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Abstract

Graph burning is a discrete-time process on graphs where vertices are sequentially
activated and burning vertices cause their neighbours to burn over time. In this work,
we focus on a dynamic setting in which the graph grows over time, and at each step
we burn vertices in the growing grid Gn = [−f(n), f(n)]2. We investigate the set of
achievable burning densities for functions of the form f(n) = ⌈cnα⌉, where α ≥ 1
and c > 0. We show that for α = 1, the set of achievable densities is [1/(2c2), 1], for
1 < α < 3/2, every density in [0, 1] is achievable, and for α = 3/2, the set of achievable
densities is [0, (1 +

√
6c)−2].

1 Introduction

Graph burning is a discrete-time process that models the spread of influence in a network.
Vertices are in one of two states: either burning or unburned. In each round, a burning vertex
causes all of its neighbours to become burning and a new fire source is chosen: a vertex whose
state is changed to burning regardless of its neighbours and of its previous state. The updates
repeat until all vertices are burning. The burning number of a graph G, denoted b(G), is the
minimum number of rounds required to burn all of the vertices of G.

Graph burning first appeared in print in a paper of Alon [1], motivated by a question of
Brandenburg and Scott at Intel, and was formulated as a transmission problem involving a set
of processors. It was then independently studied by Bonato, Janssen, and Roshanbin [6, 7, 13]
who, in addition to introducing the name graph burning, gave bounds and characterized the
burning number for various graph classes. The problem has since received wide attention
(e.g. [2, 3, 8, 9, 10, 11, 12]), with particular focus given to the so-called Burning Number
Conjecture that every connected graph on n vertices requires at most ⌈

√
n⌉ rounds to burn.
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The concept of burning density, first introduced by Bonato, Gunderson, and Shaw [5],
replaces a static network with a growing sequence of graphs. In this paradigm, there may not
be a step in which every vertex is burning. Instead, we consider the proportion of burning
vertices to the total number of vertices.

Let G = (Gn, n ≥ 1) be a sequence of connected graphs with the property that Gn is an
induced subgraph of Gn+1 for all n ≥ 1. Next, let V = (vn, n ≥ 1) be a sequence of vertices
such that vn ∈ V (Gn) ∪ {∅} for all n ≥ 1. We consider the following burning process on
G with activator sequence V . Beginning with the null graph G0 and the empty set B0 of
burning vertices, for n ≥ 1,

1. add vertices and edges to Gn−1 to construct Gn,

2. set Bn to be the union of Bn−1 and each vertex in the neighbourhood of Bn−1 in Gn,
and finally

3. if vn ̸= ∅, add vn to Bn.

We think of this as a process in time where, at each time interval, the graph grows, the fire
spreads, and a new vertex is burned; we often refer to the process at time t as turn t. We do
not insist on vt being unburned when it is activated, nor do we insist that vt /∈ {v1, . . . , vt−1}.
Likewise, we allow an activator sequence to “pass” on turn t by setting vt = ∅. The only
requirement we insist on is that vt ̸= ∅ for at least one t. See Figure 1 for an example of a
burning process.

For a graph sequence G and activator sequence V , define the lower burning density and
the upper burning density of V in G, respectively, as

δ (G,V) := lim inf
n→∞

|Bn|
|V (Gn)|

and δ (G,V) := lim sup
n→∞

|Bn|
|V (Gn)|

.

Trivially, 0 ≤ δ(G,V) ≤ δ(G,V) ≤ 1. If δ(G,V) = δ(G,V) for a pair (G,V), then we call this
value the burning density of V in G and denote it δ(G,V). Note that if an activator sequence
V = (vn, n ≥ 1) has vn = ∅ for all n, then δ(G,V) = 0. To avoid this trivial case, we assume
that activator sequences contain at least some vertices, and call such sequences non-empty.
Finally, write P (G) ⊆ [0, 1] for the set of obtainable burning densities in G, defined as

P (G) := {ρ ∈ [0, 1] : there is a non-empty activator sequence V such that δ(G,V) = ρ} .

In this paper we consider sequences G of grid graphs on the integer lattice. We write
G = [a, b] × [c, d] when G is the grid graph with vertex set [a, b] × [c, d] and with edges
joining pairs of vertices at L1-distance one from one another. We write [a, b]2 as shorthand
for [a, b] × [a, b].

Let f : N → N be a strictly increasing function, set Gn = [−f(n), f(n)]2, and define
G(f) =

(
Gn, n ≥ 1

)
. Bonato, Gunderson, and Shaw proved:

Theorem ([5]). Let f : N → N be a non-decreasing function.
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(a) If f(n) = ⌈cn⌉ for some c ≥ 1, then P (G(f)) = [1/(2c2), 1].

(b) If f(n) = ⌈cn3/2⌉ for some c > 0, then there exists an activator sequence V such that
δ(G(f),V) > 0.

(c) If f(n) = ω(n3/2), then P (G(f)) = {0}.

Our primary contribution is an extension of their result in which we determine the set of
achievable burning densities in G(f) for all functions of the form ⌈cnα⌉, where α ≥ 1 and c
is a positive real number. Note that if α = 1 then we insist on c ≥ 1, as otherwise the grid
grows slower than the fire spreads and thus P (G(f)) = {1} trivially.

Theorem 1.1. Fix positive real numbers c and α and set f(n) = ⌈cnα⌉.

(a) If α = 1 and c ≥ 1, then P (G(f)) = [1/(2c2), 1].

(b) If α ∈ (1, 3/2), then P (G(f)) = [0, 1].

(c) If α = 3/2, then P (G(f)) = [0, (1 +
√

6c)−2].

(d) If α > 3/2, then P (G(f)) = {0}.

Note that Bonato, Gunderson, and Shaw proved case (a) and proved the strongest possi-
ble extension of case (d) of Theorem 1.1, namely if f(n) = ω(n3/2), then P (G(f)) = {0}. Our
contribution to Theorem 1.1 is in proving cases (b) and (c). In fact, we determine P (G(f))
for a broader class of functions. In the cases (a) and (c) of Theorem 1.1 we actually prove a
more general result applicable to functions with similar asymptotic behaviour.

Theorem 1.2. Fix positive real numbers c and α and suppose f : N → N is strictly increasing
and satisfies limn→∞ n−αf(n) = c .

(a) If α = 1 and c ≥ 1, then P (G(f)) = [1/(2c2), 1].

(c) If α = 3/2, then P (G(f)) = [0, (1 +
√

6c)−2].

In the remaining case of Theorem 1.1, case (b), we prove a similar extension, though
we require an additional assumption. We say a function f satisfies the controlled growth
requirement or has controlled growth if

i) f(n + 1) > f(n) for all sufficiently large n,

ii) for every function ϵ : N → N satisfying ϵ(n) = o(n) we have f(n+ϵ(n)) = (1+o(1))f(n),
and

iii) for every constant c > 0, there is a constant d > 0 such that for sufficiently large n,
f(n + cn) ≥ (1 + d)f(n).
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Theorem 1.3. Let f : N → N satisfy the controlled growth requirement and suppose f(n) =
ω(n) and f(n) = o(n3/2). Then P (G(f)) = [0, 1].

We also provide examples (see Example 2.8) demonstrating that Theorem 1.3 may not hold
if f does not satisfy the controlled growth requirement.

The remainder of the paper is organized as follows. In Section 2, we present auxiliary
observations that will simplify other proofs. In particular, in Subsection 2.1 we will show
that one may conveniently modify an activator sequence without affecting burning densities.
Moreover, restricting to increasing functions f(n) is also justified—see Subsection 2.2. This,
in turn, shows that one can conveniently modify growth functions—see Subsection 2.3. We
finish this section with a brief discussion that some form of restriction on the growth function
is necessary. Section 3 is devoted to the proof of Theorem 1.3 which implies Theorem 1.1
(b). The proof of Theorem 1.2 which implies Theorem 1.1 (c) can be found in Section 4. We
conclude the paper with a few open problems—see Section 5.

2 Preliminary results

We present a series of lemmas that, when combined, allow us to modify a burning process
in quite substantial ways whilst maintaining the same lower and upper burning densities.
Although not all of the results in this section are required to prove the three main theorems,
we include them all as they offer a set of tools for analyzing burning processes.

For a burning process (G,V), write Bt[i] for the subset of Bt that would still be burned
if only the ith vertex in V was activated during the process. Note that

Bt =
⋃
i∈[t]

Bt[i] ,

and also note that Bt[i] ∩ Bt[j] is not necessarily empty. Finally, note that Bt[i] is not
necessarily the ball of radius t − i centred at vi in Gt. For example (see Figure 1), if
f(1) = f(2) = 1, f(3) = 3, and vertex (1, 1) is activated on turn 1, then B1[3] is not the ball
of radius of 2 centred at (1, 1). However, if f is strictly increasing, then Bt[i] is in fact the
ball of radius t− i centred at vi in Gt.

2.1 Key lemmas part 1: manipulating the activator sequence

In this first collection of three lemmas, we will show how an activator sequence can be
delayed, trimmed at the front, and point-wise perturbed without altering the lower and
upper burning densities. For these lemmas, we assume f has controlled growth.

Lemma 2.1. Fix k ≥ 1, let O = (vn, n ≥ 1) be an activator sequence on G(f) and let
D = (un, n ≥ 1) be a modified activator sequence with u1 = · · · = uk = ∅ and uk+i = vi for
all i ≥ 1. Then δ (G(f),D) = δ (G(f),O) and δ (G(f),D) = δ (G(f),O).
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Figure 1: The first three turns of a burning process with f(1) = f(2) = 1 and f(3) = 3.
Vertex (1, 1) is activated on turn 1 and no other vertices are activated on subsequent turns.
The burned vertices are highlighted as red squares.

For ease of readability, we refer to (G(f),O) and (G(f),D), respectively, as the original
and delayed burning processes.

Proof. Write BO
t and BD

t for the respective sets of burning vertices in the original and delayed
processes after time t. Now let vi ∈ O and note that vi = ui+k ∈ D. Thus, vi is activated k
rounds earlier in the original process than in the delayed process, meaning vi burns no more
in the delayed process than in the original one, i.e.,

BD
t [i + k] ⊆ BO

t [i] .

Moreover, since BD
t [1] = · · · = BD

t [k] = ∅ we have that

BD
t =

⋃
i∈[n]

BD
t [i] ⊆

⋃
i∈[n]

BO
t [i] = BO

t ,

establishing that δ (G(f),D) ≤ δ (G(f),O) and δ (G(f),D) ≤ δ (G(f),O).
For the other direction, we compare the burning sets BO

t [i] and BD
t+k[i + k]. If t = i,

then BO
i [i] = {vi} and BD

i+k[i + k] = {ui+k} and these sets are equivalent. Now assume
that BO

t [i] ⊆ BD
t+k[i + k] for some arbitrary t ≥ i and consider the two burning processes

at their respective next steps. For the original process, BO
t+1[i] is constructed from BO

t [i]
by adding all adjacent vertices in Gt+1, then adding vt+1. Similarly for the delayed process,
BD

t+k+1[i + k] is constructed from BD
t+k[i + k] by adding all adjacent vertices in Gt+k+1, then

adding ut+k+1 = vt+1. Thus, since Gt+1 ⊆ Gt+k+1 and BO
t [i] ⊆ BD

t+k[i + k], it follows that
BO

t+1[i] ⊆ BD
t+k+1[i + k]. By induction, we have established that

BO
t [i] ⊆ BD

t+k[i + k] ,

for all t ≥ i. Therefore,
|BD

t+k|
|V (Gt)|

≥ |BO
t |

|V (Gt)|
.
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Finally, as f(n) has controlled growth, for t → ∞ and k fixed we have that |V (Gt+k)| =
(1 + o(1))|V (Gt)|, implying that

lim inf
t→∞

|BD
t+k|

|V (Gt+k)|
= lim inf

t→∞

|BD
t+k|

|V (Gt)|
≥ lim inf

t→∞

|BO
t |

|V (Gt)|
,

and similarly for the limit superior. This inequality establishes that δ (G(f),D) ≥ δ (G(f),O)
and δ (G(f),D) ≥ δ (G(f),O), finishing the proof.

Lemma 2.2. Fix k ≥ 1, let O = (vn, n ≥ 1) be an activator sequence on G(f) with vi ̸= ∅ for
some i > k, and let T = (un, n ≥ 1) be the modified activator sequence with u1 = · · · = uk = ∅
and ui = vi for all i > k. Then δ(G(f), T ) = δ(G(f),O) and δ(G(f), T ) = δ(G(f),O).

For ease of readability, we refer to (G(f), T ) as the trimmed burning processes.

Proof. Write BO
t and BT

t for the respective burning sets in the original and trimmed processes
after time t. Note that δ(G(f), T ) ≤ δ(G(f),O) and δ(G(f), T ) ≤ δ(G(f),O) is immediate,
as BT

t ⊆ BO
t for all t ≥ 1.

For the other direction, let ℓ > k satisfy V (Gk) ⊆ BT
ℓ . Such an ℓ exists as there is some

time s ≥ k when BT
s is non-empty, and after time s + 2f(s) + 1 all of Gs (and hence all of

Gk) is burning. Let D be the activator sequence that activates vi on round i+ ℓ for all i ≥ 1
and activates nothing beforehand, i.e., (G(f),D) is the delayed process in Lemma 2.1 with k
replaced by ℓ. Then, writing BD

t for the set of burning vertices in the delayed process after
time t, we have that

BD
t [ℓ + i] ⊆

⋃
j∈[ℓ]

BT
t [j] for 1 ≤ i ≤ k, and

BD
t [ℓ + i] ⊆ BT

t [i] for i > k ,

the first containment coming from the fact that v1, . . . , vk ∈ V (Gk) are already burning in
the trimmed process before time ℓ + 1, and the second containment due to the fact that vi
is the ith activator vertex in T and the (ℓ + i)th activator vertex in D. Therefore, BD

t ⊆ BT
t

so δ(G(f), T ) ≥ δ(G(f),D) and δ(G(f), T ) ≥ δ(G(f),D). Furthermore, by Lemma 2.1 we
have that δ(G(f),D) = δ(G(f),O) and δ(G(f),D) = δ(G(f),O). In combination, we get
that δ(G(f), T ) ≥ δ(G(f),O) and δ(G(f), T ) ≥ δ(G(f),O), finishing the proof.

Lemma 2.3. Fix d ≥ 1 and let O = (vn, n ≥ 1) and P = (un, n ≥ 1) be activa-
tor sequences on G(f) with the property that distGn(vn, un) ≤ d for all n ≥ 1. Then
δ(G(f),P) = δ(G(f),O) and δ(G(f),P) = δ(G(f),O).

In this case, we call (G(f),P) the perturbed process.

Proof. By symmetry, it suffices to prove that δ(G(f),O) ≤ δ(G(f),P) and δ(G(f),O) ≤
δ(G(f),P). Let D be the activator sequence that activates vi at time i + d for all i ≥ 1 and
activates nothing beforehand, i.e., the delayed process. Then any vertex in D, at the time
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of activation, was already burning in the perturbed process by some vertex that (a) is at
distance at most d, and (b) was activated d turns before. Therefore, δ(G(f),D) ≤ δ(G(f),P)
and δ(G(f),D) ≤ δ(G(f),P), and once again in combination with Lemma 2.1 this finishes
the proof.

In summary, Lemmas 2.1, 2.2, and 2.3 tell us that an activator sequence can be delayed,
trimmed, and perturbed without altering the lower and upper burning densities.

2.2 Restricting our attention

Two of the three main objectives, Theorems 1.1 and 1.3, involve functions that are almost
strictly increasing. We take this moment to restrict our attention to functions that are, in
fact, strictly increasing. The purpose is to ignore certain corner cases where f might not
grow at every step, preventing burning sets to grow outwards in all four directions at a
constant rate (e.g., Figure 1). We provide a simple lemma justifying our restriction.

Lemma 2.4. Fix n0 ≥ 1 and let f be such that (a) f(n) ≥ n for all n ≥ n0, and (b)
f(n + 1) − f(n) > 0 for all n ≥ n0. Then there is a strictly increasing function g such that
(a) f(n) = g(n) for all sufficiently large n, and (b) P (G(f)) = P (G(g)).

Proof. Let ρ ∈ P (G(f)) and let O be an activator sequence for G(f) such that δ(G(f),V) = ρ.
Define the activator sequence T by replacing the first n0 entries of V with ∅. By Lemma 2.2,
δ(G(f),O) = δ(G(f), T ). Then define g by g(n) = n for n < n0 and g(n) = f(n) for n ≥ n0.
Because G(g) = G(f) on each round after n0, the burning sets of (G(f), T ) are identical to
those of (G(g), T ) so δ(G(g), T ) = ρ. By a symmetric argument, if O achieves δ(G(g),O) = ρ
then there exists T such that δ(G(f), T ) = ρ.

An immediate benefit of this restriction is seen in the next lemma.

Lemma 2.5. Let f be strictly increasing. For any activator sequence (vn, n ≥ 1) on G(f),

(a) Bt[i] is the ball of radius t− i centred at vi in Z× Z, and

(b) |Bt| ≤ 2t3+t
3

.

Proof. Statement (a) follows immediately from the fact that if f is strictly increasing and
vi ∈ Gi then all points in Z× Z at distance k from vi must be in Gi+k.

For statement (b), we have that |Bt[i]| = (t− i + 1)2 + (t− i)2 if vi ̸= ∅, and |Bt[i]| = 0

7



otherwise. Hence,

|Bt| ≤
t∑

i=1

|Bt[i]| =
t∑

i=1

(
(t− i + 1)2 + (t− i)2

)
=

t∑
j=1

(
j2 + (j − 1)2

)
=

t∑
j=1

j2 +
t−1∑
j=0

j2

=
t(t + 1)(2t + 1)

6
+

(t− 1)t(2t− 1)

6

=
2t3 + t

3
,

which finishes the proof of the lemma.

Note that Lemma 2.5 immediately implies Theorem 1.1 case (d), as the number of burning
vertices is always O(t3) and the number of vertices in this case is ω(t3).

2.3 Key lemmas part 2: manipulating the growth function

The first collection of key lemmas were all for the goal of modifying activator sequences. We
now turn to lemmas that allow us to modify growth functions. Thanks to Lemma 2.4, we
may assume growth functions are strictly increasing in the proofs of these lemmas.

Lemma 2.6. Let f, g be increasing functions such that at least one of f, g has controlled
growth and limn→∞ f(n)/g(n) = 1. Then

(a) f and g both have controlled growth, and

(b) P (G(f)) = P (G(g)).

Proof. Beginning with (a), since f and g are increasing they both satisfy condition (i) of
the controlled growth requirement. Now suppose f has controlled growth and let ϵ : N → N
satisfy ϵ(n) = o(n). Then

g(n + ϵ(n)) = (1 + o(1))f(n + ϵ(n))

= (1 + o(1))f(n)

= (1 + o(1))g(n) .

Therefore, g satisfies condition (ii) of the controlled growth requirement.
Now fix c > 0 and let d > 0 be such that for sufficiently large n, f(n+ cn) ≥ (1 +d)f(n).

Then

g(n + cn) = (1 + o(1))f(n + cn)

≥ (1 + o(1))(1 + d)f(n)

= (1 + d + o(1))g(n) .
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Thus, for sufficiently large n, g(n + cn) ≥ (1 + d/2)g(n), meaning g satisfies condition (iii)
of the controlled growth requirement. Therefore, if f has controlled growth then so does g
and, by a symmetrical argument, if g has controlled growth then so does f .

Continuing with (b), write G(f) = (G
(f)
n , n ≥ 1) and G(g) = (G

(g)
n , n ≥ 1). Let ρ ∈

P (G(f)) and let V = (vn, n ≥ 1) be an activator sequence on G(f) such that δ(G(f),V) = ρ.
Define the activator sequence V ′ = (v′n, n ≥ 1) on G(g) inductively as follows. First, if

v1 ∈ V (G
(g)
1 ) then set v′1 = v1, and otherwise set v′1 = v0 := (0, 0). Then, for n ≥ 1 and

k ≥ 0, if v′n = vn−k, set v′n+1 = vn−k+1 if vn−k+1 ∈ V (G
(g)
n+1), and otherwise set v′n+1 = ∅. In

words, V ′ burns the same vertices as V in the same order, except that V ′ “waits” until it is
able to burn the correct vertices in G(g). We claim that δ

(
G(g),V ′) = δ

(
G(g),V ′) = ρ.

Firstly, note that V ′ is a well defined activator sequence on G(f) as well as on G(g).
Moreover, after any turn t, the number of vertices burned by V ′ in G(f) is at most the number

of vertices burned by V . Thus, δ
(
G(f),V ′) ≤ δ

(
G(f),V

)
= ρ. Next, since |V (G

(g)
n )| =

(1 + o(1))|V (G
(f)
n )|, and since the sets of burning vertices in (G(f),V ′) and in (G(g),V ′) are

identical at all times, we get that

δ
(
G(g),V ′) = δ

(
G(f),V ′) ≤ δ

(
G(f),V

)
= ρ .

We are left to show that δ
(
G(g),V ′) ≥ ρ. For each n ≥ 1, define ϵ(n) to be the smallest

non-negative integer that satisfies g(n + ϵ(n)) ≥ f(n). We claim that ϵ(n) = o(n). Suppose,
to the contrary, that there exists a constant c > 0 and an increasing sequence (ni, i ≥ 1)
such that ϵ(ni) ≥ cni for all i ≥ 1. Then, for each i ≥ 1, by the minimality of ϵ we
have g(ni + ϵ(ni) − 1) < f(ni). By condition (ii) of the controlled growth requirement, this
inequality implies that g(ni + ϵ(ni)) = (1 + o(1))f(ni), implying further that

g(ni + cni) ≤ g(ni + ϵ(ni)) = (1 + o(1))f(ni) = (1 + o(1))g(ni) .

However, by condition (iii) of the controlled growth requirement, we can find a constant
d > 0 such that for sufficiently large n, g(n + cn) ≥ (1 + d)g(n). Therefore, the assumption
that ϵ(n) ̸= o(n) leads to a contradiction, and thus ϵ(n) = o(n).

Lastly, by the definition of ϵ, the number of unique activator vertices in (vi, i ∈ [n]) ⊆ V
that are not in (v′i, i ∈ [n]) is at most

ϵmax(i) := max
i∈[n]

ϵ(i) ,

and thus the number of burning vertices in (G(g),V ′) by the end of turn t is at least the
number of burning vertices in (G(f),V) by the end of turn t− ϵmax(t) = (1− o(1))t. Letting
Bt and B′

t be the respective number of burning vertices in (G(f),V) and (G(g),V ′) by the
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end of turn t, we have that

|B′
t|

|V (G
(g)
t )|

≥
|Bt−ϵmax(t)|
|V (G

(g)
t )|

= (1 + o(1))
|Bt−ϵmax(t)|
|V (G

(f)
t )|

= (1 + o(1))
|Bt−ϵmax(t)|

|V (G
(f)
t−ϵmax(t)

)|
,

the last equality holding since f satisfies condition (i) of the controlled growth requirement.
Therefore,

lim inf
t→∞

|B′
t|

|V (G
(g)
t )|

≥ lim inf
t→∞

|Bt|
|V (G

(f)
t )|

,

implying δ
(
G(g),V ′) ≥ δ

(
G(f),V

)
= ρ.

Therefore, δ
(
G(g),V ′) is well defined and equals ρ. By symmetry, we have shown that

P (G(f)) = P (G(g)), and this concludes the proof.

The next lemma is our key to converting an activator sequence V on G(f) with δ(G(f),V) =
ρ into a new activator sequence V ′ on G(f) with δ(G(f),V ′) = c2 · ρ for any c ∈ (0, 1).

Lemma 2.7. Let f, g : N → N be strictly increasing functions such that f ≤ g (point-wise)
and limn→∞ f(n)/g(n) = c for some c ∈ (0, 1). Then ρ ∈ P (G(f)) implies c2ρ ∈ P (G(g)).

Proof. Let V be an activator sequence on G(f) such that δ(G(f),V) = ρ and consider V as
an activator sequence on G(g). Then V is well defined as [−f(n), f(n)]2 ⊆ [−g(n), g(n)]2

for all n ≥ 1. Furthermore, as f and g are both strictly increasing, the set of burning
vertices Bt by the end of turn t is identical in (G(f),V) and in (G(g),V). Therefore, writing

G(f) = (G
(f)
n , n ≥ 1) and G(g) = (G

(g)
n , n ≥ 1), we have

|Bt|
|V (G

(f)
t )|

=
|Bt|

(2f(t) + 1)2

= (1 + o(1))
1

c2
|Bt|

(2g(t) + 1)2

= (1 + o(1))
1

c2
|Bt|

|V (G
(g)
t )|

,

implying that
δ(G(f),V) = c2δ(G(g),V) = c2ρ ,

and this concludes the proof.
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2.4 The need for controlled growth

We provide an example showing that at least some form of restriction on the growth of f is
necessary for attaining burning densities on G(f).

Example 2.8. Let g(n) = ⌈n4/3⌉ and define f : N → N as f(1) = g(1) = 1 and

f(n) =

{
g(n) if n = 2k for some k ∈ N, and

f(n− 1) otherwise.

Fix n and let k be the largest integer such that 2k ≤ n. Then

⌈n4/3⌉ = g(n) ≥ f(n) = (2k)4/3 =
1

24/3
(2k+1)4/3 ≥ 1

24/3
n4/3,

so f(n) = Θ
(
n4/3

)
and thus f(n) = ω(n) and f(n) = o(n3/2). However, for any activator

sequence V in G(f), there are infinitely many turns t with the property that

|Bt|
|V (Gt)|

≥ (24/3)2|Bt|
|V (Gt+1)|

+ o(1) ≥ (24/3)2|Bt+1|
4|V (Gt+1)|

+ o(1) =
22/3|Bt+1|
|V (Gt+1)|

+ o(1) ,

the second inequality coming from the fact that |Bt+1| ≤ 4|Bt| + 1, as every vertex burning

by turn t can burn at most 4 other vertices in turn t + 1. Therefore, either |Bt|
|V (Gt)| diverges

or converges to 0, and in either case we do not have P (G(f)) = [0, 1].

As Example 2.8 demonstrates, without condition (ii) of the controlled growth require-
ment, f may have sudden “jumps” corresponding to |Bt|/|V (Gt)| fluctuating infinitely often.
However, we do not claim that the controlled growth requirement is necessary for Theo-
rem 1.3, Lemma 2.6, or Lemma 2.7. We discuss this topic further in the concluding section
of the paper.

3 Proof of Theorem 1.3

We will make use of the following result of Mitsche, Pra lat, and Roshanbin [10] regarding
the burning number of fixed grid graphs. Note that this result has since been generalized to
higher dimensions in [4].

Theorem 3.1 (Mitsche, Pra lat, Roshanbin, [10]).

b([m] × [n]) =

{
(1 + o(1)) 3

√
3mn/2, n ≥ m = ω(

√
n)

Θ(
√
n), m = O(

√
n)

We begin the proof of Theorem 1.3 by demonstrating how to achieve density 1.

Lemma 3.2. Let f : N → N satisfy the controlled growth requirement and f(n) = o(n3/2).
Then there exists an activator sequence V on G(f) such that δ(G(f),V) = 1.

11



Proof. Regardless of which vertices were activated up to step t, Theorem 3.1 tells us we can
burn all of the vertices of Gt in at most Θ(f(t)2/3) steps. This fact motivates the following
strategy.

1. Write (ti, i ≥ 1) for the sequence defined inductively as t1 = 1 and ti+1 = ti + τi where
τi is the length of time required to burn Gti as per Theorem 3.1.

2. For each i ≥ 1, choose some activator sequence Vi = (vt, ti < t ≤ ti+1) that burns all
of Gti .

3. Let V be the concatenation of (Vi), i ≥ 1.

This V gives

|Bti+1
|

|V (Gti+1
)|

≥ |V (Gti)|
|V (Gti+1

)|
=

(2f(ti) + 1)2

(2f(ti + τi) + 1)2
= (1 + o(1))

(
f(ti)

f(ti + τi)

)2

.

By Theorem 3.1, combined with the fact that f(n) = o(n3/2), we know that τi = Θ(f(ti)
2/3) =

o(ti). Thus, as f satisfies condition (i) of the controlled growth requirement, we have that

|Bti+1
|

|V (Gti+1
)|

≥ (1 + o(1))

(
f(ti)

(1 + o(1))f(ti)

)2

= (1 + o(1)),

and so

lim
i→∞

|Bti |
|V (Gti)|

= 1 .

This proves that V contains a subsequence on which the burning density converges to 1.
Finally, for any ti < t < ti+1 we have

|Bt|
|V (Gt)|

≥
|V (Gti−1

)|
|V (Gti+1

)|

and we also have

|V (Gti−1
)| = (2f(ti−1) + 1)2 = (2(f(ti+1)− τi − τi+1) + 1)2 = (2f(ti+1) + 1)2 −O(f(ti+1)

5/3) ,

meaning
|Bt|

|V (Gt)|
≥ (1 − o(1))

|V (Gti+1
)|

|V (Gti+1
)|

→ 1 ,

and this completes the proof.

We are now ready to prove Theorem 1.3 as a straightforward consequence of Lemmas 2.7
and 3.2.
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Proof of Theorem 1.3. Let f : N → N be a strictly increasing function with controlled growth
such that f(n) = ω(n) and f(n) = o(n3/2). Then |V (Gn)| = ω(n2), so the activator sequence
V = (v1, n ≥ 1), consisting of a single repeating vertex, satisfies |Bn| = O(n2) and therefore
δ(G(f),V) = 0.

Now fix ρ ∈ (0, 1] and let g(n) := ⌈√ρf(n)⌉. Note that, although g satisfies conditions
(ii) and (iii) of the controlled growth requirement since

√
ρf(n) ≤ g(n) ≤ √

ρf(n) + 1, it
is not necessarily true that g(n + 1) > g(n) for all sufficiently large n. For example, if
f(n + 1) = f(n) + 1 for infinitely many n, then g(n + 1) = g(n) infinitely often. Thus,
we define g+(n) recursively as g+(0) = g(0) and g+(n) := max {g(n), g+(n− 1) + 1}. Since
g(n) = ω(n), we have that g+(n) ≤ g(n) + n = (1 + o(1))g(n). Finally, by Lemma 3.2,
1 ∈ P (G(g+)), implying by Lemma 2.7 that ρ ∈ P (G(f)), and this concludes the proof.

3.1 Proof of Theorem 1.1 (b)

In this section we use the following lemma to derive Theorem 1.1 (b) from Theorem 1.3.

Lemma 3.3. Fix α > 1 and c > 0. Then f(n) = ⌈cnα⌉ satisfies the controlled growth
requirement.

Proof. It is enough to show g(n) = cnα satisfies the controlled growth requirement as g(n) ≤
f(n) ≤ g(n) + 1. Condition (i) follows immediately since, by the mean value theorem,
c(n + 1)α − cnα ∈ [αcnα−1, αc(n + 1)α−1], and αcnα−1 ≥ 1 for sufficiently large n.

Moving on to condition (ii), we have that

g(n + ϵ(n)) = c(n + ϵ(n))α = (1 + o(1))cnα = (1 + o(1))g(n) ,

and so g satisfies condition (ii) of the controlled growth requirement.
For condition (iii), fix a constant b > 0. Then, as α ≥ 1,

g(n + bn) = c(n + bn)α = cnα(1 + b)α ≥ cnα + bcnα = (1 + b)g(n) ,

meaning g satisfies condition (iii) of the controlled growth requirement.

Proof of Theorem 1.1 (b). Let c > 0 and α ∈ (1, 3/2) and let f(n) = ⌈cnα⌉. Then f(n) =
ω(n) and f(n) = o(n3/2) and, by Lemma 3.3, f has controlled growth. Thus, by Theorem 1.3,
P (G(f)) = [0, 1].

4 Proof of Theorem 1.1 (c)

For the duration of Section 4, fix c > 0 and let f(n) = ⌈cn3/2⌉. We begin by showing that
(1 +

√
6c)−2 is a tight bound for the maximum density in P (G(f)).

Lemma 4.1. Fix c > 0 and let f(n) = ⌈cn3/2⌉. Then

(a) there exists an activator sequence V in G(f) such that δ(G(f),V) = (1 +
√

6c)−2, and

(b) for all activator sequences V in G(f) we have δ(G(f),V) ≤ (1 +
√

6c)−2.
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4.1 Upper bound

We begin with the proof of Lemma 4.1 (b) as it is more straightforward.

Proof of Lemma 4.1 (b). Let V = (vn, n ≥ 1) be an activator sequence on G(f), fix ε ∈ (0, 1),

and let t = (1 + ε)n. Define B
(old)
t ⊆ Bt to be the set of vertices in

⋃n
i=1Bt[i] and define

B
(new)
t ⊆ Bt to be the set of vertices in

⋃t
i=n+1 Bt[i]. Note that Bt = B

(old)
t ∪ B

(new)
t and so

|Bt| ≤ |B(old)
t | + |B(new)

t |.
To bound |B(old)

t |, note that the centres of balls Bt[1], . . . , Bt[n] are all in V (Gn), meaning⋃n
i=1Bt[i] covers at most every vertex in V (Gn) ⊆ V (Gt) plus every vertex of distance at

most t−n = εn from V (Gn). Since the length of the perimeter of Gn is Θ(n3/2), we get that

|B(old)
t | ≤ |V (Gn)| + O(n5/2) = 4c2n3 + O(n5/2) .

For |B(new)
t |, we have the immediate bound

|B(new)
t | ≤

t∑
i=n+1

|Bt[i]| =
2(t− n)3 + (t− n)

3
=

2(εn)3

3
+ O(n) .

Therefore,

|Bt| ≤
(

4c2 +
2ε3

3

)
n3 + O(n5/2) ,

and so
|Bt|

|V (Gt)|
≤ f(c, ε) + O(n−1/2), with f(c, ε) =

4c2 + 2ε3

3

4c2(1 + ε)3
.

Since

f ′
ε(c, ε) =

−6c2 + ε2

2c2(1 + ε)4
,

letting ε =
√

6c to minimize the upper bound for |Bt|/|V (Gt)|, we conclude that

δ(G(f),V) ≤
4c2 + 2ε3

3

4c2(1 + ε)3
=

1 + 2(
√
6c)3

12c2

(1 +
√

6c)3
=

1 +
√

6c

(1 +
√

6c)3
=

1

(1 +
√

6c)2
,

and the proof is finished.

4.2 Lower bound

In this section we prove Lemma 4.1 (a) by describing the construction of an activator sequence
V in G(f) such that δ(G(f),V) = (1 +

√
6c)−2. As suggested during the proof of Lemma 4.1

(b), our strategy ensures the balls surrounding newly activated vertices stay mostly disjoint
while the balls surrounding older activated vertices, which must necessarily overlap, have
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burned almost all vertices that were added up to the point that these older vertices were
activated.

At the heart of the strategy is an explicit description of how to burn a rectangle of a
specified height and width using a set number of activation vertices. While describing this
strategy, we temporarily describe activator vertices using real numbers which may not be
integers. We then describe how to recursively apply this rectangle burning strategy to burn
G(f). Finally, we analyze the burning density by estimating the contributions of the new
and old activator vertices.

Let us justify using real numbers as activator vertices. For an increasing function f : N →
N, consider the following burning process on the sequence of real compact spaces (Sn(f), n ≥
1), where Sn(f) = [−f(n), f(n) + 1]2, and a sequence of activator points ((xn, yn), n ≥ 1)
where (xn, yn) ∈ Sn(f) ∪ {∅}. Note that, exclusively in this description, we are writing
[−f(n), f(n) + 1]2 as the real compact space and not the integer lattice. For each time t,

1. the space grows from St−1(f) to St(f),

2. if every point in the unit square [a, a+ 1]× [b, b+ 1] is burning then every point in the
four squares [a − 1, a] × [b, b + 1], [a + 1, a + 2] × [b, b + 1], [a, a + 1] × [b − 1, b], and
[a, a + 1] × [b + 1, b + 2] changes its state to burning, and finally

3. every point in the unit square [xt, xt + 1] × [yt, yt + 1] changes its state to burning.

If a unit square is not fully in St, we simply do not burn any of the square. The burning
density is defined as the limiting fraction of the space that is burning.

It is clear that, by choosing ((xn, yn), n ≥ 1) as integer pairs, this burning process is
identical to the burning process on the integer lattice. Moreover, similar to how we proved
Lemma 2.1, we can see that the burning density on V = ((xn, yn), n ≥ 1) is identical to the
burning density on V∗ = ((⌊xn⌋, ⌊yn⌋), n ≥ 1): on the one hand we can delay V by one turn
and then everything burning due to V is also burning due to V∗, and on the other hand
we can delay V∗ by one turn for the inverse effect. Thus, we are justified in choosing real
coordinates instead of integer coordinates in our coming strategy.

4.2.1 Burning a rectangle

Let R be a rectangle with width w and height ℓ. Such a rectangle can be nearly covered with
diamonds of (long) radius 1 (and so of area 2) centred at the points (i, j) with 0 ≤ i < w,
0 ≤ j < ℓ, and i+ j ≡ 1 mod 2. See Figure 2 for a depiction of this near covering. Suppose
now that we are limited to at most t diamonds and we wish to recreate this tiling pattern in
R. In this case, we choose the unique radius r such that t = wℓ/2r2 and tile R via diamonds
of radius r centred at points (r · i, r · j) with 0 ≤ i < w/r, 0 ≤ j < ℓ/r and i+ j ≡ 1 mod 2.
Note that the number of diamonds required for this tiling is ⌊w/r⌋ · ⌊ℓ/r⌋/2 ≤ wℓ/2r2 = t.

We now translate this near-covering via diamonds to a strategy for burning a rectangular
lattice graph with a limited number of activator vertices. Note that, in the coming lemma,
we will not assume that vertices are activated on every turn. The reason for this is that our
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(0, 0)

(w, ℓ)

Figure 2: A near-cover of a w by ℓ rectangle with diamond tiles centred at points (i, j) for
0 ≤ i ≤ w, 0 ≤ j ≤ ℓ such that i + j ≡ 1 mod 2. Note that smooth-edged diamonds
are drawn for simplicity. Each diamond is in fact a collection of burning squares forming a
diamond with stair-case edges.

ultimate strategy requires burning 4 rectangles at the same time, meaning we will need an
efficient strategy for burning a rectangle without burning it on every turn.

Lemma 4.2. Let G = [0, w]× [0, ℓ], fix t > 0, let r =
√
wℓ/2t, and let S be the set of points

(r · i, r · j) such that 0 ≤ i ≤ w/r, 0 ≤ j ≤ ℓ/r, and i + j ≡ 1 mod 2. Now suppose V is
an activator sequence for G that (a) activates all of S in an arbitrary order, (b) does not
activate any vertex outside of S, and (c) ends on turn τ ≥ t. Then

(a) on turns n with 1 ≤ n ≤ r, the burning balls are all disjoint, and

(b) on turns n with n ≥ r + τ , there is a 1 + O
(

r(w+ℓ)
wℓ

)
fraction of V (G) that is burning.

Proof. Starting with (a), the minimum distance between any two vertices in V is 2r. More-
over, at the end of turn ⌊r⌋, all of the balls have radius at most ⌊r⌋ − 1. Thus, the balls are
all disjoint.

Continuing with (b), after turn ⌈r⌉ + τ all of the balls have radius at least r. For
any (x, y) ∈ [0, w − r] × [0, ℓ − r], let i, j be the unique non-negative integers satisfying
r · i ≤ x < r · (i + 1) and r · j ≤ y < r · (j + 1).

Case 1: Suppose that i+ j ≡ 0 mod 2. Then (r · i, r · j) and (r · (i+ 1), r · (j + 1)) are both
activator vertices. Moreover, in the L1 norm,

||(x, y) − (r · i, r · j)||1 + ||(x, y) − (r · (i + 1), r · (j + 1))||1 = 2r,

meaning (x, y) is at most distance r away from one of the two activator vertices.
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Case 2: Suppose that i+ j ≡ 1 mod 2. Then (r · i, r · (j + 1)) and (r · (i+ 1), r · j) are both
activator vertices. Moreover, in the L1 norm,

||(x, y) − (r · i, r · (j + 1))||1 + ||(x, y) − (r · (i + 1), r · j)||1 = 2r,

meaning (x, y) is at most distance r away from one of the two activator vertices.
Therefore, [0, w− r]× [0, ℓ− r] is covered after time r + τ , meaning at most rℓ+ rw + r2

vertices are not covered. Since

rℓ + rw + r2

wℓ
= O

(
r(w + ℓ)

wℓ

)
,

this completes the proof.

4.2.2 Recursively burning with rectangles

L(n, k) R(n, k)

D(n, k)

U(n, k)

w(n, k)

ℓ(n, k)

Figure 3: The gray center square represents Gn and the whole square represents Gn+k. Each
of the four labelled rectangles have two sides of length w(n, k) = 2cn3/2 and two sides of
length ℓ(n, k) = c

(
(n + k)3/2 − n3/2

)
.

Given G(f) = (Gn, n ≥ 1), let U(n, k), L(n, k), R(n, k), and D(n, k) be the four rectangles
defined in Figure 3. Write

ℓ(n, k) := f(n + k) − f(n) = c
(
(n + k)3/2 − n3/2

)
17



and
w(n, k) := 2f(n) = 2cn3/2

for the two unique side lengths of each rectangle; U(n, k) and D(n, k) have height h(n, k)
and width w(n, k) whereas L(n, k) and R(n, k) have height w(n, k) and width ℓ(n, k). The
following is a useful equation coming from the Taylor series expansion of ℓ(n, k):

ℓ(n, k) = cn3/2
(
(1 + k/n)3/2 − 1

)
= cn3/2

(
1 +

3

2
(k/n) + O

(
(k/n)2

)
− 1

)
=

3c

2
k
√
n + O

(
k2

√
n

)
.

(1)

We are now ready to finish the proof of Lemma 4.1.

Proof of Lemma 4.1 (a). Let ti = i4 and write Ui, Li, Ri, Di as respective shorthands for
U(ti, ti+1− ti−1), L(ti, ti+1− ti−1), R(ti, ti+1− ti−1), D(ti, ti+1− ti−1). Likewise, write wi

and ℓi as respective shorthands for w(ti, ti+1 − ti − 1) and ℓ(ti, ti+1 − ti − 1). We will burn G
in phases, with phase i lasting from turn ti+1 to turn ti+2 − 1 and dedicated to burning the
four rectangles Ui, Li, Ri, Di. Note that these four rectangles exist in Gt for all t ≥ ti+1 − 1
and so exist during phase i. We dedicate an equal number of rounds (up to an additive 1) to
burning each rectangle, meaning the number of activator vertices we have available for each
rectangle is

1

4
(ti+2 − 1 − ti+1) =

1

4

(
(i + 2)4 − 1 − (i + 1)4

)
=

1

4
(4i3 + 18i2 + 28i + 14)

≥ i3 ,

and so we may assume we have exactly i3 vertices per rectangle as we can skip turns.
Let ri =

√
wiℓi/2i3 and let S be the set of points defined in Lemma 4.2. With τi = 4i3,

by Lemma 4.2 we can burn all four rectangles such that

• on turns n with ti+1 ≤ n ≤ ti+1 + ri − 1 the burning balls formed in this rectangle are
disjoint, and

• on turns n with n ≥ ti+1 + ri + τi there is a 1 + O
(

r(w+ℓ)
wℓ

)
fraction of each rectangle

that is burning.

Thus, as t increases as the burning game progresses, each set of four rectangles Ui, Li, Ri, Di

evolves from a new ball phase (between turns ti+1 and ti+1 + ri − 1) to a transitional phase
(between turns ti+1 +ri and ti+1 +ri +τi−1) and eventually to an old ball phase (from turns
ti+1 + ri + τi onward). We are left to show that this evolution, in asymptotics, achieves the
bounds given in the proof of Lemma 4.1 (b).
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Note that by (1), we have that

ℓi =
3c

2
(ti+1 − ti − 1)t

1/2
i + O

(
(ti+1 − ti − 1)2

t
1/2
i

)

=
3c

2

(
(i + 1)4 − i4 − 1

)
i2 + O

(
(i3)2

i2

)
=

3c

2
(4i3)(1 + O(1/i))i2 + O(i4)

= 6c i5(1 + O(1/i)),

and wi = 2ct
3/2
i = 2c i6. The rectangles Ui, Li, Ri, Di are in the new ball phase up to turn

ti+1 + ri − 1 ≥ ti +

(
wiℓi
2i3

)1/2

− 1

= ti + (1 + O(1/i))

(
(2c i6) (6c i5)

2i3

)1/2

− 1

= ti + (1 + O(1/i))
(
6c2 i8

)1/2 − 1

= ti +
√

6ci4 + O
(
i3
)

≥
(

1 +
√

6c
)
ti + O

(
i3
)
.

Likewise, the rectangles are in the old ball phase starting on turn

ti+1 + ri + τi = ti+1 +
√

6ci4 + τ + O(i3)

≤ (1 +
√

6c)ti+1 + τ + O(i3)

= (1 +
√

6c)ti+1 + 4i3 + O(i3)

= (1 +
√

6c)ti + O(i3) .

Note that, although balls in a new ball phase rectangle do not overlap with each other, it
is possible that overlap occurs between adjacent rectangles. On the other hand, we could
modify the tiling in Lemma 4.2 by not burning (r · i, r · j) if, say, min{i, j} < 100, and the
asymptotic result would still hold. Thus, we may ignore the negligible loss coming from the
overlap between adjacent rectangles.

Fix turn t and let n be such that t = n(1 +
√

6c). Next, let δ be large enough so that
ti < n − δ implies Ui, Li, Ri, Di are old ball phase rectangles and ti > n + δ implies they
are new ball phase rectangles. By the previous two computations, we can find such a δ with
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δ = O(t3/4). The total contribution from old ball phase rectangles is at least

4

⌊(n−δ)1/4⌋∑
i=1

(
wiℓi + O

(
i3
))

= O(n) + 4

⌊(n−δ)1/4⌋∑
i=1

(
2ci6

) (
6ci5

)
(1 + O(1/i))

= O(n) +
(
1 + O(n−1/4)

)
4

⌊(n−δ)1/4⌋∑
i=1

(
2ci6

) (
6ci5

)
= O(n) +

(
1 + O(n−1/4)

)
48c2

⌊(n−δ)1/4⌋∑
i=1

i11

= O(n) +
(
1 + O(n−1/4)

)
48c2

∫ n1/4

0

x11 dx

= O(n) +
(
1 + O(n−1/4)

)
4c2n3 dx

= 4c2n3 + O(n3−1/4)

= 4c2n3(1 + o(1))

and the total contribution from the new ball phase rectangles is at least

2(t− n− δ)3 + t

3
=

2(
√

6cn(1 + O(n−1/4)))3 + O(n)

3

=
2

3
(
√

6cn)3 + O(n3−1/4)

=
2

3
(
√

6cn)3(1 + o(1)) .

Therefore, the burning density after turn t is at least

4c2n3 + 2
3
(
√

6cn)3

4f(t)2
+ o(1) =

c2n3 + 1
6
(
√

6cn)3

f(t)2
+ o(1)

=
c2n3(1 +

√
6c)

c2n3(1 +
√

6c)3
+ o(1)

=
1

(1 +
√

6c)2
+ o(1) ,

and this concludes the proof.

4.3 Smaller densities and the proof of Theorem 1.2

Proof of Theorem 1.1 (c). Let c > 0 and let f = ⌈cn3/2⌉. Then f(n) = ω(n2), meaning the
activator sequence V = (vn, n ≥ 1) with vn = (0, 0) for all n achieves density 0.

Next, by Lemma 4.1, (1 +
√

6c)−2 ∈ P (G(f)). Now for ρ ∈ (0, (1 +
√

6c)−2), let d =√
ρ(1 +

√
6c)2 and let g(n) = df(n). Then again by Lemma 4.1 we have (1 +

√
6c)−2 ∈

P (G(g)), implying by Lemma 2.7 that d2(1 +
√

6c)−2 = ρ ∈ P (G(f)).
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Note that this proof finalizes the proof of Theorem 1.1.

Proof of Theorem 1.2. As discussed previously, Bonato, Gunderson and Shaw proved the
strongest possible extension of case (d).

Let f : N → N be strictly increasing such that limn→∞ f(n)/n = c for some c ≥ 1. Then
for g(n) = ⌈cn⌉ we have limn→∞ f(n)/g(n) = 1. By Theorem 1.1 (a), we have P (G(g)) =
[1/(2c2), 1]. Thus, by Lemma 2.6, we also have P (G(f)) = [1/(2c2), 1].

Finally, let f : N → N be strictly increasing such that limn→∞ f(n)/n3/2 → c for some
c > 0. Then, for g(n) = ⌈cn3/2⌉ we have limn→∞ f(n)/g(n) = 1. By Theorem 1.1 (c), we have
P (G(g)) = [0, (1+

√
6c)−2]. Thus, by Lemma 2.6, we also have P (G(f)) = [0, (1+

√
6c)−2].

5 Further Directions

A natural extension of this work is to study the attainable densities on growing d-dimensional
grids. To this end, we pose the following conjecture.

Conjecture 5.1. Let f : N → N be a strictly increasing function, let Gn = [−f(n), f(n)]d

for some d > 2, and let G(f) = (Gn, n ≥ 1).

(a) If f(n) = ⌈cn⌉ for some c ≥ 1 then P (G(f)) = [1/(2cd), 1].

(b) If f(n) = ω(n) and f(n) = o(n(d+1)/d) then P (G(f)) = [0, 1].

(c) If f(n) = ⌈cn(d+1)/d⌉ for some c > 0 then P (G(f)) = [0, ϕ(c, d)] for some constant
ϕ(c, d) depending on c and d.

(d) If f(n) = ω(n(d+1)/d) then P (G(f)) = {0}.

In a recent work by Blanc and Contat [4], they study random burning on the d-dimensional
Euclidean lattice, and their results could give insights as to the correct function ϕ(c, d) in case
(c). Moreover, their generalization of Theorem 3.1 from Mitsche, Pra lat and Roshanbin [10]
might allow for a generalization of our proof of Theorem 1.1 (b).

Another direction for future work is to find necessary and sufficient growth conditions
for the function f(n) so that P (G(f)) ̸= ∅, or so that ρ ∈ P (G(f)) for some ρ ∈ (0, 1). We
showed via example that at least some restriction on the growth of f is necessary to obtain
a burning density on G(f), though we do not claim that controlled growth is the weakest
possible restriction.
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