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Abstract We report on some topics pursued at the MATRIX event Combinatorics
of McKay and Wormald regarding graph bootstrap percolation on random graphs.
The literature has mostly focussed on balanced template graphs. We are working
towards more general results.

Introduction

In graph bootstrap percolation, we start with an Erdős–Rényi random graph G0 =
Gn,p. We fix a template graph H to govern the dynamics. Specifically, in step k ≥ 1
of the process, we obtain Gk by adding each missing e /∈ E(Gk−1) that would create
a new copy of H. We let 〈Gn,p〉H =

⋃
k≥0 Gk denote the closure of these dynamics,

and say that Gn,p H-percolates if 〈Gn,p〉H = Kn. Finally, we let

pc(n,H) = inf{p > 0 : P(〈Gn,p〉H = Kn)≥ 1/2}
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denote the critical H-percolation threshold.
This process was introduced by Balogh, Bollobás and Morris [1], following the

early work of Bollobás [5] on weak saturation. Indeed, pc is the point at which the
G (n, p) is likely to be weakly saturated. Further inspiration for this process came
from the study of bootstrap percolation in statistical physics [6]; see, e.g., Mor-
ris [7] for a recent survey. Bootstrap percolation is a simple example of a cellular
automaton, that is, a process in which the sites in the system change their status de-
pending on the status of their local environment. Interestingly, such local rules can
give rise to complex global behavior; see, e.g., the early work of Ulam [8] and von
Neumann [9].

In bootstrap percolation, the percolation process is usually started by initially
infecting all sites independently with probability p. In the context of graph bootstrap
percolation, the sites can be thought of as the edges of the complete graph Kn. A site
e ∈ E(Kn) being initially infected then corresponds to including this edge in our
initial graph G0; indeed, this is precisely how Gn,p is constructed. Hence, from a
statistical physics point of view, the study of pc(n,H) is a natural question, and in
some sense greatly generalizes the classical bootstrap percolation model.

From a more combinatorial perspective, let us note that, clearly, K3-percolation is
equivalent to connectivity. Indeed, by induction, it can be seen that the K3-dynamics
turn all paths into cliques. On the other hand, if a graph has two disconnected re-
gions, then the K3-dynamics will never add an edge from one to the other (consider,
towards a contradiction, the first time this happens). Therefore, pc(n,K3) is the clas-
sical connectivity threshold for Gn,p. From this point of view, the study of pc(n,H)
is natural, as these quantities can be seen as thresholds for more general forms of
connectivity.

Literature

The best known results are for templates graphs H that are balanced in the sense
that, for every e ∈ E(H), the graph H \ e, obtained from H by removing e, is 2-
balanced. More concretely,

e(F)−1
v(F)−2

≤ e(H)−2
v(H)−2

,

for all proper subgraph F of H with at least 3 edges. Cliques H = Kr are balanced
in this sense.

Combining results from [1, 2] it follows that

pc(n,H) = n−1/λ+o(1),

for all balanced H, where

λ (H) =
e(H)−2
v(H)−2

.
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Problem 1 in [1] asks for `(H) such that

pc(n,H) = n−`(H)+o(1),

for all graphs H, and is a major open problem in the area.
In [3] it is observed that the random graph H = G (k,1/2) is balanced with high

probability, as k→ ∞. In this sense, ` = 1/λ for most graphs H, since G (k,1/2) is
a uniformly random graph on k vertices.

The value of ` is only known for a handful of (non-trivial) unbalanced graphs.
For instance, `(K2,4) = 10/13 (see [4]) and `(DDr) = r/(

(r
2

)
+ 1) (see [1]), where

DDr is the double dumbbell graph, obtained by adding two disjoint edges between
two disjoint copies of Kr.

A general lower bound pc ≥ n−1/λ̂+o(1) is proved in [2], for all H with at least
four vertices and minimum degree at least two (which covers all non-trivial cases).
Here,

λ̂ (H) = min
F

e(H)− e(F)−1
v(H)− v(F)

,

over all subgraphs F with 2≤ v(F)< v(H). It can be shown that λ̂ ≤ λ and λ̂ = λ

if and only if H is balanced. We note that λ̂ can be viewed as the edge-per-vertex
cost of the most efficient way of adding a new edge via the H-dynamics; see, e.g.,
Fig. 1 in [3].

Interestingly, `= 1/λ̂ when H =DDr; however, if H =K2,4 then 1/λ < `< 1/λ̂ .
Indeed, the general behavior of ` remains largely mysterious.

A second fascinating question is Problem 2 in [1] that asks for what H is the
threshold pc sharp, meaning that the critical window, between which P(〈Gn,p〉H =
Kn) goes from ε to 1− ε , has width o(pc).

Report

While at MATRIX, the authors focussed on Problems 1 and 2 in [1], as discussed
above. We have made some progress, which we plan to continue developing to-
gether. We aim to determine ` for an arbitrary H and to characterize template graphs
H that certify sharpness, at least partially.

Question

Many interesting open problems remain. Let us finish this note with one such ques-
tion.

As discussed at the end of [3], the graph H = G (k,α) is balanced (with high
probability, as k→∞) provided that α > β∗(logk)/k, where β∗ = 2/ log(e/2). Since
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little is known about pc when H is unbalanced, it would be useful to understand at
least the typical behavior. That is, it would be interesting to study ` for such H as
above, as β ranges over (1,β∗), so that H is connected but unbalanced.
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