound

P(w(U) > 1
2) ≤ k−2 + P

1

k
+

∑
j∈P (i(U))

∆(j) >
n

2


≤ k−2 +

2

n
E
[
1

k
+ |P (i(U))|

]
≤ k−2 +

2

kn
+

2kr

n
,

which vanishes for 1 ≪ k ≪
√
n. We conclude

P(U ̸⊂ U ′ or w(U) + w′(U ′) > 1) ≤ P(U ̸⊂ U ′) + P(w(U) > 1
2) + P(w(U ′) > 1

2) → 0,

so that E[ε1] → 0.
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Vanishing ε2.

We rewrite

(1− w(U))n(1− w′(U ′))n − (1− w(U)− w′(U ′))n

=(1− w(U))n(1− w′(U ′))n
(
1−

(
1− w(U)

1− w(U)

w′(U ′)

1− w′(U ′)

)n)
=O

(
nw(U)(1− w(U))n−1w′(U ′)(1− w′(U ′))n−1

)
.

Now, note that w(U)(1− w(U))n−1 is maximized at w(U) = 1/n, with value 1
n(1−

1
n)

n−1 ≤ 1
n , so

that the above is O(n−1). This tells us that

E[ε2] = O(r2kk /n),

which vanishes for k ≪ logn
log logn .

Vanishing ε3.

We write

E[ε3] = r2kk E
[
1[U⊂U ′,w(U)+w′(U ′)≤1]

((
1− w(U)− w′(U ′)

)n−2k −
(
1− w(U)− w′(U ′)

)n)]
≤ r2kk E

[((
1− w(U)− w′(U ′)

)n−2k −
((

1− w(U)− w′(U ′)
)n−2k

) n
n−2k

)]
.

Using concavity of y 7→ −y
n

n−2k , Jensen’s inequality yields

E[ε3] ≤ r2kk

(
E
[
(1− w(U)− w′(U ′))n−2k

]
− E

[
(1− w(U)− w′(U ′))n−2k

] n
n−2k

)
= r2kk E

[
(1− w(U)− w′(U ′))n−2k

](
1− E

[
(1− w(U)− w′(U ′))n−2k

] 2k
n−2k

)
.

Next, using 1− e−x ≤ x for x = − 2k
n−2k logEk

[
(1− w(U)− w′(U ′))n−2k

]
≥ 0, we obtain

E[ε3] ≤ −
2kr2kk
n− 2k

E
[
(1− w(U)− w′(U ′))n−2k

]
logE

[
(1− w(U)− w′(U ′))n−2k

]
=

4k2 log rk
n− 2k

− 2k

n− 2k
q log q,

for q = r2kk E
[
(1− w(U)− w′(U ′))n−2k

]
. The nonnegativity of ε3 implies q log q ≤ 2k log k, so that

we only need the first term to vanish, which occurs whenever k2 log rk ≪ n, and the proof of the
lemma is finished.

C. The limiting distribution

Lemma C.1. The limiting distribution is given by

P(X = x) =
x∑

k=0

(
x

k

)
δ −

∑k−1
r=0(−1)rr!

k!
,

where δ =
∫∞
0

e−z

1+z dz is the Gompertz constant.
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Proof. We will prove this theorem by rewriting

P(X = x) = E
[
e−ZZ′ (ZZ ′)x

x!

]
to the desired formula. We first consider the conditional expectation

E
[
e−ZZ′ (ZZ ′)x

x!

∣∣∣∣ Z = z

]
= E

[
e−zZ′ (zZ ′)x

x!

]
=

zx

x!

∫ ∞

0
(z′)xe−zz′−z′dz′

=
zx

(z + 1)x+1
,

where the last step follows by partial integration and solving the resulting recurrence. Taking the
expectation over Z, we obtained,

P(X = x) = E
[

Zx

(1 + Z)x+1

]
= E

[
1

Z + 1

(
1− 1

Z + 1

)x]
=

x∑
k=0

(
x

k

)
(−1)kE

[
(Z + 1)−k−1

]
. (16)

We thus need to compute negative moments

mk = E
[
(Z + 1)−k

]
=

∫ ∞

0

e−zdz

(1 + z)k
,

for k ≥ 1. Note that m1 = δ is Gompertz constant. We apply integration by parts to obtain the
recursion

mk+1 =

∫ ∞

0

e−zdz

(1 + z)k+1
=

[
−1

k

e−z

(1 + z)r

]∞
z=0

− 1

k

∫ ∞

0

e−zdz

(1 + z)k
=

1−mk

k
.

The above can be rewritten to k!mk+1 = (k − 1)!− (k − 1)!mk. Repeating this relation leads to

k!mk+1 =
k−1∑
r=0

(−1)r(k − 1− r)! + (−1)kδ,

so that

mk+1 =
(−1)kδ +

∑k−1
r=0(−1)k−1−rr!

k!
= (−1)k

δ −
∑k−1−r

r=0 (−1)rr!

k!

Plugging this into (16) yields the desired expression.
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