
The Needle is a Thread:
Finding Planted Paths in Noisy Process Trees

Maya Le1, Paweł Prałat2, Aaron Smith1, and François Théberge3

1 Dept of Mathematics and Statistics, University of Ottawa, Ottawa, Canada;
{mle038,asmi28}@uOttawa.ca

2 Dept of Mathematics, Toronto Metropolitan University, Toronto, Canada;
pralat@torontomu.ca

3 Tutte Institute for Mathematics and Computing, Ottawa, Canada;
theberge@ieee.org

Abstract. Motivated by applications in cybersecurity such as finding
meaningful sequences of malware-related events buried inside large amounts
of computer log data, we introduce the “planted path” problem and pro-
pose an algorithm to find fuzzy matchings between two trees. This algo-
rithm can be used as a “building block” for more complicated workflows.
We demonstrate usefulness of a few of such workflows in mining syntheti-
cally generated data as well as real-world ACME cybersecurity datasets.4

Keywords— Planted Path Problem, Process Trees, Sequence Recovery

1 Introduction

In many scientific contexts, we observe parts of many large, noisy, labelled directed
acyclic graphs and wish to find a small, meaningful path that is common to many
of the graphs. In cybersecurity, we might observe the very large “process trees" of
compromised computers and attempt to find the sequence of processes used by an
attacker. In supply chain management, we might observe the sequence of sites that
a large collection of defective or dangerous products and components went to and
attempt to find the source of the problem by finding a common path. In biology, we
might observe the genealogical trees of cancer cells or viruses and attempt to find the
sequence leading to a drug-resistant or virulent version. In software reverse engineering,
we might see many call traces and wish to find the common path associated with a
pernicious bug.

All of these situations have a common mathematical structure: the main goal is to
recover a “planted path" from a large tree. In this paper, we introduce a simple algo-
rithm for extracting paths in Section 2.2 and describe several algorithms for incorporat-
ing this algorithm into larger machine-learning workflows in Section 3. In Section 4 we
4 This research was supported by the Rogers Cybersecure Catalyst through the Cata-

lyst Fellowship Program. The title was suggested by Gemini based on our introduc-
tion. It was justified like this. “It is my personal favorite. It twists the classic “needle
in a haystack” idiom (which everyone in data science knows) to perfectly describe
your specific contribution: you aren’t looking for a single point, but a linear sequence
(a thread).”

2 M. Le, P. Prałat, A. Smith, F. Théberge

introduce a simple data-generating process and a more formal “planted labelled path"
problem that is loosely analogous to the popular “planted clique" problem (see [6]) and
related “planted structure" problems (there are many variants; see e.g. [2,19]). Through-
out the paper, we focus on developing realistic models and workflows for messy data
over developing statistically-optimal solutions for specific clean versions of the “planted
path" problem.

While the “planted path" problem occurs in several areas, we were motivated by
the problem of finding meaningful sequences of malware-related events buried inside
large amounts of computer log data, and we use this as our main illustrative appli-
cation. Recall that the basic task in cybersecurity triage is to flag a small number of
“suspicious" lines of a very large log file for careful inspection by an expert (see e.g. the
survey [18]). The challenge is that the number of individual log lines that look suspi-
cious under naive heuristics is typically still far too much for human experts to inspect,
while the number of “truly bad" events is quite small. However, it is well-known that
certain families of cybersecurity events (see e.g. the sequence from “Reconnaissance" to
“Impact" in the MITRE framework5) follow our “planted path" structure quite closely.

We acknowledge that the planted path problem is not a perfect abstraction. In real
data, the full event might not be strictly contained in a single path and the noisiness
of our observations will typically prevent us from observing a full planted path. We
argue that the first of these problems is often minor. In Section 5 we examine the
ACME4 dataset6 and see that the extracted paths capture a meaningful part of the
true event, even though they are not the full event. In Section B we describe a small
adjustment to our algorithm that allows us to extract non-paths efficiently in the case
that this is necessary. The second problem is more important, but even very imperfect
filtering can boost the signal of actually-bad sequences (by aggregating events that are
meaningfully related) and filter noise (by removing the vast majority of lines that could
not belong to any plausible sequence). It has been widely-recognized that some sort of
signal-aggregation is critical for creating statistically powerful detectors [14,1].

This conference paper is an exploratory work, showing that path extraction is both
feasible and useful for real cybersecurity data. The journal version will give further
details on a more realistic machine learning workflow, comparisons to other algorithms
on real datasets, and some basic theory.

2 Fuzzy Matching Algorithm

We start by introducing the notation that will be used in this section.

1. Two directed trees G and H on sets of nodes [n] ≡ {0, 1, . . . , n} and, respectively,
[m]. Nodes 0 are the roots of the corresponding trees. We use ancG to denote
the function mapping a non-root node to its unique ancestor, that is, for any
v ∈ [n] \ {0}, ancG(v) ∈ [n]. Similarly, descG denotes the function mapping a node
to its set of descendants, that is, for any v ∈ [n], descG(v) ⊆ [n]. In particular,
descG(v) = ∅ if and only if v is a leaf. Define ancH, descH analogously for H.

2. A set of features S and two label functions ϕG : [n] 7→ S and ϕH : [m] 7→ S.
3. A weight function w : S2 7→ [0,∞).

5 https://attack.mitre.org/
6 https://gdo168.llnl.gov

https://attack.mitre.org/
https://gdo168.llnl.gov

The Needle is a Thread: Finding Planted Paths in Noisy Process Trees 3

For clarity of exposition, we assume that each node is characterized by a single
feature from the set S. While most real-world datasets store many features for each
node, this assumption simplifies the notation but there is no loss of generality. (If e.g.
a data structure has many features S1, . . . ,Sk, we can simply write S = S1 × . . .×Sk.)
Within this framework, the weight function w serves to quantify the similarity between
any two features.

2.1 Definitions

We introduce the notation used to describe partial matches of single paths in each tree.
We use the partial ordering of nodes in a tree, formally described as follows:

Definition 1 (Trees and Orderings). For a directed tree T , define a partial ordering
≤T on the nodes of T by writing u <T v if there is a directed path from u to v.

Note that there is a unique minimal element, the root of T , but there could be
many maximal elements corresponding to leaves of T . We also note that it is always
possible to order the set of nodes [n] of T so that u <T v implies u < v. There are
usually many such orderings that can be easily found by, for example, running the
Breadth-First Search (BFS) or the Depth-First Search (DFS) algorithms and using
the discovery time to order nodes. Let us note that the reverse implication does not
hold unless T is in fact a single path.

For the remainder of the paper, we assume that the nodes of considered trees G
and H are ordered in the above way. Our goal is to find an optimal matching of nodes
in our two trees (with respect to the fixed weight function w). Formally, we introduce
the following definition:

Definition 2 (Valid (Partial) Matchings). We say that a sequence of pairs of
nodes (u1, v1), . . . , (uk, vk) ∈ [n] × [m] is a valid matching between trees G and H if
ui <G ui+1 and vi <H vi+1 for all i ∈ {1, 2, . . . , k − 1}.

We say that such a sequence is a valid partial matching up to (u, v) ∈ [n] × [m] if
it is a valid matching and furthermore uk ≤G u and vk ≤H v. Let us denote by Pu,v

the set of valid partial matchings up to (u, v) and by P =
⋃

u,v Pu,v the set of all valid
matchings.

With the above definition at hand, we can then define the score of a valid matching
p = (u1, v1), . . . , (uk, vk) as follows:

s(p) =

k∑
i=1

w(ϕG(ui), ϕH(vi)). (1)

Finally, the similarity score between trees G and H is simply the largest possible score
over all valid matchings:

s(G,H) = max
p∈P

s(p). (2)

2.2 Matching Algorithm

In this subsection, we give a “fuzzy matching” algorithm for computing s(G,H), the
feature-based similarity score between G and H introduced above—see Algorithm 1.

4 M. Le, P. Prałat, A. Smith, F. Théberge

The algorithm is very similar to the dynamic programming algorithm of [16]. In par-
ticular, we will use the bottom-up (tabulation) variant of the problem which avoids
recursion. The time complexity of this algorithm is clearly polynomial: O(nm).

Throughout this subsection, we use the convention that the root node 0 has a
unique ancestor −1, which is never matched. This convention is used purely to avoid
introducing special corner cases to the algorithm.

Algorithm 1 Basic Matching Algorithm
Input: Trees G,H on sets of nodes [n] and [m], label functions ϕG : [n] 7→ S,
ϕH : [m] 7→ S, weight function w : S2 7→ [0,∞).

1 Initialize A−1,−1 = A−1,v = Au,−1 = 0 for all u ∈ [n], v ∈ [m].
2 for u ∈ [n]: do
3 for v ∈ [m]: do
4 Set

Au,v = max


AancG(u),v

Au,ancH(v)

w(ϕG(u), ϕH(v)) +AancG(u),ancH(v)


and Cu,v ∈ {1, 2, 3} according to which of these three options was selected (breaking
ties in favour of the largest option).

5 end for
6 end for
7 Initialize γG , γH to be empty lists and ℓ = argmax(u,v)Au,v.
8 while ℓ1 ̸= −1 and ℓ2 ̸= −1 do:
9 if Cℓ = 3 then:

10 Prepend ℓ1 to γG and ℓ2 to γH.
11 end if
12 Set

ℓ =


(ancG(ℓ1), ℓ2), Cℓ = 1

(ℓ1, ancH(ℓ2)), Cℓ = 2

(ancG(ℓ1), ancH(ℓ2)), Cℓ = 3.

13 end while
14 Let L be the length of γG . Return the sequence a1:L =

(γG(1), γH(1)), . . . , (γG(L), γH(L)) and the score A = maxu,v(Au,v).

Figure 1 illustrates a matching of two labelled trees (sampled according to the pro-
cedure in Algorithm 4 from the next section) that were matched with Algorithm 1. The
sequences in the “planted" paths are independent noisy samples from the ground-truth
sequence 4-4-2-4-0-2-2-2-3-1 and are placed on the right-hand sides of the trees. The op-
timal match in the observed data is the sequence 4-0-2-4-2-2-2-4-3-1, and the matched
nodes are exactly along the true planted path. Unmatched nodes are coloured grey;
matched nodes in the two trees are coloured with same colour. Note that the “alphabet"
of symbols at each node is very small and the planted sequence has noise, so there are
both some coincidental “false positive" matches and some accidental “false negative"
matches along the ground-truth planted path. Nonetheless, the highest-scoring match
is a subset of the path with the planted sequence, which is on the right-hand side of
the trees as displayed.

The Needle is a Thread: Finding Planted Paths in Noisy Process Trees 5

Fig. 1: Example of a matching of two trees.

Remark 1 (When do we expect to find the “ground truth" path?). It might be surprising
that we perfectly recover the planted path in Figure 1, even though the actual matched
sequence is not very close to the ground-truth planted sequence. To aid intuition, we
give a rough heuristic argument for when we expect the highest-scoring match to be
(nearly) a subset of the planted path.

Assume that we have a depth-d m-ary tree in which a given length-d sequence is
planted; other node labels are chosen i.i.d. uniformly from an alphabet of size k. Also
assume the following simple noise model: labels in the planted path are re-sampled
uniformly from the alphabet with some “error" probability 0 < p < 1.

Let us now consider the optimal match between two randomly labelled trees. Each
node along the planted path matches with probability q ≡ (1− p)2 +(1− (1− p)2)k−1,
while nodes not on the planted path match with probability k−1. Thus, the match
of the planted path has score roughly qd ± O(

√
qd), while nearly-disjoint paths have

scores roughly k−1d ± O(
√
k−1d). There are roughly md non-planted paths and they

are close to disjoint, so standard large-deviation results for Gaussians suggest that
the highest non-matching path has score roughly k−1d+

√
k−1d

√
2 log(m)d. Thus, we

expect recovery roughly when(
(1− p)2 + (1− (1− p)2)k−1) d ≫

(
k−1 +

√
2 log(m)k−1

)
d. (3)

In other words, we expect the planted path to have the highest score even when the
branching factor m is fairly large and the alphabet size k is fairly small.

When Algorithm 1 is applied with score S ≡ 1, it returns the largest common
sub-path of the two trees. It can be viewed as a reasonable “default" behaviour for
a planted-path algorithm, but in practice one may want slightly different behaviour
including (i) matching subtrees instead of paths, (ii) preference for shorter matches,
(iii) reduce the number of “skipped” nodes, (iv) the “top-K" paths, rather than the
single best match. Moreover, some matches may be more informative than others. A
standard default choice is to “fit" the score function w to the data, setting

w(i, i) ∝ 2

N(i) + 2
, (4)

where N(i) is the number of times label i appears in the dataset (see e.g. Chapter 8
of [11] for an introduction to scoring rules of this nature).

6 M. Le, P. Prałat, A. Smith, F. Théberge

3 Workflows

We expect Algorithm 1 to be a useful “building block” used as a step inside more com-
plicated workflows. To show its power, we introduce below two that seem particularly
relevant. More workflows will be discussed in the journal version of this paper.

3.1 Matching Workflow: Unsupervised Setting

One use of Algorithm 1 is to find a known, small template H inside of a large observed
graph G. In applications, we may not know a “good" template even if we have strong
reason to believe a good template exists. In this situation, we may consider the prob-
lem of finding good matchings between two large graphs, then extracting candidate
templates. The main algorithm here is a simple embedding and clustering algorithm
based on the matching score.

As is typically the case for workflows that involve embedding and clustering, there
is quite a bit of freedom to “switch out" components of our algorithm. As such, we give a
somewhat-generic version of the workflow, Algorithm 2, with the following components
being user-specified:

1. Normalizer: This is a function N from an n by n “similarity" matrix to an n
by n “distance" matrix. To be concrete, in our experimental setting we use the
following sequence of calculations to find a distance matrix D = N (S) for a given
symmetric similarity matrix S:

D[i, j] =

√
1− S[i, j]√

M [i]M [j]
, where M [i] ≡ max

j
S[i, j]. (5)

2. Embedder: This is a function E from an n by n “distance" matrix to an n by d
“embedding" matrix. To be concrete, in our experimental setting we use UMAP
(Uniform Manifold Approximation and Projection for Dimension Reduction) [13]7

with d = 2.
3. Clusterer: This is a function C from an n by d “embedding" matrix to a partition

of {1, 2, . . . , n}. To be concrete, in our experimental setting we use HDBSCAN
(Hierarchical Density-Based Spatial Clustering of Applications with Noise)[12]8.

Given a cluster, we will typically want to learn the actual sequence that was planted
in each tree in the cluster (either to allow us to cluster new data more efficiently, or
because we believe the planted sequence is meaningful). Since Algorithm 2 involves com-
puting a best-matched sequence in each pair of trees, this amounts to solving the well-
known multiple sequence alignment (MSA) problem for this collection of best-matched
sequences. The literature on this subject is too large to survey (see e.g. [17,3,9,4,10]);
in this paper we use a simple likelihood-based approach similar to [17]. We will refer
to this algorithm as MSA Algorithm.

7 https://umap-learn.readthedocs.io/en/latest/
8 https://hdbscan.readthedocs.io/en/latest/

https://umap-learn.readthedocs.io/en/latest/
https://hdbscan.readthedocs.io/en/latest/

The Needle is a Thread: Finding Planted Paths in Noisy Process Trees 7

Algorithm 2 Unsupervised Clustering

Input: Trees {Ti}Ni=1 with labels {ϕi}Ni=1, weight function w, normalizer N , em-
bedder E, clusterer C.

1 for 1 ≤ i < j ≤ N : do
2 Find the best matching paths γi, γj and score Sij by applying Algorithm 1 to

input trees Ti, Tj , label functions ϕi, ϕj and weight function w.
3 end for
4 Compute the distance matrix D = N (S).
5 Compute the embedding E = E(D).
6 Compute and return the clustering C(E).

3.2 Matching Workflow: Features for Classifiers

The simplest use for path matching is as a simple feature-augmentation technique.
Consider an observed dataset of labelled trees {Gi}Ni=1 with associated feature maps
{ϕGi}Ni=1. We then fix a collection of templates and feature maps {(Tj , ϕTj)}Mj=1. We
can use these templates to generate auxiliary features Xi,j by running Algorithm 1
with input Gi, Tj , ϕGi , ϕTj . These features can be used in any downstream task, e.g. as
input for a classifier.

Of course, one must decide on where the pairs {(Tj , ϕTj)}Mj=1 come from. The
simplest approach for selecting {(Tj , ϕTj)}Mj=1 is to randomly select paths that occur
in your data - this amounts to using templates as random landmarks, as in e.g. [15].

4 Simple “Planted Path" Model

In this section, we describe two simple data-generating process for our planted-path
problem: one for randomly planting a single fixed template in a single fixed tree (Algo-
rithm 3), the other generating a collection of many trees that have hard-to-distinguish
templates (Algorithm 4). We view these models as loosely analogous to using the
stochastic block model (SBM) [5] or a family of Artificial Benchmarks for Community
Detection (ABCD) [7] as a toy data-generating process for the clustering problem (see
e.g. [8] for more examples of using random graphs in modelling and mining complex
networks).

Before describing the process, we call attention to two pitfalls of using the SBM
that we will try to avoid:

1. Trivial Algorithms Work: If one generates a large graph from the SBM with a
small number of components and link probabilities chosen at random, then simply
sorting nodes by degree will typically give a reasonably good clustering. We view
this as a failure of the toy model, since we know that such “trivial" algorithms
typically fail on realistic data.

2. Generated Examples Too Dissimilar to Real Data: The usual SBM provides
unlabelled graphs. However, in practice, node features are extremely useful for
clustering. We might expect clustering algorithms developed for the SBM to often
generalize poorly.

We partially resolve the first problem by ensuring that, in Algorithm 4, the distri-
bution of the set of labels {ϕ(u)}u∈T of each graph T is independent of the particular

8 M. Le, P. Prałat, A. Smith, F. Théberge

planted path. This ensures that trivial algorithms that do not use the tree structure,
such as counting the number of times labels occur, must fail. We partially resolve the
second problem by allowing a wide variety of underlying graph topologies and labels.

4.1 Labelling Trees with Planted Paths

Our basic model for planting a non-random sequence of features in a non-random tree
is the following algorithm. We assume that we are given a tree T with a path Γ of
length ℓ identified. Our goal is to plant a random subsequence of a given sequence of
features of length k on a random part of the path Γ . Parameter p and function r model
the length and, respectively, the distribution of a random subsequence. The remaining
features are selected according to a distribution π.

Algorithm 3 Randomly Labeling Trees from Template
Input: Tree T , connected path Γ ≡ (γ1, . . . , γℓ) ⊆ T , distribution π on S, sequence
a1, . . . , ak ∈ S, rate r : S 7→ (0,∞), observation probability 0 < p ≤ 1.

1 Sample N ′ ∼ Bin(ℓ, p) and set N = min(N ′, k).
2 Sample set S1 ⊆ {1, 2, . . . , ℓ} of size N uniformly at random, and sample set S2 ⊆
{1, 2, . . . , k} of size N with probability proportional to

∏
s∈S2

r(s). Let s1(1) <
. . . < s1(N), s2(1) < . . . < s2(N) be their elements in increasing order.

3 for i ∈ {1, 2, . . . , N} do
4 Set ϕ(γs1(i)) = as2(i).
5 end for
6 for v ∈ T \ {γi}i∈S1 do
7 Randomly set ϕ(v) ∼ π.
8 end for
9 Return ϕ.

In a typical dataset, one might have a family of trees, each with one of many
possible planted paths. Before describing an associated synthetic random model, we
need some further notation. We say that µ is a distribution on (tree, path) pairs if a
sample (T , Γ) ∼ µ consists of a directed tree T and a sequence Γ = {γ1, . . . , γk) ⊆ T
that satisfies γi <T γi+1 for all i ∈ {1, 2, . . . , k − 1}.

For our experiments, we will use a simple model that fits our data reasonably
well. Our model generates random trees GW(N,λ) with depth at most N and aims to
produce “bushy” trees. Fix a positive integer N and a real number λ > 1. To generate a
random tree, we will use a well-known Galton-Watson process in which the number of
children of nodes are i.i.d. random variables that follow the Poisson distribution with
mean λ.

In our basic model, Algorithm 4, all of the planted sequences {aσi(j)}
k
j=1 are permu-

tations of a single base sequence {aj}kj=1. This has the advantage of ensuring that the
distributions of sets of labels are completely independent of the class i ∈ {1, 2, . . . ,M},
ensuring that any algorithms based only on the sets of labels cannot distinguish be-
tween the classes. Of course, one could make a small tweak to this algorithm to allow
any collection of planted sequences.

Algorithms 3 and 4 deal with two extreme cases: either both tree and planted path
are fixed, or neither are fixed. Of course, it is reasonable to consider the intermediate

The Needle is a Thread: Finding Planted Paths in Noisy Process Trees 9

Algorithm 4 Sampling from Toy Model
Input: Distribution µ on (tree, path) pairs, distribution π on S, base sequence
a1, . . . , ak ∈ S, rate r : S 7→ (0,∞), observation probability 0 < p ≤ 1, number of
observations per class n1, . . . , nM .

1 for i ∈ {1, 2, . . . ,M}: do
2 Sample permutation σi of {1, 2, . . . , k} uniformly at random.
3 for j ∈ {1, 2, . . . , ni}: do
4 Sample a tree and path (Tij , Γij) ∼ µ.
5 Sample labels ϕij according to Algorithm 3 with input tree Tij , path Γij ,

distribution π, sequence aσi(1), . . . , aσi(k), rate r, and observation probability p.
6 end for
7 end for
8 Return π, Tij , Γij , ϕij .

situation for which the planted path is known and fixed while the trees are random.
This corresponds to running Algorithm 4 with M = 1.

4.2 Sanity Check: Is This Problem Nontrivial but Tractable?

A natural question is: for our simulated data, how hard is it to distinguish a random
tree with a planted path from a random tree without the path? Our goal is to check
that this problem is nontrivial (in that simple approaches, such as label-counting, fail)
and tractable (in that the problem would be fairly easy if you knew the path itself).

For this experiment, we use Algorithm 4 (with base tree generator described in
Section C) to generate 200 trees from M = 2 classes and observation probability
p = 0.75, with a very small base alphabet |S| = 5. Let us highlight the fact that
a small alphabet with “bushy” trees ensures that there will be many “accidental" or
“false positive" matches. Our scoring algorithm would look substantially better, even
for much smaller values of p, if |S| were much larger.

The left-hand side of Figure 2 shows a typical tree, with the candidate planted path
highlighted (this is before subsampling at rate p = 0.75). The “similarity score" plotted
on the right-hand side of Figure 2 is computed by finding the similarity of each tree
and the reference sequence a associated with class 1 using Algorithm 1. We then plot
separately the similarities of all trees in class 1 (“within-cluster") and those in class
2 (“outside-cluster"). This experiment shows that our similarity score is very good at
distinguishing between these two classes even when the planted path is both (i) a small
fraction of the full “bushy" tree and (ii) sampled at a fairly small rate of p = 0.75.

Figure 3, on the other hand, shows that the histograms of symbol frequencies are
indistinguishable. In these figures, for each tree, we compute the number of times a
given symbol appears as a node label. We then plot the histogram of these counts for
within- and outside-cluster trees.

4.3 Experiments on the Synthetic Model

We check that the unsupervised workflow proposed in Section 3.1 works reasonably
well for this toy “planted path" model. In our first experiment, we generate labelled
trees using Algorithm 4, with the main parameters being:

10 M. Le, P. Prałat, A. Smith, F. Théberge

Fig. 2: Example of a typical tree (left) and histogram of similarity scores for the
two classes (right).

Fig. 3: Histograms of symbol frequencies.

1. The base distribution on trees is GW(12, 1.8),
2. The base distribution π on the alphabet is uniform on S = {A,B,C,D,E},
3. The base sequence a is sampled from length-10 sequences using π,
4. The observation probability is p = 0.9, with rate r constant, and
5. The number of observations per class is n1 = . . . = n4 = 50.

We then run Algorithm 2, with parameters as described in Section 3.1. The re-
sulting embedding is presented in Figure 4 (left). Additionally, we use our variant
of the MSA Algorithm to extract exemplars, one for each family, and see whether
they separate classes; see Figure 4 (right). Even a quick visual inspection shows that
both algorithms do fairly well, with the four ground-truth clusters well-separated and
distance-to-exemplars much smaller for trees in the same class than trees in other
classes.

Next, we consider essentially the same experiment, with four changes: we have
n1 = . . . = n6 = 18 observations per class and p = 0.7 (so that the base problem
becomes slightly harder), we set π(i) ≈ (0.247, 0.247, 0.247, 0.247, 0.012) (that is, the
symbol E is now rare), and we put two copies of E inside the base sequence a. We then
run Algorithm 2 as above, but with two different choices for w: the “unweighted" choice
w ≡ 1, and the “weighted" choice given in formula (4). The two resulting embeddings
are displayed in Figure 5. A quick visual inspection of Figure 5 shows that a probability-
weighted score function substantially improves separation of the clusters, as expected.

The Needle is a Thread: Finding Planted Paths in Noisy Process Trees 11

Fig. 4: Embedding of trees coloured by the “ground-truth" cluster label (left).
Similarity score for the extracted exemplars (right).

Fig. 5: Two embeddings of six classes of trees, coloured by the “ground-truth"
cluster label: weighted (left) and “unweighted” (right).

5 Matching Paths in the ACME4 Dataset

ACME refers to cybersecurity datasets using the open-source Wintap telemetry collec-
tion tool developed by the Lawrence Livermore National Laboratory (LLNL). Designed
specifically for cybersecurity research, ACME addresses the complexities of gather-
ing and analyzing host-based data within large-scale Windows environments. Further
documentation for both Wintap and ACME is available on-line9.

We use the ACME4 dataset, in particular, the tables defined in the standard view
collection10. The ACME4 data simulates a Windows business network with 10 work-
stations over a 2-week period and a variety of attacks (Living off the Land, Caldera,
Metasploit, etc.). Simulated malicious actors are explicitly identified via “bad” user-
name labels.

9 https://gdo168.llnl.gov
10 https://gdo168.llnl.gov/data/newdocs/datadict

https://gdo168.llnl.gov
https://gdo168.llnl.gov/data/newdocs/datadict

12 M. Le, P. Prałat, A. Smith, F. Théberge

5.1 Process Trees

To build process trees, we extracted the following information from the process_uber_table
in the standard view collection for every process: the process identifier (PID) hash, its
parent PID hash, the process name (often blank), and the user name (also often blank).
From this data, we built a large directed graph where each edge is directed from par-
ent to child. We then extracted the connected components, which correspond to the
process trees. We obtained 1,111,277 trees, for a total of 2,884,171 nodes (PIDs) and
1,772,894 edges. The sizes of the trees range from 2 to 257,744, with the vast majority
being of size 2.

Looking at every process tree, only 8 contain bad users. We show the smallest such
tree in Figure 6, where each node is indexed with a shortened and anonymized user
name (such as “user88”, “bad3” or “SYS”) followed by the process name and separated
with “::”; recall that both values can be blank.

Fig. 6: Example of a process tree containing PIDs associated with “bad” users
(shown in red). We use short_username::process_name as the node labels.

5.2 Matching Algorithm Experiments

In order to illustrate the use of matching algorithms such as Algorithm 1, we consider
paths consisting of more that a single edge. Since the vast majority of process trees in
the ACME4 dataset are of size 2, we build a larger set of sub-trees as follows.

For every process tree of size 3 to 10,000 (there are 210 of those), we consider every
sub-tree of size 3 or more for which the root process name is not blank or labelled
as “unknown”. This yields 2,693 process sub-trees, with sizes ranging from 3 to 9,558
nodes, and depth from 2 to 15. Of those, 131 trees have at least one process associated
with a “bad” user name. We selected one such tree as our “reference” tree, shown in
Figure 7(a). We then applied Algorithm 1, looking for matching path(s) with high

The Needle is a Thread: Finding Planted Paths in Noisy Process Trees 13

scores in all other process trees. High scoring trees are shown in Figure 7 using three
different scoring functions to compare the node labels. In Figure 7(b), we consider
only the process names with a binary score (1 if the processes are the same, and 0
otherwise). We see that we found a matching path consisting of 6 nodes with the
same process names as the path highlighted in (a), thus with a total score of 6, but
the path in (b) has blank usernames. Note that we show all nodes not part of the
matching path as simple dots for easier visualization. In Figure 7(c), we consider both
the process names and usernames, where all usernames starting with “user” or “bad” are
considered as matching. We use a binary function equal to 1 only if both the processes
and usernames match. We again found a matching path consisting of 6 nodes (with a
total score of 6) with the same process names as the path highlighted in (a), but the
path in (c) has username “user1” instead of “bad3” (and the two other usernames also
match, namely blank and SYS). In Figure 7(d), we do as in (c), but we give partial score
for each matching part: 0.75 if the process names match, and 0.25 if the usernames
match. We show a matching path with a total score of 5.75, due to the fact that 3
of the 4 instances of “bad3” username in (a) correspond to the non-blank username
“user88” in (d), but the fourth username is blank.

(a) Reference tree (b) Exact matching on processes

(c) Exact matching on processes and users (d) Soft matching on processes and users

Fig. 7: Results from Basic Matching Algorithm (Algorithm 1) using different
similarity scores for the node labels. Node labels are shown for the matching
paths only.

The results shown in Figure 7 can be seen as building blocks for more complex
workflows, such as the ones described in Section 3.2. We illustrate two such workflows.

For the first illustration, we use a subset of the process trees we just described,
keeping the ones with depth at least 4, and at most 100 nodes. There are 511 such
trees, 38 of which contain at least one instance of a bad user, which we use as our tem-
plates Tj . For the other 473 process trees Gi, we run our matching algorithm against
every template and store the resulting scores (length of the longest common path)

14 M. Le, P. Prałat, A. Smith, F. Théberge

as features Xi,j . We then use those features to score the process trees as follows.
For each Gi, we compute Si =

∑
j 1{Xi,j≥3}, thus counting the number of templates

having a matched path with 3 nodes or more. We plot the resulting score distribu-
tion in Figure 8(a), where we see that a large number of trees have very low score,
while a smaller group show a large score. This is an example where matching algo-
rithm can be used as a filter, in this case selecting a subset of process trees hav-
ing paths in common with several template trees. Looking more closely at the re-
sults, one clear difference is that trees Gi with score Si ≥ 9 tend to be larger than
other trees, with respective median values of 22 and 6 nodes. Looking at the match-
ing paths between templates and high scoring trees, the most frequent sequence of
processes is winlogon.exe-userinit.exe-explorer.exe-cmd.exe-conhost.exe or a
subset thereof, which coincides with the results shown in Figure 7.

Four process names frequently found at the root of our process trees are: bash.exe,
cmd.exe, smss.exe and taskhostw.exe. For the second illustration, we use the same
38 templates as before and we select a subset of 832 process trees Gi, distinct from the
templates, where the root process is one of those 4 processes. For each process tree, we
run our matching algorithm against each template and store the resulting scores (length
of the longest common path) as a 38-long feature vector {Xi,j , 0 ≤ j ≤ 37}. Randomly
selecting half of the Gi’s for training and the other half for testing, we trained a simple
random forest classifier using the 4 process names as labels. The resulting confusion
matrix is shown in Figure 8(b), where we see that we can correctly classify most trees,
with the exception of a small group of trees with root label bash.exe being classified
as cmd.exe.

(a) (b)

Fig. 8: (a) Counts of the number of process trees vs number of templates with
a common path. (b) Confusion matrix for a random forest classifier using our
matching algorithm to build the features.

References

1. Md. Monowar Anjum, Shahrear Iqbal, and Benoit Hamelin. Anubis: a provenance
graph-based framework for advanced persistent threat detection. In Proceedings

The Needle is a Thread: Finding Planted Paths in Noisy Process Trees 15

of the 37th ACM/SIGAPP Symposium on Applied Computing, SAC ’22, pages
1684–1693. ACM, April 2022.

2. Yudong Chen and Jiaming Xu. Statistical-computational tradeoffs in planted prob-
lems and submatrix localization with a growing number of clusters and submatri-
ces. Journal of Machine Learning Research, 17(27):1–57, 2016.

3. Chuong B. Do, Mahathi S. P. Mahabhashyam, Michael Brudno, and Serafim Bat-
zoglou. ProbCons: Probabilistic consistency-based multiple sequence alignment.
Genome Research, 15(2):330–340, 2005.

4. Osamu Gotoh. Multiple sequence alignment: Algorithms and applications. Ad-
vances in Biophysics, 36:159–206, 1999.

5. Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic
blockmodels: First steps. Social Networks, 5(2):109–137, 1983.

6. Mark Jerrum. Large cliques elude the Metropolis process. Random Struct. Algo-
rithms, 3(4):347–360, 1992.

7. Bogumił Kamiński, Paweł Prałat, and François Théberge. Artificial benchmark for
community detection (ABCD)—fast random graph model with community struc-
ture. Network Science, 9(2):153–178, 2021.

8. Bogumił Kamiński, Paweł Prałat, and François Théberge. Mining complex net-
works. Chapman and Hall/CRC, 2021.

9. Kazutaka Katoh and Daron M. Standley. MAFFT multiple sequence alignment
software version 7: improvements in performance and usability. Molecular Biology
and Evolution, 30(4):772–780, 2013.

10. Christopher Lee. Generating consensus sequences from partial order multiple se-
quence alignment graphs. Bioinformatics, 19(8):999–1008, 05 2003.

11. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

12. Leland McInnes, John Healy, and Steve Astels. HDBSCAN: Hierarchical density
based clustering. J. Open Source Softw., 2(11):205, 2017.

13. Leland McInnes, John Healy, and James Melville. UMAP: Uniform mani-
fold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426, 2018.

14. Microsoft Threat Intelligence. Seeing the big picture: Deep learning-based fusion
of behavior signals for threat detection, 2020. Accessed: 2025-12-24.

15. Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Infor-
mation Processing Systems, volume 20. Curran Associates, Inc., 2007.

16. T.D. Smith and M.S. Waterman. Identification of common molecular subsequences.
J Mol Biol., 147:195–197, 1981.

17. Jeffrey L. Thorne, Hirohisa Kishino, and Joseph Felsenstein. An evolutionary
model for maximum likelihood alignment of DNA sequences. Journal of Molecular
Evolution, 33(2):114–124, 1991.

18. Muhammad Usman, Mian Ahmad Jan, Xiangjian He, and Jinjun Chen. A survey
on representation learning efforts in cybersecurity domain. ACM Comput. Surv.,
52(6), October 2019.

19. Yihong Wu and Jiaming Xu. Statistical problems with planted structures:
Information-theoretical and computational limits, 2018. arXiv:1806.00118.

https://arxiv.org/abs/1806.00118

16 M. Le, P. Prałat, A. Smith, F. Théberge

Appending is included for the reviewers to see but it will not be included in the
final version of this paper.

A Correctness of Algorithm 1

We claim that Algorithm 1 gives the desired optimal path:

Theorem 1. Fix G,H, ϕG , ϕH, w. Let a1:L, A be the output of Algorithm 1 with this
input. Then a1:L is a valid matching, and the score of a1:L satisfies

s(a1:L) = A = s(G,H). (6)

We break the proof into two lemmas, corresponding to the “forward" and “back-
ward" passes of Algorithm 1. We state both lemmas before we prove them.

Lemma 1 (Score Correctness). Fix notation as in Theorem 1. Let {Au,v}u∈[n],v∈[m]

be the matrix computed in Algorithm 1. Then, for all u ∈ [n], v ∈ [m],

Au,v = max
p∈Pu,v

s(p). (7)

In particular, this implies the final output A satisfies A = maxp∈P s(p).

Lemma 2 (Path Correctness). Fix notation as in Theorem 1. Then a1:L is a valid
path, and

A = s(a1:L). (8)

We prove the two lemmas.

Proof (Proof of Lemma 1). We prove Equation (7) by “double induction" on the indices
u, v. For the base case, the values Au,v with either u = −1 or v = −1 correspond to
empty matchings, and so these trivially satisfy Equation (7).

We now consider the formula for Au,v in line 4 of Algorithm 1, and assume that
Au′,v′ satisfies Equation (7) for all previously-computed u′, v′. Let q ∈ Pu,v be a valid
partial matching that satisfies s(q) = maxp∈Pu,v s(p). Then consider the last element
(qL(1), qL(2)) of the list q. We have three cases, which we consider in the same order
as the three cases in line 4 of Algorithm 1:

1. Case 1: qL(1) ̸= u. In this case, q ∈ PancG(u),v, so by the induction hypothesis

Au,v = s(q) ≤ AancG(u),v. (9)

Since q maximizes the score amongst paths in Puv and PancG(u),v ⊆ Puv, we must
in fact have

Au,v = s(q) = AancG(u),v. (10)

2. Case 2: qL(2) ̸= v. By the same argument as in Case 1,

Au,v = s(q) = Au,ancH(v). (11)

The Needle is a Thread: Finding Planted Paths in Noisy Process Trees 17

3. Case 3: (qL(1), qL(2)) = (u, v). In this case, the list q1, . . . , qL−1 ∈ PancG(u),ancG(v).
Thus,

Au,v = s(q)

= w(ϕG(u), ϕH(v)) + s((q1, . . . , qL−1))

≤ w(ϕG(u), ϕH(v)) +AancG(u),ancH(v),

where the third line is due to the induction hypothesis. On the other hand, by
choosing q′ ∈ PancG(u),ancG(v)) to satisfy s(q′) = maxp∈PancG(u),ancG(v))

s(p), we
can see that the path q′′ obtained by appending (u, v) to q′ is in Pu,v and satisfies

s(q′) = w(ϕG(u), ϕH(v)) +AancG(u),ancH(v). (12)

In fact, since q had the highest possible score amongst paths in Au,v, the trunca-
tion to (q1, . . . , qL−1) must have had the highest possible score amongst paths in
AancG(u),ancH(v). Thus, in fact

Au,v = s(q) = w(ϕG(u), ϕH(v)) +AancG(u),ancH(v). (13)

Thus, in all three cases, we matched Au,v to one of the corresponding expressions on
the right-hand side of line 5. This implies that Au,v as calculated in that line must
have the correct value.

The last claim is obvious since P =
⋃

u,v Pu,v, and we have just seen that Au,v

contains the highest score within each of the component sets Pu,v.

Since Lemma 2 is obvious but the proof is tedious to formalize, we only provide a
sketch.

Proof (Sketch of the Proof of Lemma 2). Once a dynamic programming algorithm
completes a bottom-up tabulation (the “forward pass”), one ends up with a single value
that optimizes a given problem at hand. In our particular case, it is the maximum
score over all valid matchings. To find the actual matching that led to that result, the
algorithm needs to perform a “backward pass.” This is the tabulation Cu,v equivalent
of backtracking: we are reversing the decisions made during the filling of the matrix
Au,v.

B Algorithm 1 — Small Variations and Incorporating
Prior Knowledge

When Algorithm 1 is applied with score S ≡ 1, it returns the largest common sub-path
of the two trees. It can be viewed as a reasonable “default" behaviour for a planted-path
algorithm, but in practice one may want slightly different behaviour. We briefly sketch
some common adjustments but full details are left for the journal version of this paper.

– Nonuniform match importance: Some matches may be more informative than
others. A standard default choice is to “fit" the score function w to the data, setting

w(i, i) ∝ 2

N(i) + 2
, (14)

where N(i) is the number of times label i appears in the dataset (see e.g. Chapter 8
of [11] for an introduction to scoring rules of this nature).

18 M. Le, P. Prałat, A. Smith, F. Théberge

– Subtrees rather than paths: We may want to find the optimal matching of two
full subtrees rather than paths. We can allow for this by replacing the condition

ui <G ui+1 and vi <H vi+1 for all i ∈ {1, 2, . . . , k − 1}

in Definition 2 by the relaxed condition

ui <G uj if and only if vi <H vj for all i, j ∈ {1, 2, . . . , k − 1}.

The “optimal score" and recursive algorithms can be easily tweaked.
– Preference for shorter matches: Increasing the lengths of matches always

increases our score, and so our method is biased towards giving long matches
(even if some parts of the match contribute very little to the score). We can find
the best score for paths of each length by replacing Au,v with

Au,v,r = max
p∈Pu,v,r

s(p), (15)

where
Pu,v,r = {γ ∈ Pu,v : |γ| = r}. (16)

– Small-gap, high-density, or top-K: Just as we sometimes wish to find small
paths, we might want to find paths with a small number of “skipped" nodes. We
might also wish to find the “top-K" paths, rather than the single best match. These
can be computed by making essentially the same tweak as in Equation (15).

C Generating Random Trees and Random Paths

Algorithm 4 requires an algorithm for generating (tree, path) pairs. We give a simple
example that fits our data reasonably well and which we use for simulation experiments.
Our model generates random trees with depth at most N and aims to produce “bushy”
trees. Fix a positive integer N and a real number λ > 1. To generate a random tree,
we will use a well-known Galton-Watson process in which the number of children of
nodes are i.i.d. random variables that follow the Poisson distribution with mean λ.

Let Xk be the number of nodes at level k. Then, the sequence (Xk) evolves according
to the recurrence formula: X0 = 1 and for any k ∈ N, Xk is a sum of Xk−1 i.i.d. random
variables Po(λ). We stop the process when either Xk = 0 (there are no nodes at level
k) or k = N (we have reached the maximum depth). Note that this procedure might
not succeed as the process may finish before getting to depth N . If this happens,
then we simply re-start the process from the beginning and continue doing so until
it eventually generates the desired tree. Let GW(N,λ) be the probability distribution
over the generated trees of depth N .

Remark 2 (Complexity of Rejection Sampling). It is natural to ask: how long does it
take to sample from GW(N,λ)? It is known that the probability of the Galton-Watson
process “going on forever” (the survival probability) is 1 − q, where q = q(λ) (the
probability of eventual extinction) satisfies the following equality: q = eλ(q−1). Hence,
each independent attempt to generate a tree succeeds with probability at least 1 − q.
For example, 1− q ≈ 0.797 when λ = 2 and 1− q ≈ 0.940 when λ = 3. For such values
of λ the expected number of re-samplings is very small, regardless of the value of N .

The Needle is a Thread: Finding Planted Paths in Noisy Process Trees 19

For a given tree T with a root r, regardless whether generated at random or not,
we may simply select a random directed path as follows. Let u be one of the leaves of
T selected uniformly at random. Then, let Γ ≡ (r = γ1, γ2, . . . , u = γℓ) ⊆ T be the
unique path from r to u in T .

Figure 9 illustrates the results of sampling trees and paths using this process, then
labeling them according to Algorithm 3. The left-hand tree corresponds to λ = 1.24,
N = 11; the right-hand tree corresponds to λ = 2.22, N = 4. In both cases the same
base sequence a and matching probability p = 0.99 were used in Algorithm 3, with the
planted path shown in bright colours.

Fig. 9: Two trees with labelled paths.

D Gemini

The title was suggested by Gemini based on our introduction. It was justified like this.
“It is my personal favorite. It twists the classic “needle in a haystack” idiom (which
everyone in data science knows) to perfectly describe your specific contribution: you
aren’t looking for a single point, but a linear sequence (a thread).”

	The Needle is a Thread: Finding Planted Paths in Noisy Process Trees

