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Abstract

We investigate networks represented as hypergraphs and propose a a novel measure that captures the rela-
tionship between their node degrees and hyperedge sizes. We test the presence of such an association in 36
empirical hypergraphs from diverse domains, with a focus on social networks. Using nested model compar-
isons, we classify each such relationship as linear, monotonic, non-monotonic, or absent. Results reveal that
true absence of this relationship is rare, while nearly half exhibit non-monotonic patterns. We evaluate three
correlation measures of this association and find that Pearson correlation best aligns with relationship direc-
tion. We also consider three ways to capture this relationship (called: bipartite, node-centric or edge-centric)
and show that the bipartite one yields most consistent results. We discuss the implications of existence of
relationship between node degrees and hyperedge sizes for dynamic processes on social systems.

Keywords: empirical hypergraphs, node degree, hyperedge size, bipartite representation, Pearson correla-
tion, non-monotonic relationship

1 Introduction

In recent years, hypergraphs have emerged as a powerful generalization of traditional pairwise graphs [3, 38, 95],
particularly suited for modelling complex systems involving higher-order relationships [19, 88, 94, 123]. Unlike
standard dyadic networks where edges connect pairs of nodes, hypergraphs allow hyperedges to connect any
number of nodes, enabling a more expressive modelling framework [17, 20, 26]. This makes hypergraphs ideal
for capturing group interactions found in diverse social networks, such as co-authorship networks [105, 89],
affiliation or membership networks [36, 86, 128], social media [85, 7], social tagging [18], team sports [52, 103],
but also ecological systems [55] and joint protein interactions in biological networks [91].
Due to their growing importance, many structural and statistical properties of empirical hypergraphs have

been the focus of recent research [35, 78, 15]. Some of these measures, like node degree distribution [30], modu-
larity [65, 64, 66, 31], clustering coefficients [40, 2] or the Bonacich eigenvector centrality [24] have analogues in
traditional graphs [3, 92, 129, 22, 23, 41, 99, 98]. Others, such as hyperedge size distribution, node-hyperedge size
correlation or the simplicial closure [105, 18] are unique to hypergraphs and open new questions for exploratory
data analysis [1, 48]. Understanding these properties is essential for both descriptive purposes and for informing
the design of algorithms and models tailored to higher-order data.
Descriptive analysis of hypergraph properties is not only of theoretical interest but also of practical signifi-

cance. Structural characteristics—such as node degree distributions and hyperedge sizes—play a crucial role in
shaping the dynamics of processes occurring on these networks [21]. For example, the spread of information,
opinions, or infectious diseases can behave qualitatively differently depending on whether the system is mod-
elled as a traditional graph or a hypergraph [77, 120, 139, 75]. Consequently, understanding and quantifying key
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structural features of hypergraphs is essential for developing accurate and predictive models of complex social
systems.
In this paper, we propose and investigate a novel relationship in hypergraphs: between node degrees and

their hyperedge sizes. While this relationship is non-existing in standard graphs, where all edges connect exactly
two nodes, hypergraphs allow for nontrivial hyperedge size variability. This enables the study of correlations
between how many hyperedges a node participates in (its degree) and how large those hyperedges tend to be. This
important relationship has received limited attention in the literature up to our knowledge. Several generative
and random models for hypergraphs explicitly analyze the distributions of node degree (number of hyperedges
a node participates in) and hyperedge size (number of nodes in a hyperedge), often deriving these distributions
in terms of model parameters. These models show that the mechanisms governing hyperedge formation, such as
preferential attachment or copying, directly influence both node degree and hyperedge size distributions, and
their interplay can lead to power-law or other heavy-tailed behaviours in real-world hypergraphs [16, 57, 109].
Beyond the mere existence of correlation between node degree and hyperedge size in empirical hypergraphs,

we aim to explore whether this relationship is consistently non-zero and varies across semantic categories of
hypergraphs. Such variation could help distinguish between types of real-world systems. For example, in co-
authorship networks where hyperedges represent papers and nodes are authors, a positive correlation is expected:
prolific researchers tend to publish more papers and often do so in larger teams [105]. This pattern contrasts
with other domains, such as user tagging systems, where different interaction dynamics may apply.
Detecting systematic patterns in this relationship could inform the development of generative models of

hypergraphs [30, 31]. Notably, many current generative frameworks such as h–ABCD [67, 69] implicitly assume
zero correlation between node degree and hyperedge size. Incorporating flexible control over this correlation
could improve the realism and utility of synthetic hypergraph models in both simulation and inference settings.
A core motivation for this study stems from the potential influence that the correlation between node degree

and hyperedge size can exert on social dynamics unfolding on hypergraphs. In classical network science, it is well
established that structural features such as degree distribution and assortativity shape fundamental dynamical
processes, including epidemic spreading [104, 97], diffusion [71, 29], and the evolution of cooperation [107, 117].
By analogy, we hypothesize that in higher-order systems represented as hypergraphs, the relationship between
how many groups individuals belong to (node degree) and the sizes of those groups (hyperedge size) may play
a similarly pivotal role. As reviewed in Section 4, such correlations can modulate contagion speed [21], alter
the size of the seed set needed for global influence in social diffusion models [9, 10] and affect cooperation
levels in multiplayer public goods games [51, 4]. Identifying and characterizing these correlations in empirical
hypergraphs is therefore not only a matter of structural interest, but a critical step toward understanding and
ultimately modelling complex social dynamics in real-world higher-order systems.
To measure the relationship between node degree and hyperedge size, we propose a set of alternative measures

to quantify the relationship between node degrees and hyperedge sizes. These include classical correlation
coefficients (Pearson, Spearman, Kendall) applied to three types of hypergraph representations (node-centric,
edge-centric, bipartite). Using a curated collection of 36 empirical hypergraphs from diverse domains, we assess
the consistency and informativeness of these measures and identify general trends.
The remainder of the article is organized as follows. In Section 2, we introduce the foundational concepts,

including hypergraph notation and key properties. Section 2.1 presents three data preprocessing strategies
designed to enable meaningful comparisons between node degree and hyperedge size. Section 2.2 introduces the
Eta-squared (η2) statistic for evaluating alignment with semantic groupings. In Section 2.3, we outline a nested
statistical testing procedure to classify the relationship between structural quantities. The results are presented in
three parts. Section 3.1 evaluates and justifies the choice of the optimal data preprocessing strategy. Section 3.2
investigates which correlation metric best captures global structural trends. Section 3.3 applies model-based
tests to classify empirical hypergraphs by the type of relationship between node degree and hyperedge size. In
Section 4, we explore the potential impact of the identified relationship between node degree and hyperedge
size on social dynamics, focusing on three selected problems: social contagion and spreading, social influence
maximization, and cooperation in public goods games. Finally, conclusions and directions for future research
are offered in Section 5. The Appendix provides detailed background on the empirical hypergraph datasets
used in this study, including semantic segments, node and hyperedge interpretations, and descriptive statistics
(Subsection A.1). It also documents implementation details and computational complexity (Subsection A.2),
defines the correlation measures employed (Subsection A.3), and includes supplementary analyses referenced in
the main text (Subsection A.4).
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2 Notation, Methods & Data

In this section, we introduce the fundamental definitions, methods, and datasets that underpin our analysis of
structural patterns in empirical hypergraphs. We begin by formalizing hypergraph notation and its incidence
graph representation, which serves as the mathematical foundation for our computations (Section 2.1), together
with the data preprocessing strategies designed to enable meaningful comparisons between node degree and
hyperedge size. Subsequently, we present a principled method for evaluating the alignment between correlation
values and semantic segments using the η2 statistic (Section 2.2). We also describe a statistical procedure to
classify the functional relationship between node degree and hyperedge size (Section 2.3). Finally, we give the
overview of the empirical datasets used in this study and computational handling (Section 2.4), while the more
detailed discussion of these topics is provided in Appendix (Sections A.1 and A.2) together with the review of
correlation measures suitable for quantifying the statistical association (Section A.3).

2.1 Hypergraph Notation and Data Preprocessing Steps

Understanding the relationship between node degree and hyperedge size in a hypergraph requires precise defini-
tions and careful data transformation. In this section, we formalize the notation used throughout the paper and
describe three alternative preprocessing strategies that enable meaningful correlation and relationship analysis
between these two structural quantities.

Hypergraph and Its Bipartite Representation as an Incidence Graph A hypergraph is a generaliza-
tion of a graph in which edges, called hyperedges, can connect any number of vertices. Formally, a hypergraph
is defined as H = (V,E), where V = {v1, . . . , vn} is the set of vertices, and E = {e1, . . . , em} is the set of
hyperedges, with each ej ⊆ V [68].
To facilitate analysis, we use the bipartite representation of a hypergraph, also known as its incidence graph.

This representation is information-preserving and equivalent to the original hypergraph structure. Specifically,
we define the incidence graph IG(H) = (V ′, E′), where the vertex set V ′ = V ∪ E includes both the original
vertices and hyperedges of H, and edges E′ connect v ∈ V to e ∈ E if and only if v ∈ e. This structure naturally
yields an incidence matrix B = (bij) ∈ {0, 1}n×m, where each entry bij = 1 if vertex vi belongs to hyperedge ej ,
and bij = 0 otherwise. Both H and IG(H) are fully recoverable from this matrix.

Hypergraph Data Preprocessing Steps Let the degree of a vertex vi ∈ V be defined as the number of
hyperedges that include it, i.e.,

degreei = deg(vi) = |{e ∈ E : vi ∈ e}| .

Similarly, the size of a hyperedge ej ∈ E is given by

hEdgej = |ej | = |{v ∈ V : v ∈ ej}| .

To quantify the relationship between node degrees and hyperedge sizes, these measures must be defined in
the same domain. However, node degree is inherently a vertex-level property, while hyperedge size is defined
at the hyperedge level. Thus, we construct data pre-processing transformations to bring both into a common
domain for meaningful comparison.
To define a node-centric counterpart to hyperedge size, we compute for each node vi the average size of

hyperedges in which it participates:

avgHEdgeSizei =

∑
{j:vi∈ej} |ej |
deg(vi)

=

∑
j bij

∑
k bkj∑

j bij
.

Algebraically, this corresponds to summing over the columns of the incidence matrix B for those hyperedges
ej that contain node vi, and dividing by vi’s degree. This defines the node-centric preprocessing step, which
produces a dataset of the form {(degreei, avgHEdgeSizei)}ni=1. One may then compute, for example, the Pearson
correlation between node degree and average hyperedge size. This correlation reflects the expected hyperedge
size for a randomly chosen node (uniformly at random) that has above-average degree.

3



Analogously, we define a hyperedge-centric counterpart to node degree by computing, for each hyperedge
ej , the average degree of its participating nodes:

avgDegreej =

∑
{i:vi∈ej} deg(vi)

|ej |
=
∑
i bij

∑
k bik∑

i bij
.

This amounts to summing over the rows of the incidence matrix B corresponding to nodes vi in hyperedge
ej , and dividing by the hyperedge size. This defines the edge-centric1 preprocessing step resulting in a dataset
{(avgDegreej ,hEdgej)}mj=1. The Pearson correlation between these quantities captures the expected degree of
nodes involved in a hyperedge with size above the average.
A third approach is the bipartite representation preprocessing step, based on the incidence graph IG(H) of

the hypergraph H, where nodes and hyperedges form two disjoint sets of vertices. This representation leads to
a dataset {(degreei,hEdgej) : bij = 1} defined over the edges of the bipartite graph. Here, one can compute
the assortativity coefficient as the Pearson correlation of the degrees of incident vertex pairs in the bipartite
graph [96, 68]. This statistic reflects the expected hyperedge size for a randomly sampled node–hyperedge pair,
conditional on the node having above-average degree.

2.2 Assessing the Alignment between Correlation and Hypergraph Segment

To evaluate how well different correlation designs align with semantic distinctions in hypergraph structure, we
employ the Eta-squared statistic (η2). This metric quantifies the proportion of variance in a continuous variable
that is explained by a categorical predictor, and is commonly interpreted as a measure of effect size in analysis
of variance (ANOVA) [112]. In our case, η2 captures how well a given correlation coefficient (e.g., between
hyperedge size and node degree) can be predicted based on the hypergraph segment to which it belongs.
Formally, let Yi denote the correlation value computed for the i-th hypergraph, and let Si be its segment

label (e.g., email, tag-question, etc.). Then, η2 is defined as:

η2 =
SSbetween
SStotal

=

∑G
g=1 ng(Ȳg − Ȳ )2∑N
i=1(Yi − Ȳ )2

, (1)

where G is the number of groups (segments), ng is the number of observations in group g, Ȳg is the mean
correlation in group g, and Ȳ is the overall mean. The numerator is the between-group sum of squares (SSbetween),
and the denominator is the total sum of squares (SStotal).
We consider nine correlation configurations, defined by the combination of three data preprocessing strategies

(edge-centric, node-centric, and bipartite representation) with three correlation measures (Pearson, Spearman,
and Kendall). For each configuration, a single correlation value is computed for each of the 12 hypergraph seg-
ments under study, which include: user-answer, physical contact, part-whole, diseases and genes, email, person-
place, political, participant-conference, user-review, drugs, tag-question, and user-thread.
To compute η2, we fit a linear model where the response variable is the correlation value and the predictor

is a one-hot encoded vector representing the hypergraph segment. The resulting η2 is equivalent to the R2 of
this model and indicates the proportion of variance in the correlation values that can be attributed to segment
identity. All η2 values reported in this paper were calculated in R using the etaSquared() function from the
lsr package [90].
A higher η2 signifies a stronger alignment between correlations and hypergraph segments. Thus, we use η2

as a criterion for selecting the optimal design of data preprocessing method and correlation measure that yields
the most segment-sensitive correlation values.

2.3 Statistical Identification of Relationship Type

This subsection outlines the statistical procedure used to classify the relationship between hyperedge size and
node degree into one of four categories: non-monotonic, monotonic (but not linear), linear, or no relationship.
This classification is later employed in the results Subsection 3.3. The identification procedure is model-based
and involves fitting three types of models to each dataset: (i) an unrestricted Generalised Additive Model

1A more precise name would be hyperedge-centric preprocessing step, but for conciseness, we refer to it simply as edge-centric
throughout the text.
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(GAM) [56, 132], (ii) a monotonic GAM, and (iii) a simple linear regression model estimated using ordinary
least squares (OLS) [42].
In this work, we define a monotonic GAM as a special case of a shape-constrained additive model (SCAM)

in which the smooth term is restricted to be either monotonically increasing or decreasing. To implement this,
we fit two SCAMs with a monotonic increasing constraint and another with a decreasing constraint. Then our
procedure selects the model with the lower residual sum of squares as the representative monotonic GAM. This
approach follows the methodology introduced by [110] and is implemented using the mgcv and scam packages
in R [132]. For general background on generalized additive models, we refer readers to [56].
The classification is conducted via a sequence of statistical comparisons using ANOVA tests for nested

models [44]. As illustrated in Figure 1, the procedure begins by comparing the unrestricted GAM to the best-
fitting monotonic GAM using an F -test. The null hypothesis (H0) states that the monotonic GAM sufficiently
explains the data; rejecting it (at α < 10−5) implies the presence of significant non-monotonicity, and the
relationship is classified as non-monotonic. The choice of such a stringent significance threshold is motivated by
the large size of most empirical hypergraphs and the need to limit false discovery in favour of simpler models
unless the data strongly supports added complexity.

H0: monotonic GAM
H1: unrestricted GAM

Non-monotonic
relationship

H0: OLS
H1: monotonic GAM

Monotonic
relationship

H0: R2 = 0
H1: R2 > 0

Linear relationship

No relationship

p-value < α

p-value > α

p-value < α

p-value > α

p-value < α

p-value > α

Figure 1: Diagram illustrating the decision procedure for classifying the relationship between two variables
(hyperedge size and node degree) into one of four categories: non-monotonic, monotonic (but not linear), linear,
or no relationship. Decisions are based on successive ANOVA comparisons of nested models: unrestricted GAM,
monotonic GAM, and OLS.

If the null is not rejected in the first test, the relationship is assumed monotonic, and a second ANOVA
test compares the monotonic GAM to a linear OLS model. Rejection of linearity indicates a monotonic (but
non-linear) pattern. If the test fails to reject the linear model, a final F -test is performed to check whether the
linear model explains any significant variation in the data (i.e., whether R2 > 0). If this is not the case, the
relationship is classified as “no relationship.” Thus, the decision tree ensures a structured, conservative, and
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data-driven assignment of relationship type.

2.4 Data and Computation Overview

Our analysis draws upon a curated collection of 36 empirical hypergraphs spanning diverse domains—including
physical contact networks, online user interactions, political affiliations, and biomedical associations. Each
dataset was selected for its interpretability and structural diversity, with nodes and hyperedges carrying clear
semantic meanings relevant to their source context (e.g., people, genes, products). This breadth ensures that
observed statistical relationships are robust across domains and not artifacts of a single data type. Detailed
descriptions of all datasets, their assigned segments, and statistical summaries of node degrees and hyperedge
sizes are presented in Appendix A.1.
To process and analyze these datasets, we developed a flexible computational pipeline tailored to varied file

formats and scales. Hypergraphs were represented using sparse matrix structures to ensure memory efficiency
and speed. Different sparse formats were tested and selected based on input type and construction cost, with
final conversion to CSR (Compressed Sparse Row) format to enable fast indexing and vectorized computations.
Our implementation makes use of Python libraries such as scipy, numpy, and, where applicable, numba for
optimization. All statistical analyses, including correlation computations, model fitting, and figure generation,
were performed using the R programming language [111]. The full technical details of data ingestion, matrix
construction, and performance considerations are documented in Appendix A.2.
All reproducible code used in this study, including both Python and R scripts for data processing, statistical

analysis, and figure generation, is available in the public repository: https://github.com/AleksanderWWW/
hypergraph-properties.

3 Results

This section is divided into four main parts. In the first subsection, Subsection 3.1, we justify the optimal choice of
hypergraph data preprocessing techniques introduced in Subsection 2.1, namely, the edge-centric, node-centric,
and bipartite representations. In the second subsection, Subsection 3.2, we delve into the selection of one of three
correlation measures: Pearson, Spearman, or Kendall. These two parts provide recommendations for choosing a
specific design when a single correlation coefficient is needed to summarize the relationship between hyperedge
size and node degree.
However, a single coefficient rarely captures the full complexity of these relationships. Therefore, in the

third subsection, Subsection 3.3, we move beyond global coefficients to characterize the nature of the observed
relationships in more qualitative manner. We classify them into one of four categories: non-monotonic, monotonic
(but non-linear), linear, or no apparent relationship. We then assess the distribution of these categories and
discuss the kinds of patterns typically observed. Additionally, we perform robustness checks to ensure the
reliability of our findings.

3.1 Optimal Choice of Hypergraph Preprocessing Step

In this subsection, we assess the effectiveness of various hypergraph data preprocessing strategies for quantifying
the relationship between hyperedge size and node degree. Specifically, we compare three hypergraph representa-
tion methods: edge-centric, node-centric, and bipartite representation. Our aim is to identify the preprocessing
method that yields a single numerical descriptor most strongly aligned with the segmentation of the hypergraph.
This alignment is quantified using the Eta-squared statistic (η2), which captures the proportion of variance ex-
plained. The findings presented here offer practical guidance for selecting an appropriate setup when a single
numerical summary of the hyperedge size–degree relationship is required.
The goal of this subsection is to determine which of the three hypergraph data preprocessing strategies

introduced in Subsection 2.1 is most suitable for capturing the relationship between hyperedge size and node
degree. The criterion for this comparison is the degree of alignment between the computed correlation values
and the categorical segmentation of hypergraphs. This alignment is quantified using the Eta-squared statistic
(η2), as described in subsection 2.2.
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Pearson Spearman Kendall

node-centric 0.5380 0.6062 0.4360
edge-centric 0.6096 0.4354 0.4360
bipartite representation 0.6656 0.6782 0.6605

Table 1: Eta-squared (η2) values measuring the proportion of variance in each continuous variable explained by
the nominal Category variable. Rows correspond to type of hypergraph data pre-processing (node-centric,
edge-centric, bipartite representation), and columns indicate the correlation type used (Pearson, Spear-
man, Kendall).

3.1.1 Comparing Preprocessing Strategies via η2

To compute the correlation between hyperedge size and node degree, two design choices must be made: the
hypergraph preprocessing method and the type of correlation coefficient. The latter includes Pearson, Spearman,
and Kendall coefficients, each described in Subsection A.3. These choices yield a total of nine (3 × 3) possible
combinations. For each such combination, a correlation value is computed for every hypergraph in the dataset.
These correlation values are then evaluated for their segment-level alignment using η2. The resulting η2 scores,
summarized in Table 1, serve as the basis for identifying the most informative preprocessing approach.
Table 1 presents the η2 values for each combination of hypergraph data preprocessing method (rows) and

correlation measure (columns). Recall that 0 ¬ η2 ¬ 1 quantifies the proportion of variance in the correla-
tion coefficients that can be explained by the categorical variable representing hypergraph segment identity.
Higher values of η2 indicate stronger alignment between the correlation values and the semantic distinctions
between hypergraph types. While the absolute differences in η2 are moderate, these differences are consistent
and informative enough to guide design choices.
The most striking observation is that the choice of data preprocessing method exerts the greatest influence on

η2. Across all three correlation measures, the bipartite representation consistently yields the highest η2 scores,
clearly outperforming both the node-centric and edge-centric approaches. Specifically, bipartite representation
achieves η2 = 0.6656 with Pearson, 0.6782 with Spearman, and 0.6605 with Kendall, all substantially higher
than their respective scores under alternative preprocessing methods. This robustness suggests that the bipartite
structure more faithfully preserves segment-level variability relevant to the correlation between hyperedge size
and node degree.
In contrast, the choice of correlation measure appears to matter less, especially within the bipartite set-

ting, where all three correlations perform comparably. This implies that once an appropriate data structure is
chosen, the precise choice of correlation coefficient has limited impact on segment-level discriminatory power.
For the detailed comparative analyses of preprocessing strategies, we therefore rely on Pearson correlation as
a representative metric. Pearson not only performs nearly as well as Spearman in the bipartite case (0.6656
vs. 0.6782), but is the best-performing measure for the edge-centric view and second-best in the node-centric
case. This makes it a stable and informative benchmark for deeper investigation of structural differences among
preprocessing strategies.

Summary This analysis demonstrates that the choice of preprocessing strategy plays a more decisive role
than the choice of correlation coefficient in capturing segment-level differences between hypergraphs. Among
all tested combinations, the bipartite representation consistently yields the highest η2 values across Pearson,
Spearman, and Kendall correlations, indicating that it best preserves meaningful structural variability across
semantic categories. Consequently, we recommend bipartite preprocessing as the default strategy.

3.1.2 Explaining η2 Values via Within-Segment Variability in Correlation Estimates

To better understand the η2 values reported in Table 1, we visualize the distribution of correlation coefficients
within 12 hypergraph segments in Figure 6. The figure displays the variability of correlation values for six selected
combinations of data preprocessing method and correlation coefficient, i.e., all pairings of Pearson and Spearman
correlations with the three preprocessing strategies: node-centric, edge-centric, and bipartite representation. We
omit Kendall’s τ for clarity, focusing on the two more commonly used and better-performing measures.
The figure illustrates how well each combination discriminates among the 12 hypergraph segments. Lower
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variability in correlation values across hypergraphs within the same segment implies stronger between-group
effects, resulting in higher η2. While this variability is visualised using the estimated interquartile range (IQR),
the formal η2 is computed using within-group sums of squares. A pattern emerges: the bipartite representation
consistently shows low within-segment variability across all 12 categories, regardless of whether Pearson or
Spearman is used. This uniformity explains its dominant performance in Table 1, where both correlations
achieve the highest η2 values (0.6656 and 0.6782, respectively).
In contrast, node-centric and edge-centric approaches show more fluctuation across segments. For instance,

within the user-thread segment, the Pearson correlation under the node-centric view shows very low vari-
ability. However, the same configuration yields high variability for other segments, such as physical contact,
resulting in a lower overall η2 of 0.5380. This value is not only lower than the Spearman correlation for the same
preprocessing (η2 = 0.6062), but also substantially below the Pearson result for the bipartite representation
(η2 = 0.6656). These observations support the conclusion that bipartite preprocessing is both the most con-
sistent and most informative representation for capturing segment-level differences in the relationship between
hyperedge size and node degree.
A closer comparison of correlation variability across the 12 hypergraph segments highlights consistent ad-

vantages of bipartite representation. For segments such as diseases and genes, drugs, email, part-whole,
and person-place, both Pearson and Spearman correlations under the bipartite representation show minimal
within-segment variability, making them clearly superior to other combinations. In contrast, Spearman corre-
lations under both node-centric and edge-centric preprocessing tend to exhibit the highest variability in these
segments, making them the least effective. For the participant-conference segment, all six combinations
perform well, showing tight clustering of correlation values and indicating that this segment is structurally well
captured regardless of design choice. A similar trend holds for user-answer and tag-question, though in the
latter, Spearman under node-centric preprocessing shows noticeably more dispersion. In the physical contact
segment, both bipartite and edge-centric preprocessing yield relatively consistent correlation values, whereas
node-centric shows a much wider spread. Lastly, in the political segment, the bipartite representation again
performs best, with both Pearson and Spearman yielding compact distributions; node-centric performs mod-
erately well, while edge-centric displays considerably higher internal variability. These patterns reinforce the
advantage of bipartite preprocessing for producing stable, segment-discriminative correlation estimates across a
diverse range of hypergraph types.
Another insight from Figure 6 concerns the variation of correlation values across different correlation mea-

sures, namely Pearson and Spearman and preprocessing steps, examined within each of the 12 hypergraph
segments. It is rare to find a segment where all six combinations (2 correlation types × 3 preprocessing meth-
ods) yield similar values. The closest example is the user-answer segment, which exhibits consistently mild
negative correlations around −0.11 across four of the six configurations. Exceptions include the edge-centric
Spearman correlation (r = −0.010) and the node-centric Spearman correlation (r = 0.062), which deviate from
this pattern.
Another example of such a consistency is found in the participant-conference segment, where five of the

six measures fall within a narrow interval of (−0.0251, 0.0382), indicating near-zero correlation. The outlier is
again node-centric Spearman, which produces a noticeably higher value of r = 0.306. Although node-centric
Spearman differs substantially in average correlation from the other five measures for several segments (e.g.,
Drugs, email, participant-conference, person-place, physical contact), it still achieves relatively low
within-segment variance, resulting in a high η2 value of 0.6062. This is one of the two highest η2 (another is
edge-centric Pearson) scores outside the bipartite representation.
For most other segments, the variation across measures is even greater, with discrepancies driven more by

differences in preprocessing strategy than by choice of correlation method. Notably, in the bipartite represen-
tation, both Pearson and Spearman produce remarkably similar correlation values across all segments. This
consistency is reflected in the nearly identical η2 scores for these two measures reported in Table 1, and will be
further explored in detail in Subsection 3.2.

Summary This subsection explains the high η2 values associated with the bipartite preprocessing strategy by
examining within-segment variability in correlation coefficients. Visualizations across 12 semantic hypergraph
segments reveal that bipartite representation yields consistently low variance in both Pearson and Spearman
correlations, leading to clearer segment-level differentiation. In contrast, node-centric and edge-centric strategies
exhibit higher and more inconsistent variability, especially across structurally diverse segments. These findings
confirm that the superior η2 scores of bipartite preprocessing stem from its ability to produce stable, segment-
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informative correlation estimates across multiple hypergraph types.

3.1.3 Pairwise Comparison of Preprocessing Strategies

A deeper analysis of the interrelation between the three data preprocessing strategies is provided in Figure 2. Like
Figure 7, it reports only Pearson correlation values, but this time in pairwise comparisons between preprocessing
types. Subfigure (a) displays a scatterplot comparing Pearson correlations under the bipartite representation
versus those under edge-centric processing. The reported R2 of 0.60 indicates a moderate positive association
between these two measurements. This is consistent with previous results in Figures 7 and 6, which demonstrated
general alignment between these two correlation estimates, although with notable exceptions.
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Figure 2: (a–c) Scatterplots of Pearson correlations between pairs of hypergraph preprocessing strategies, with
fitted regression line (solid) and identity line (dashed); (d) distribution of Pearson correlations across all hyper-
graphs. Outlier hypergraphs with largest discrepancies are labelled.

Four hypergraphs with the largest discrepancies between bipartite and edge-centric Pearson correlations are
labelled in the figure. Among them, music-blues-reviews stands out, with a positive edge-centric Pearson
correlation of 0.0753, while its bipartite Pearson is substantially negative at −0.132. Interestingly, its node-
centric Pearson is even more negative at −0.335, aligning more closely with the bipartite estimate. Similar
discrepancies are observed in house-committees (redge = −0.305, rbipartite = −0.037) and senate-committees
(redge = −0.310, rbipartite = −0.048), both from the political segment. Again, their node-centric correlations
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(−0.014 and −0.001, respectively) are closer to bipartite values. The regression line fitted between edge-centric
and bipartite Pearson correlations is rbipartite = 0.015 + 0.46 × redge, indicating no systematic bias (as the
intercept is small and statistically non-significant).
Figure 2(b) shows the scatterplot of bipartite versus node-centric Pearson correlations. The relationship

between these two is similar, with R2 = 0.60 and an estimated regression line of rbipartite = 0.013+0.48× rnode,
again indicating no significant bias. Nonetheless, some hypergraphs exhibit large discrepancies. For exam-
ple, contact-high-school has a node-centric Pearson of 0.750 but a bipartite value of only 0.180, a dif-
ference of 0.570. Similar discrepancies are found in hospital-lyon (rnode = 0.893, rbipartite = 0.337),
contact-primary-school (0.572 vs. 0.089), and nba (−0.467 vs. −0.083). As previously, the third preprocessing
measurements, i.e., edge-centric Pearson correlations for these hypergraphs are closer to bipartite correlations.
Finally, Figure 2(c) compares Pearson correlations between node-centric and edge-centric representations.

This pair exhibits the weakest relationship, with R2 = 0.34. The estimated regression line is rnode = 0.020 +
0.52×redge, again with a non-significant intercept. The most prominent outliers are again hypergraphs from the
physical contact segment: contact-high-school (rnode = 0.750, redge = 0.228), contact-primary-school
(0.572 vs. 0.114), hospital-lyon (0.893 vs. 0.473), and music-blues-reviews (−0.335 vs. 0.075). These illus-
trate that node- and edge-centric preprocessing steps can yield substantially different correlation estimates even
when applied to structurally similar hypergraphs.
Figure 2(d) displays overlaid distributions of Pearson correlations for the three hypergraph preprocessing

strategies: edge-centric, node-centric, and bipartite representation. Consistent with the regression results dis-
cussed earlier, the distributions share similar central tendencies, indicating no systematic location bias across
preprocessing types. However, the distributions differ notably in their spread. The node-centric correlations
exhibit the widest dispersion, reflecting the presence of several hypergraphs with exceptionally especially high,
but also low correlation values. In contrast, the bipartite-based Pearson correlations are the most concentrated
around its mean, suggesting greater stability and less variability across datasets. Edge-centric correlations fall
in between, showing moderate variability. These observations further reinforce the finding that the bipartite
representation yields more stable and interpretable correlation estimates across diverse hypergraph structures.

Summary This subsection compares the three preprocessing strategies by examining pairwise relationships
between their Pearson correlation estimates. The bipartite representation shows moderate but consistent agree-
ment with both node- and edge-centric approaches (R2 ≈ 0.60), while node- and edge-centric correlations are
less aligned (R2 = 0.34), reflecting structural differences in how each method aggregates information. Several
outlier hypergraphs exhibit large discrepancies, often with bipartite values closer to node-centric than edge-
centric correlations. Distributional analysis confirms these trends: bipartite correlations are the most stable and
tightly clustered, while node-centric correlations display the greatest spread. Overall, these results underscore
the superior consistency of the bipartite strategy for capturing correlation patterns in empirical hypergraphs.

3.1.4 Interpretation Corner: Pearson Correlations by Segment

To further understand the behaviour and consistency of correlation estimates across different, we examine Pear-
son correlation values between hyperedge size and node degree for all hypergraphs, computed under three data
preprocessing methods: node-centric, edge-centric, and bipartite representation in Figure 7. The hypergraphs
are sorted by decreasing Pearson correlation under bipartite representation. This ordering allows us to visually
identify clusters of hypergraphs that exhibit similar correlation structure, both in magnitude and in sign.
Several coherent segment-level patterns emerge. For instance, the physical contact segment, comprising

hospital-lyon (r = 0.337), contact-high-school (r = 0.180), contact-primary-school (r = 0.089), InVS13
(r = −0.030), InVS15 (r = 0.020), Malawi-village (r = 0.034), and Science-Gallery (r = 0.086), appears
mostly in the upper half of the ranking, exhibiting generally positive Pearson correlations under bipartite
representation. Similarly, the Drugs segment: NDC-classes (r = 0.191) and NDC-substances (r = 0.091), and
the user-thread group: threads-ask-ubuntu (r = 0.104), threads-math-sx (r = 0.099), twitter (r = 0.035),
also cluster together with consistently positive, though more moderate, correlation values. Likewise, hypergraphs
from the tag-question segment:tags-math-sx (r = 0.116), tags-ask-ubuntu (r = 0.095), exhibit moderate
and comparable correlations.
Conversely, several hypergraphs appear at the lower end of the ranking with negative correlation values.

These include disgenenet (r = −0.166) and diseasome (r = −0.067) from the Diseases and genes seg-
ment; geometry (r = −0.129) and algebra (r = −0.0968) from user-answer; and 3 hypergraphs from the
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user-review segment, including music-blues-reviews (r = −0.132), restaurant-reviews (r = −0.079), and
vegas-bars-reviews (r = 0.037), which show weak to moderately negative or near-zero correlations. These
trends illustrate how semantic categories often align with shared correlation patterns, hinting at underlying
structural regularities that will be explored further in the following analyses.

Summary This subsection highlights the interpretability of Pearson correlations between hyperedge size and
node degree when grouped by semantic hypergraph segments. Using bipartite preprocessing as a reference,
the results reveal clear and coherent segment-level trends. Segments such as physical contact, user-thread,
tag-question, and Drugs exhibit consistently positive correlations, suggesting a shared structural tendency
across these domains. Conversely, segments like Diseases and genes, user-answer, and user-review tend to
show negative or near-zero correlations. These patterns underscore that the relationship between node degree
and hyperedge size is not only statistically detectable but also semantically meaningful, aligning with domain-
specific mechanisms such as contact dynamics, specialization, or institutional constraints. The consistency of
signs across preprocessing methods further reinforces the robustness of these patterns.

3.1.5 Summary and Recommendations

This analysis demonstrates that the bipartite representation is the most effective preprocessing strategy for
capturing the relationship between hyperedge size and node degree in hypergraph data. It consistently yields
the highest Eta-squared (η2) values across various correlation measures, indicating strong alignment with the
semantic segmentation of hypergraphs and low within-segment variability. While the choice of correlation coef-
ficient (Pearson, Spearman, or Kendall) has some influence, it is secondary to the choice of representation: in
the bipartite framework, all three yield similar and reliable results. By contrast, node-centric correlations are
highly variable and tend to overestimate strength, while edge-centric ones are somewhat more stable but less
consistent than bipartite. These findings emphasize that selecting an appropriate preprocessing method, i.e.,
the bipartite representation, is more crucial than the specific correlation measure when summarizing the hyper-
edge size–degree relationship. However, a detailed comparative analysis of Pearson and Spearman correlations,
accompanied by additional evaluation criteria beyond η2, follows in the next subsection and is expected to shed
new light on the importance of choosing an appropriate correlation metric.

3.2 Optimal Choice of Correlation Coefficient

The previous subsection demonstrated that the bipartite representation is the preferred preprocessing method
for computing correlations between hyperedge size and node degree, outperforming both node-centric and edge-
centric approaches. Once this design choice is fixed, the next natural question arises: which correlation coefficient,
e.g., Pearson, Spearman, or Kendall, should be used as a single, interpretable summary of this relationship?
This subsection aims to provide practical guidelines for selecting the most appropriate correlation measure. A
qualitative discussion of the types of relationships underlying these correlations will follow in subsection 3.3.
As shown earlier in Table 1, the η2 scores, measuring how well each correlation coefficient aligns with known

hypergraph categories, do not provide a decisive basis for choosing among Pearson, Spearman, and Kendall.
In the bipartite setting, all three perform comparably: η2 equals 0.6656 for Pearson, 0.6782 for Spearman, and
0.6605 for Kendall. These marginal differences are too small to support the selection of one coefficient over the
others based solely on η2.
To resolve this ambiguity, we proceed with a more detailed investigation focused on comparing Pearson

and Spearman coefficients. (Since Spearman and Kendall are almost perfectly correlated in our dataset, with
over 99% agreement, we focus only on Spearman as a representative of the nonparametric class.) Our analysis
follows two complementary approaches: first, a quantitative comparison of the magnitude of Pearson and Spear-
man correlations’ differences across empirical hypergraphs; and second, a qualitative comparison based on the
alignment of their signs with the global trends identified by monotonic GAM models.

3.2.1 Quantitative Comparison of Pearson and Spearman correlations

A quantitative approach to compare Pearson and Spearman coefficients is to examine their alignment and
investigate hypergraphs where the two diverge significantly. Noting that Spearman and Kendall are nearly
identical with the Pearson correlation of 99% between them, therefore, we focus exclusively on Spearman for
comparison against Pearson.
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Figure 3a presents a scatterplot of Pearson (X-axis) vs. Spearman (Y-axis) correlation coefficients for 36
empirical hypergraphs. The dashed red line indicates the identity line (45°), while the solid blue line is the
fitted linear regression. Six hypergraphs for which the two coefficients differ in sign are labelled: email-enron,
email-eu, kaggle-whats-cooking, dblp, SFHH-conference, and house-bills. Visual inspection reveals a
general alignment along the identity line, with minor fluctuations. The fitted regression line supports this,
showing a slope close to one and an intercept estimate of 2.43% (SE = 0.988%), which is statistically significant
at α = 0.05 (p = 0.0192). This indicates a small but systematic upward bias in Spearman relative to Pearson.
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(a) Scatterplot of Pearson vs. Spearman correlation coef-
ficients for 36 hypergraphs. The dashed red line indicates
the identity line (45°), and the solid blue line shows the
fitted linear regression. The six hypergraphs for which the
two correlation coefficients differ in sign are labeled.
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Figure 3: Comparison of correlation measures (left) and their monotonicity alignment with hypergraph categories
(right).

The goodness-of-fit of this regression, R2 = 79.0%, suggests a medium-to-high alignment between the two
metrics. Half of the hypergraphs show an absolute difference between the two metrics of less than 2.95pp, and
75% have a difference below 6.4pp. Nevertheless, a few outliers show discrepancies exceeding 12pp in absolute
terms: email-eu (Spearman vs. Perason difference: 12.1pp), threads-math-sx (12.1pp), diseasome (-12.3pp),
email-enron (13.2pp), and threads-ask-ubuntu (16pp). Notably, four of these belong to either the email or
threads categories. In each of these four cases, Spearman is systematically higher than Pearson by at least
12pp; in two instances (email-enron, email-eu) this leads to opposite signs. The common factor appears to be
an initial upward trend in dense regions of the data, which biases rank-based Spearman estimates, as discussed
for email-eu in Figure 4a. While Pearson reflects the global trend, Spearman is heavily influenced by early
dense data ranges.
The case of diseasome presents a reverse scenario. Here, Spearman is 12.3pp lower than Pearson. Figure 8

from Appendix reveals a complex structure: while the global trend is slightly negative (Pearson = -0.067), the
end of the range features an upward fluctuation. Spearman emphasizes early data, which starts with a mild
upward slope but transitions quickly to a descending pattern, better captured by the negative Spearman (-0.19).
Importantly, Spearman is statistically significant at α = 0.00001, whereas Pearson is only marginally significant
at α = 0.05 (p = 0.026). This is the one case in which Spearman is better aligned with the monotonic GAM
classification than Pearson, especially considering the small dataset size (N = 1109).
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Summary In summary, Pearson and Spearman show strong alignment overall, with R2 = 79% and a modest
2.43% upward bias in Spearman. For 75% of hypergraphs, the absolute difference does not exceed 4.85pp.
However, a closer inspection of the five most divergent hypergraphs shows that in four of them, Pearson is more
robust and consistent with visual trends and fitted GAM models. Beyond quantitative differences, qualitative
discrepancies in sign between Pearson and Spearman are especially consequential and motivate the subsequent
part of paper.

3.2.2 Assessing Alignment Between GAM Monotonicity and Correlation Coefficients’ Signs

In this part, we propose an additional criterion that is not captured by η2: namely, the degree to which the sign of
a correlation coefficient reflects the global trend in the data. This trend is approximated using monotonic Gener-
alized Additive Models (GAMs), fitted separately under increasing and decreasing shape constraints. Although
Pearson measures linear dependence and Spearman/Kendall assess monotonic relationships, we observe in fol-
lowing subsection 2.3 that approximately half of the empirical hypergraphs exhibit complex, non-monotonic
relationships, often with a clear dominant trend. For such cases, it is desirable that the sign of the selected
correlation coefficient be aligned with the direction of this dominant trend.
To operationalize this comparison, we classify each empirical hypergraph in two ways. First, based on the

correlation coefficient (Pearson, Spearman, or Kendall), we assign it to one of three categories: (i) significantly
negative, (ii) non-significant, or (iii) significantly positive. Second, based on the monotonic GAM fit, we classify
it into: (i) decreasing trend, (ii) no significant trend, or (iii) increasing trend. The alignment between these
two classifications is evaluated using contingency tables in Table 2. The top table concerns Pearson, while the
bottom aggregates Spearman and Kendall, which yield identical classifications.

Sign of GAM direction Sum
Pearson Dec. Non-sign. Inc.

Negative 16 0 0 16
Non-sign. 3 3 1 7
Positive 0 0 13 13

Sum 19 3 14 36

(a) Pearson correlation.

Sign of GAM direction Sum
Spearman Dec. Non-sign. Inc.

Negative 8 0 0 8
Non-sign. 8 2 0 10
Positive 3 1 14 18

Sum 19 3 14 36

(b) Spearman or Kendall correlations.

Table 2: Contingency tables comparing the sign of correlations with the direction of monotonicity inferred from
monotonic GAMs.

In both the top and bottom panels of Table 2, all 36 empirical hypergraphs are classified according to
the monotonicity direction inferred from monotonic GAM fits (columns). According to this classification, the
majority, 19 out of 36 hypergraphs (approximately 53%), exhibit a statistically significant decreasing relationship
between hyperedge size and node degree in bipartite representation. A slightly smaller group, 14 hypergraphs
(39%), shows a statistically significant increasing relationship. Only 3 hypergraphs (about 8%) are found to have
no statistically significant monotonic trend at a stringent threshold of α = 0.00001. How do these GAM-derived
trend directions align with the sign of standard correlation coefficients such as Pearson, Spearman, and Kendall?
We begin by evaluating this alignment for Pearson coefficients, presented in the top table.

Alignment Between GAM Monotonicity and Pearson Signs The top panel of Table 2 compares the
GAM monotonicity classification with the sign and statistical significance of Pearson correlations. According
to the Pearson-based classification, the most common group consists of hypergraphs with significantly negative
correlations, 16 out of 36 cases (approximately 44%), all of them belong to 19 hypergraphs that monotonic
GAM classifies as decreasing. The second most frequent group comprises hypergraphs with significantly positive
Pearson correlations—13 out of 36 (36%), again, all of them belong to 14 increasing cases identified by the
GAM. The least represented group consists of non-significant Pearson correlations, occurring in 7 hypergraphs,
while GAM identifies only 3 hypergraphs with no significant monotonicity-all of these 3 hypergraphs belong to
7 hypergraphs indicated by Pearson correlation. In total, the alignment between Pearson sign and monotonic
GAM direction is 32 out of 36 cases (about 89%). The 4 misaligned cases are all classified as non-significant by
Pearson (second row), while GAM assigns 3 of them (house-committees, senate-committees, diseasome as
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visible in Table 8) to the decreasing category and 1 (email-enron) to the increasing category. The Pearson co-
efficients for these four hypergraphs are all close to zero: −0.0669 (diseasome), −0.0483 (senate-committees),
−0.0365 (house-committees), and −0.0024 (email-enron), see Table 8. While these values are not significant
at α = 0.00001, three out of four are significant at a more conventional threshold of α = 0.05, with p-values of
0.0260, 0.8720, 0.0000713, and 0.00038, respectively. Importantly, the first three have negative Pearson coeffi-
cients, consistent with the decreasing classification by the GAM model. If we relax the significance threshold
to α = 0.05, the total alignment between Pearson and monotonic GAM increases to 35 out of 36 hypergraphs
(approximately 97%). Moreover, this change would also reclassify three other hypergraphs, amazon, InVS13,
and vegas-bars-reviews, from non-significant to either increasing or decreasing, again in agreement with the
GAM classification. Thus, under a more conventional α = 0.05 threshold, the alignment remains consistently
high at around 97%.
The only hypergraph whose sign remained misaligned even under more conventional significance levels of

1% or 5% is the email-enron hypergraph. To inspect this case in detail, Figure 8 in the Appendix presents the
scatter plot of data points from its bipartite representation, upon which all correlation coefficients and GAM
models were fit. The plot includes three fitted models: an unrestricted GAM (blue solid line), a monotonic
GAM (green dashed line), and a linear regression line (red dotted line). The unrestricted GAM reveals a highly
complex, non-monotonic relationship. Specifically, the expected degree initially increases from ca. 40 to ca. 55
with hyperedge size from 1 to around 5, then stabilizes at the predicted degree of ca. 55 with statistically
insignificant fluctuations between hyperedge sizes of approximately 5 to 15. After that, the predicted degree
drops from 55 to around 20 for hyperedge sizes near 30, though this drop is accompanied by wide confidence
intervals, suggesting weak statistical support. Notably, the expected degree rises again to approximately 40 for
hyperedge sizes above 35. This final level has tighter confidence intervals and an upper bound that lies below
the initial degree level of 50, indicating an overall upside-down U-shape.
Such a unimodal and balanced pattern, where expected degrees at both tails are similar, results in a flat

linear regression fit and a Pearson correlation near zero. In these cases, the sign of the Pearson coefficient
may be either positive or negative depending on slight asymmetries in the curve, and can still be statistically
significant under conventional α thresholds such as 1% or 5% due to the relatively large sample size (here,
N = 4623). Meanwhile, the monotonic GAM is constrained to fit either an increasing or decreasing trend.
Similar to the Pearson correlation, it is forced to choose one “arm” of the relationship. In this example, the
monotonic increasing model results in slightly lower residual sum of squares (SSE), leading to its selection as
the better monotonic fit. Consequently, the monotonic GAM indicates an increasing trend, creating a formal
misalignment with the negative Pearson coefficient.

Alignment Between GAM Monotonicity and Spearman and Kendall Signs Turning to the bottom
panel of Table 2, Spearman and Kendall coefficients exhibit notably lower alignment with the monotonic GAM
direction, with only 24 out of 36 hypergraphs (67%) classified in agreement. While these non-parametric co-
efficients correctly identify all 14 cases with an increasing trend, they misclassify 11 out of 19 hypergraphs
with a decreasing trend—labeling 8 as non-significant and, in 3 cases, incorrectly assigning them a statistically
significant positive correlation.
Notably, three hypergraphs—kaggle-whats-cooking, house-bills, and email-eu—are assigned an oppo-

site classification. While monotonic GAM identifies these relationships as decreasing, Spearman and Kendall
both indicate statistically significant positive correlations. The corresponding Spearman values are 0.014, 0.031,
and 0.037, and the Kendall values are 0.009, 0.020, and 0.024, respectively. Although these correlation values
are small and only marginally above zero, they are statistically significant at a stringent significance level of
α = 0.00001, owing to the large sample sizes of their bipartite representations (428,249; 1,248,666; and 89,409
data points, respectively). While their numerical values suggest only a weak positive trend, their qualitative
misalignment with the GAM-based classification is noteworthy—particularly when inspecting the underlying
scatterplots.
Among the three hypergraphs where the sign of the Spearman and Kendall coefficients misaligns with the

direction indicated by the monotonic GAM, kaggle-whats-cooking, house-bills, and email-eu, we focus
here on the email-eu hypergraph. However, the qualitative characteristics observed in this case are also present
in the remaining two examples that a reader can examine on his own in Figures 10 in Appendix. Figure 4a
displays the scatterplot for email-eu, which consists of 89,409 data points in its bipartite representation. The
unrestricted GAM (blue solid line) reveals a complex, multimodal structure, characterized by several statistically
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significant fluctuations, as evidenced by the narrow confidence intervals2 estimated at a stringent significance
level of α = 0.00001.
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Figure 4: Examples of non-monotonic (left) and monotonic (right) relationships between hyperedge size and
node degree in two e-mail-based hypergraphs.

Visual inspection of Figure 4a, along with the monotonic GAM fit (green dashed line), suggests a globally
decreasing relationship, consistent with the negative linear regression line and Pearson coefficient of −0.084.
Nevertheless, both the Spearman and Kendall coefficients are positive (0.037 and 0.024, respectively), which
likely results from the initial upward trend for small hyperedge sizes (approximately 1 to 5). This is also
the most common range of hyperedge sizes in the data, with a mean of 3.56 and standard deviation of 3.40,
as summarized in Table 7. Because non-parametric rank-based correlations are sensitive to data density, this
dense early region of increasing trend may bias the coefficients toward a positive value, even when the global
relationship is decreasing.
Interestingly, the qualitative shape of the relationship in email-eu closely resembles that observed in

email-enron (Figure 8). Both hypergraphs exhibit an initial increase in node degree for small hyperedge sizes,
followed by a global decline. In both cases, the resulting relationship forms an upside-down U-shape. The key
difference lies in the symmetry: for email-eu, the right-side “arm” of the U is longer and more pronounced,
which leads to a stronger preference for a decreasing trend in both monotonic GAM and Pearson regression. By
contrast, the earlier-discussed email-enron case showed a slight preference for the increasing arm.
These complex fluctuations observed in both email-enron and email-eumay stem from dependencies among

observations, violating the assumption of independence. In bipartite representations, such dependencies naturally
arise: two edges may share the same node (implying identical or correlated node degrees), or belong to the same
hyperedge (implying shared hyperedge sizes). Beyond these structural sources, domain-specific behaviours, such
as regular organizational mailing lists, can introduce further correlations. For example, recurring weekly emails
sent to the same group of 36 recipients, each with node degree around 30, could generate clusters of duplicate
observations. These correlated clusters may skew fitted models, introducing fluctuations in unrestricted GAM
fits or biasing regression lines.
2Confidence intervals are computed under the assumption that observations are independent. This assumption is revisited later

in the text, where we discuss domain-specific and structural reasons why it may be violated, and outline potential approaches for
addressing such dependencies.
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Addressing these dependencies could improve fitted model robustness but also its indications of monotonicity
direction or correlation coefficients. For bipartite-structure-induced correlations, one could model shared nodes
or hyperedges explicitly by assuming the correlation among them. However, correlations arising from repeated
organizational behaviour (e.g., mailing lists) are harder to detect and may require heuristic de-duplication, such
as removing repeated instances of specific hyperedge-size/degree pairs (e.g., many observations with size 36
and degree 30). Developing principled methods to address both sources of correlation remains an interesting
direction for future work, which we leave outside the scope of the present study.
So far, we have discussed three hypergraphs that exhibit a clear misalignment between the direction indicated

by monotonic GAM and the sign of the nonparametric Spearman and Kendall correlations. These examples:
kaggle-whats-cooking, house-bills, and email-eu, are particularly striking, as they not only indicate op-
posite directional trends but do so with very low p-values, which may lead to overconfident and misleading
conclusions. Visually, the relationships in these cases appear strongly non-monotonic or globally trending in
the opposite direction, further reinforcing the argument that nonparametric coefficients may fail as reliable
indicators of global trend direction.
However, beyond these qualitative discrepancies, a broader issue emerges from the contingency analysis in

Table 2, which shows that the largest source of misalignment with GAM monotonicity comes from eight hyper-
graphs classified as decreasing by GAM, but non-significant according to Spearman and Kendall. Among these,
six hypergraphs do have negative correlation coefficients, aligning in sign with the GAM classification. Of these,
half: Hypertext-conference, restaurant-reviews, and email-W3C, become statistically significant at the
more conventional α = 0.05 level, see Table 8. The remaining three: house-committees, senate-committees,
and diseasome, remain non-significant even at that threshold.
The remaining two hypergraphs in this group: dblp and SFHH-conference, are misaligned not only in terms

of statistical significance but also in the direction of the correlation sign. Both are classified as decreasing by
monotonic GAM yet have positive Spearman and Kendall coefficients. Although not significant at the stringent
α = 0.00001 level, these correlations become significant at α = 0.01, see Table 8. A closer look at their
scatterplots, available in the Appendix, reveals familiar patterns: fluctuating relationships that start with a
short upward trend heavily supported by dense data, followed by a broader, downward trend.
The case of SFHH-conference, illustrated in Figure 12, is particularly noteworthy. The unrestricted GAM

reveals a smooth, complex, and non-monotonic pattern, starting with a slight but data-dense upward trend
and evolving into a pronounced decline. The monotonic GAM and linear regression both capture this global
downward trend, the latter supported by a negative Pearson coefficient of −0.027. In contrast, Spearman and
Kendall yield small positive values of 0.012 and 0.0097, respectively, both statistically significant at α = 0.01.
This stark divergence exemplifies once more how nonparametric rank-based correlations, while useful for mono-
tonic relationships, can fail to reflect global trends in complex empirical data.
These two misaligned hypergraphs, when combined with the three earlier cases of strong misclassification,

yield a total of five hypergraphs where Spearman and Kendall correlations exhibit a statistically significant
sign opposite to the monotonic trend identified by GAM at the α = 0.01 level. This underscores a substantial
limitation in using nonparametric correlation coefficients as standalone indicators of relationship direction in
empirical hypergraph data.

Summary This analysis demonstrates that Pearson correlation coefficients are remarkably well-aligned with
the direction of global trends inferred from monotonic GAM models, with an agreement rate of 89% under a
stringent α = 0.00001 and rising to 97% at a conventional threshold of α = 0.05. In contrast, non-parametric
Spearman and Kendall correlations exhibit considerably lower alignment, agreeing with monotonic GAM in
only 67% of cases. Notably, five hypergraphs show statistically significant signs in Spearman or Kendall that
are opposite to the monotonic direction indicated by the GAM. This discrepancy is most apparent in complex,
non-monotonic settings where local data density can bias rank-based measures. The results caution against
relying solely on Spearman or Kendall for detecting global trends in empirical hypergraphs, especially under
large sample sizes and non-linear structures. Instead, monotonic GAMs, paired with Pearson coefficients and
visual inspection, offer a more robust framework for trend identification in complex bipartite hypergraph data.

3.2.3 Interpretation Corner: Segment-Level Monotonicity Patterns

So far, we have focused on accurately measuring the relationship between hyperedge size and node degree.
However, given the empirical nature of the hypergraphs under analysis and their semantic interpretations, we
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now aim to interpret the observed relationship signs through the lens of what hyperedges and nodes represent
in each case. This interpretation goes beyond pure measurement and offers rationale grounded in the semantics
of each dataset.
Figure 3b presents the frequency of monotonicity directions (increasing, decreasing, or non-significant) de-

tected by monotonic GAMs, grouped by hypergraph segment. As described in subsection 2.3, these monotonicity
classes are assigned based on statistical testing using a stringent significance level α = 0.00001. A monotonic
trend is deemed “non-significant” if neither an increasing nor a decreasing GAM model fits significantly better
than a flat baseline.
The figure reveals strong homogeneity of GAM monotonicity direction within hypergraph segments: 10 out

of 13 categories exhibit perfect consistency in trend direction across all included hypergraphs. Of the remaining
three, two segments (Physical Contact and User-review) contain a single outlier hypergraph (InVS13 and
vegas-bars-reviews, respectively), both classified as non-significant. Only the Email segment contains a single
case (email-enron) with an opposite trend, which, as discussed earlier (e.g., Figure 4a), exhibits a highly non-
monotonic U-shaped pattern. This overall trend consistency supports our earlier findings in Subsection 3.1,
where limited variability of correlation coefficients within segments, especially under bipartite representation,
led to relatively high η2 values.
Positive monotonic trends dominate several hypergraph categories, including Physical Contact, User-

Thread, Tag-Question, and Drugs. Focusing on the first two, we can offer interpretable, domain-informed
explanations for why increasing relationships between hyperedge size and node degree are expected. In
the Physical Contact segment (e.g., contact-high-school, contact-primary-school, Malawi-village,
Hypertext-conference), nodes represent individuals equipped with sensors, and hyperedges correspond to
physical group interactions over brief time intervals. An individual participating in larger group interactions is
likely to engage with more people overall, thus appearing in more interactions. For example, a student present
in large classroom settings will tend to accumulate more contacts than a student mostly present in one-on-one
or small group interactions. Hence, larger hyperedges naturally imply higher node degrees, leading to a positive
correlation.
Similarly, in the User-Thread segment (e.g., threads-ask-ubuntu, threads-math-sx), hyperedges rep-

resent discussion threads on Q&A forums, and nodes are users contributing to those threads. Larger threads
typically attract more engaged or experienced users who tend to participate in many discussions. Conversely,
users who are active across multiple threads are more likely to contribute to longer, multi-user conversations.
Therefore, there is a natural expectation of a positive relationship between thread size and user activity levels,
consistent with the increasing trend found in the data.
Several hypergraph segments exhibit a dominant negative monotonic trend between hyperedge size and node

degree, particularly the Political, Participant-Conference, and Person-Place categories. In the Politi-
cal segment, such as house-bills and house-committees, nodes represent political actors (e.g., members of
Congress), and hyperedges represent either legislative bills or committee memberships. A negative relationship
in this context indicates that politicians involved in large coalitions (e.g., large bills with many cosponsors) tend
to participate in fewer overall bills. This aligns with political specialization: high-frequency participants may fo-
cus on narrow, small-scale initiatives, while those contributing to large, broad coalitions do so more occasionally.
Moreover, committee memberships are often limited in number due to institutional constraints, and members
of large committees may serve on fewer committees overall, reinforcing the observed inverse relationship.
In the Participant-Conference segment (e.g., Hypertext-conference, SFHH-conference), hyperedges

represent group interactions at specific time intervals, and nodes are attendees. A negative correlation in this
setting suggests that participants found in large group gatherings (e.g., plenary sessions) are less likely to be
involved in many distinct interactions across time. In contrast, those who accumulate many contacts tend to do
so through repeated small-group interactions (e.g., informal meetings or hallway conversations), leading to lower
average hyperedge sizes. Similarly, in the Person-Place segment (e.g., got, evernote-places), hyperedges are
shared scenes or event venues, while nodes are characters or individuals. The negative trend reflects that indi-
viduals who frequently appear in scenes or attend events often do so in small settings, supporting either focused
plotlines in narrative data (like got) or niche appearances in real-world event data (like evernote-places). In
contrast, characters or artists appearing in large group events typically do so less frequently. These observations
align well with empirical social and narrative dynamics and support the statistical findings.

Summary This interpretive analysis demonstrates that the direction of monotonic relationships observed
between hyperedge size and node degree is not random but meaningfully structured across semantic hypergraph
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segments. Positive monotonic trends are prevalent in settings where participation in larger groups is associated
with higher overall engagement, such as physical contact networks or user interaction threads, reflecting natural
social dynamics and patterns of individual activity. In contrast, negative trends emerge in domains where
involvement in large groups tends to limit broader participation, due to constraints or role specialization, as
seen in political affiliations, conference attendance patterns, or media appearances. The strong within-segment
consistency in monotonic direction, along with interpretable domain-based rationales, supports the validity of
our classification procedure and reinforces the value of semantic segmentation for interpreting structure-function
relationships in empirical hypergraphs.

3.2.4 Robustness Check: Logarithmic Feature Transformation

An important design decision we investigated in this study concerns whether to apply feature engineering trans-
formations to the variables of interest, particularly natural logarithm transformations of either the hyperedge size
or node degree, or both, when computing correlations. Logarithmic transformation is a widely used technique
in network science due to its ability to compress skewed degree distributions, which often follow heavy-tailed
or power-law forms. This transformation facilitates clearer visualization and improves the stability of statistical
modelling [93, 14]. In economics, it is commonly employed in the estimation of Cobb–Douglas production func-
tions, where taking logarithms transforms multiplicative models into additive linear ones, stabilizes variance,
and allows for coefficients to be interpreted as elasticities or percentage changes [73, 133, 54].
Intuitively, one might expect that monotonic transformations like the logarithm would not affect non-

parametric correlation coefficients such as Spearman or Kendall, nor the shape of non-parametric models such as
GAMs. This expectation holds, but only under specific conditions. When the predictor variable X is transformed
using a logarithm, non-parametric measures and models remain numerically unchanged, as their ranks and mono-
tonicity are preserved. However, when the dependent variable Y is log-transformed, all models and correlation
coefficients, including non-parametric ones, may be affected. This is because E[log(Y |X)] ̸= log(E[Y |X]), and
hence the underlying Conditional expectation function (CEF), see [8], is altered in a way that affects model fit
and statistical outputs across the board.
The key takeaway is that applying a logarithmic transformation to the predictor X has no impact on

non-parametric measures or GAMs, but will affect parametric measures such as Pearson correlation and lin-
ear regression. In contrast, log-transforming the dependent variable Y has consequences for all modelling ap-
proaches and thus warrants careful consideration. Accordingly, sensitivity analyses should be conducted when
log-transformations are applied to Y , which we report below.
Despite the theoretical implications outlined above, our empirical evaluation shows that the actual impact of

logarithmic transformation on results is quantitatively minor and does not alter the qualitative conclusions of our
study. Specifically, the Pearson correlations between outcomes obtained from logarithmic and non-logarithmic
setups exceed 96% across all cases. Therefore, for clarity and consistency, we focus our main results on the
non-logarithmic setup. Nevertheless, the primary conclusions remain robust and fully extend to the logarithmic
case. The decision to apply a logarithmic transformation should be guided more by interpretability, e.g., the
need of switching from additive to multiplicative interpretations, than by model performance.

Summary This robustness check confirms that logarithmic transformations, while theoretically impactful,
especially when applied to the dependent variable, have only minimal empirical effect on our results. The high
concordance between log- and non-log-transformed outcomes (Pearson correlations exceeding 96%) indicates
that our classification and correlation patterns are stable. We recommend that log-transformations be considered
primarily for interpretability purposes rather than performance gains, and sensitivity checks should accompany
any such transformation, particularly when applied to the dependent variable.

3.2.5 Summary and Recommendations

To summarize, although all three correlation coefficients: Pearson, Spearman, and Kendall, show comparable
segment-level alignment as measured by η2 (ranging between 0.66 and 0.68 for bipartite representation; see
Table 1), Pearson stands out for its consistency in capturing the direction of the global relationship between
hyperedge size and node degree. Specifically, Pearson achieves 89% alignment with the monotonicity direction
inferred from shape-constrained GAMs at a stringent α = 0.00001, improving to 97% at α = 0.05 (see Table 2).
In contrast, Spearman and Kendall coefficients align with GAM trends in only 67% of cases and are more prone
to directional misclassification, including sign reversals.
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Several problematic cases such as: email-eu, house-bills, kaggle-whats-cooking, SFHH-conference, and
dblp, illustrate scenarios where Spearman and Kendall coefficients suggest the opposite trend from Pearson.
In all these instances, visual inspection reveals either a clear global downward trend or complex multimodal
patterns where Pearson better captures the overall direction. Moreover, in cases involving U-shaped or weakly
curved relationships (e.g., email-enron, diseasome), Pearson returns near-zero values, consistent with the lack
of a strong directional trend, whereas non-parametric coefficients often report a misleadingly strong positive or
negative association.
These findings indicate that while non-parametric methods like Spearman and Kendall are well-suited for

detecting monotonic but nonlinear relationships, they are more sensitive to local structure and can be misled by
multi-modality or curvature, sometimes even reversing the sign of the association. Pearson, although traditionally
associated with linearity, proves more robust in capturing the global relationship direction, especially in complex
empirical settings.
Therefore, we recommend the following:

• Use the bipartite representation as the default preprocessing method for quantifying the relationship
between hyperedge size and node degree, due to its superior η2 scores and segment-level alignment.

• When selecting a single correlation coefficient, prefer Pearson over Spearman and Kendall, even in nonlinear
settings, because it more reliably reflects the direction of the global relationship, particularly in the presence
of multimodal or weakly U-shaped trends.

• Be cautious with non-parametric correlations in the presence of complex structures, as they may produce
inflated coefficients and misleading signs that do not correspond to the dominant trend in the data.

In summary, while non-parametric coefficients offer value in detecting monotonic trends, Pearson is more
robust for summarizing complex real-world patterns, making it the preferred choice for global characterization.
The next subsection explores more nuanced characterizations of the hyperedge size–degree relationship beyond
a single numerical summary.

3.3 Identifying Relationship Types Between Hyperedge Size and Node Degree

In the previous two Subsections 3.1 and 3.2, we focused on identifying optimal design choices, i.e., the data
preprocessing strategy and correlation coefficient, that produce a single numerical indicator well aligned with
both the semantic segment of the hypergraph and the global trend structure identified via shape-constrained
GAMs. These indicators aim to reflect dominant relationships while being robust to local fluctuations in com-
plex patterns. However, summarizing even a two-dimensional relationship with a single number can be overly
reductive. As demonstrated in earlier sections, the relationships between hyperedge size and node degree can
exhibit diverse and often complex forms.
The goal of this subsection is to shift the focus from a quantitative summary to a qualitative understanding

of the relationship types observed across empirical hypergraphs. Rather than measuring strength, we classify
each of the 36 empirical hypergraphs into one of four qualitative categories that characterize the nature of the
relationship between hyperedge size and node degree: (1) non-monotonic (including unimodal or multimodal
patterns), (2) monotonic, (3) linear, and (4) no relationship. This classification is carried out using the statistical
procedure introduced in Subsection 2.3, which combines models’ fitting with sequential hypothesis testing.
In Subsection 3.3.1, we present one illustrative example from each category to clarify how the classification

is determined in practice, and to better understand the advantages and limitations of the proposed procedure.
Then, in Subsection 3.3.2, we move beyond individual examples to summarize the empirical distribution of rela-
tionship types and perform Bayesian inference to generalize findings to the broader population of hypergraphs,
beyond the 36 examples analyzed here. Finally, Subsection 3.3.3 presents robustness checks to assess the sen-
sitivity of our classifications to modelling assumptions, such as variable directionality and feature engineering.
Throughout this section, we restrict our analysis to the bipartite representation, which was previously shown in
Subsection 3.1 to be the most informative and stable preprocessing strategy for analyzing hyperedge size–degree
relationships.

3.3.1 Examples of Identified Relationship Types

In this subsection, we present four representative hypergraphs, each illustrating one of the relationship types
identified in our classification scheme. We begin with the most complex case of non-monotonic relationship
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and proceed through monotonic and linear examples, concluding with a case of no apparent relationship. These
examples are paired with the statistical test results introduced in Subsection 2.3, providing concrete illustrations
of how the classification procedure operates, including its strengths and limitations. In the next subsection,
Subsection 3.3.2, we transition from individual cases to population-level insights about the distribution of
relationship types.

Non-monotonic Relationship This relationship type has already been illustrated in Figure 4a for the
email-eu hypergraph and discussed in detail in Subsection 3.2.2. In this case, non-parametric correlation coef-
ficients such as Spearman (0.037) and Kendall (0.024) suggest a weak positive trend due to an initial upward
pattern. However, this masks a stronger global downward trend, more accurately captured by the negative
Pearson correlation (−0.084).
To formalize this classification, we focus on the top-left inset of Figure 4a, which displays two ANOVA

tests and one F -test as per our methodology. The first ANOVA test compares an unconstrained GAM (blue
line) against a monotonic GAM (green line), with the null hypothesis assuming equivalence. A p-value near
zero indicates strong evidence that the unconstrained model fits the data significantly better, revealing a non-
monotonic (e.g., unimodal or multimodal) pattern. The unrestricted GAM clearly fluctuates, and its narrow
confidence intervals at α = 0.00001 support the conclusion that these deviations are statistically significant.
As the result of this first test is decisive, the procedure terminates at this step, classifying the relationship as
non-monotonic. The other two test results are reported for completeness but do not affect the classification.

Monotonic Relationship Figure 4b shows an example of a monotonic relationship in the email-W3C hy-
pergraph. Visually, the unconstrained GAM (blue line) closely follows the monotonic GAM (green line), both
showing a steep initial decline followed by a gradual flattening. The visual similarity and overlapping confidence
intervals suggest that the additional flexibility of the unconstrained GAM is unnecessary. This is confirmed by
the first ANOVA test, which yields a high p-value, indicating no significant difference between the models.
Following our procedure, we proceed to test whether a simple linear regression (dotted red line) could

adequately describe the data. Here, the regression line visibly diverges from the monotonic GAM fit across
most of the hyperedge size range, and the corresponding ANOVA test produces an extremely small p-value
(1.5× 10−26), confirming that a linear model is insufficient. Therefore, the final classification is monotonic. No
further testing (e.g., the F -test) is required.
Although email-enron, email-eu, and email-W3C all belong to the same semantic category of email-based

hypergraphs, their structural patterns differ notably. Both email-enron and email-eu show an initial increase
in average node degree up to a hyperedge size of five, followed by a gradual decline, suggesting that moderate
group sizes are associated with higher engagement, while very large groups dilute individual participation.
In contrast, email-W3C shows a steady, monotonic decline starting from the smallest hyperedge sizes, likely
reflecting the dynamics of mailing lists, where communications tend to be broadcast-like and less reciprocal.
These differences can be attributed to the nature of the datasets. The Enron corpus consists of internal

corporate emails exchanged primarily among upper management between 1999 and 2002 [76], while the EU
dataset originates from email interactions within a European research institution [138], likely reflecting team-
based coordination. In both cases, email exchanges are driven by project work and organizational structures
that foster high interaction in small to medium groups. Conversely, the W3C emails were collected from public
mailing lists used for technical discussions and announcements in the broader web standards community. Such
lists typically feature broadcast-style communications with minimal back-and-forth, which explains the sharp
and steady decline in individual involvement as hyperedge size increases. These observations highlight that
structural patterns in hypergraph data are strongly shaped by the institutional, cultural, and functional context
of the underlying communication systems.

Linear Relationship The hospital-lyon hypergraph, depicted in Figure 5a, provides a clear example of
a linear relationship. As summarized in Table 5, this dataset captures group interactions among healthcare
workers and patients in a Lyon hospital ward. The hyperedge sizes are limited to 2–5 participants, with most
interactions involving groups of size 2 or 3. This restricted domain naturally favours simpler functional forms,
such as linear models.
Model fits show a consistent positive trend: individuals involved in larger group interactions tend to accu-

mulate more total interactions. This aligns with intuition in the hospital setting, where participation in larger
gatherings, such as rounds or shift changes, implies broader involvement across the ward.

20



H_0: GAM=Monot.GAM: p=1

H_0: Monot.GAM=OLS: p=0.012

H_0: R^2 = 0:       p=4e−118

Pearson  = 0.34

Spearman = 0.34

Kendall  = 0.28

0

50

100

150

200

2 3 4 5
Hyperedge size

D
eg

re
e

Model

GAM
Linear
Monotonic GAM

N = 4427

Relationship: Linear

hospital−lyon

(a) Linear relationship in hospital-lyon hypergraph be-
tween the number of hospital staff and patients attend-
ing a gathering (hyperedge size) and the total number of
gatherings attended by each staff member or a patient (de-
gree).
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Relationship: No relationship

vegas−bars−reviews

(b) No relationship in vegas-bars-reviews hypergraph be-
tween the number of reviews for a bar in a given month
(hyperedge size) and the number of reviews submitted by
each user (degree).

Figure 5: Examples of a linear relationship (left) and no discernible relationship (right) between hyperedge size
and node degree in two empirical hypergraphs.

While the fit of unrestricted GAM (blue line) suggests a slight concave curvature at hyperedge size 4,
this is based on sparse data and is not statistically robust. Formal testing supports the linear interpretation.
The first ANOVA test comparing the unconstrained GAM and a monotonic GAM yields a p-value close to
1, suggesting no evidence against monotonicity. A second ANOVA test comparing the monotonic GAM to a
linear model produces a p-value of 0.012. Under our stringent significance threshold of α = 0.00001, this result
is not sufficient to reject the linear model. Additionally, a comparison between the linear fit and a constant
mean model strongly favours the former (with a p-value of 4× 10−118), reinforcing the classification as a linear
relationship.
Two factors could lead to reclassification. First, using a relaxed significance threshold (e.g., α = 0.02 or 0.05)

would favour the monotonic GAM due to the minor curvature. Second, reversing the model direction (hyperedge
size as response, degree as predictor) reveals a wider range of degrees (6–205, see Table 6), and as checked in
Section 3.3.3, this leads to reclassification as monotonic.

No Relationship Figure 5b illustrates a case of no significant relationship between node degree and hyperedge
size in the vegas-bars-reviews hypergraph. This dataset captures Yelp users (nodes) who reviewed the same
bar in Las Vegas within a one-month period (hyperedges). As shown in Table 7, the number of reviews per bar
per month (i.e., hyperedge size) ranges from 2 to 73, while individual users have submitted between 1 and 147
reviews overall, with an average of 9.6. Despite this wide variability, the relationship between the number of
reviews a bar receives in a given month and the total number of reviews submitted by its reviewers appears to
be flat, with no clear trend.
This is confirmed through a sequence of statistical tests. The first ANOVA test comparing an unconstrained

GAM to a monotonic GAM yields a p-value of 0.065, suggesting limited evidence against monotonicity. The
second test comparing the monotonic GAM to a linear model produces a p-value of 0.016, indicating that
the linear model fits the data sufficiently well. However, an F -test comparing the linear model to a constant
mean returns a p-value of 4.6 × 10−5, leading to the rejection of the linear model under our strict significance
threshold of α = 0.00001. Thus, despite a slight upward trend suggested by the positive Pearson correlation
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(r = 0.037), the final classification for this configuration is “no relationship.” It is worth noting that under a
more conventional threshold (e.g., α = 0.01), the relationship would be classified as linear.
From an interpretive standpoint, one might expect a weak positive relationship in this setting. Bars that

attract many reviewers in a given month may be more popular or prominent, and such venues are likely to be
visited and reviewed by more active Yelp users, who tend to submit reviews more frequently overall. However,
the noisy nature of user behaviour, varying reviewing habits, and the casual context of online review platforms
likely dilute any clear structural trend, resulting in only a mild correlation that fails to reach significance under
strict criteria.
Interestingly, the result is not robust to a reversal of the variables. When hyperedge size and node degree

are swapped (i.e., node degree as the predictor and hyperedge size as the response), the model is reclassified as
“non-monotonic.” This reversal highlights the sensitivity of the classification to model direction and supports
a more nuanced interpretation of the data. Additionally, the earlier p-value of 0.065 already suggests some
deviation from monotonicity even in the original configuration.
As will be further discussed in Section 3.3.2, only three out of 36 empirical hypergraphs fall into the “no rela-

tionship” category: vegas-bars-reviews, amazon, and InVS13. Each exhibits unique structural characteristics
that help explain this classification. In the case of amazon and InVS13, the lack of a relationship is more robust
and can be attributed to the highly limited range of hyperedge sizes, only 3 distinct values (2, 3, 4) for InVS13,
and just 1 to 6 for amazon, as well as low node degree variability. For example, amazon users have degrees ranging
only from 1 to 4. These constraints naturally bias the analysis toward simpler models. Moreover, both datasets
are relatively small (5,112 nodes for InVS13 and 19,380 for amazon), which, under the strict α = 0.00001 thresh-
old, reduces the power to detect more subtle effects. Notably, both of these hypergraphs remain classified as “no
relationship” even when the predictor and response variables are swapped, further confirming the robustness of
their categorization.

Summary The four examples presented above: non-monotonic (email-eu), monotonic (email-W3C), linear
(hospital-lyon), and no relationship (vegas-bars-reviews), illustrate the diversity of patterns that can
emerge between node degree and hyperedge size in empirical hypergraphs. These case studies not only demon-
strate the behaviour of different model fits but also highlight the strengths and limitations of the statistical
procedure introduced in Subsection 2.3. They show how both statistical evidence and domain knowledge con-
tribute to classification outcomes, and how modelling choices, such as the selection of the response variable or the
choice of significance threshold, can affect the resulting interpretation. These examples serve as a foundation for
understanding the broader conclusions drawn in the next subsection. The remaining 32 empirical hypergraphs,
along with one synthetic hypergraph generated using the ABCD-h model, are visualized in the same manner in
Appendix Subsection A.4.3.
In the following section, we move beyond individual cases to examine the overall distribution of relation-

ship types across the full set of 36 hypergraphs and population of hypergraphs. This analysis allows us to
identify common structural patterns, assess how frequently each relationship type occurs, and explore what
characteristics may be associated with different classes of relationships.

3.3.2 Distribution of Relationship Types

This subsection reports the distribution of the four identified relationship types across the 36 empirical hyper-
graphs and provides inferential insight into what might be expected in the broader population of hypergraphs.
Table 9 in the Appendix presents, for each hypergraph, the p-values from the three statistical tests and

the relationship type classification described in Subsection 2.3, based on a conservative significance level of α =
0.00001. To summarize these detailed results, Table 3 shows the empirical distribution of relationship types across
the dataset. Among the 36 hypergraphs, only 3 (8.3%) exhibit no discernible relationship between hyperedge
size and node degree. A majority of hypergraphs (18/36, 50%) show a monotonic relationship (including linear),
while the remaining 15 (41.7%) demonstrate a non-monotonic relationship. This distribution already provides
strong empirical evidence against no relationship in real-world hypergraph data. Moreover, the use of a stringent
α level reduces the likelihood of false positives, reinforcing the robustness of our classifications in the presence
of large datasets.
Given this empirical evidence, it would be misleading to assume that no relationship exists between hyperedge

size and node degree in a randomly chosen hypergraph. On the contrary, one should generally expect at least a
monotonic relationship, if not a more complex, non-monotonic pattern. These findings are particularly relevant
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Relationship Type Count Share (%) Cumulative Share (%)

No relationship 3 8.3 8.3
Linear 6 16.7 25.0
Monotonic 12 33.3 58.3
Non-monotonic 15 41.7 100.0

Table 3: Distribution of four identified relationship types—non-monotonic, monotonic, linear, and no relation-
ship—across 36 empirical hypergraphs.

for the design of generative models for hypergraphs, which ought to account for such structural dependencies
rather than assuming independence between hyperedge size and node degree.
To generalize beyond our finite sample, we conduct Bayesian inference using non-informative uniform priors

and derive posterior Beta distributions for selected proportions. Specifically, we compute Bayesian Credible
Intervals (BCIs) for the fractions of hypergraphs showing no relationship and those showing non-monotonic
relationships. For the “no relationship” category (3 out of 36), the posterior mean is 10.5%, with a 95% BCI of
(3.0%, 21.9%) and a more conservative 99% BCI of (1.9%, 26.6%). These intervals suggest that, in the general
hypergraph population, the fraction of cases with no relationship is likely below 25%, reinforcing the idea that
such cases are relatively rare.
Conversely, the proportion of non-monotonic relationships is estimated at 42.1% (posterior mean), with a

95% BCI of (27.1%, 57.9%) and a 99% BCI of (22.0%, 62.7%). This indicates that non-monotonic relationships
may not only be common but could even constitute the majority in the broader population. Taken together,
these findings highlight the prevalence and diversity of structural dependencies in real-world hypergraphs and
call into question modeling assumptions that treat group size and individual connectivity as unrelated.

Summary This analysis establishes that relationships between hyperedge size and node degree are pervasive
in empirical hypergraphs, with non-monotonic and monotonic patterns dominating the landscape. The scarcity
of hypergraphs with no detectable relationship, both in sample and in posterior inference, underscores the
importance of incorporating these structural regularities into modelling frameworks. In the next subsection,
we test the robustness of these classifications by examining the sensitivity of results to changes in modelling
assumptions, such as reversing the direction of the dependent variable.

3.3.3 Robustness Check: the Choice of X and Y Axis

One of the key modelling choices in our classification procedure was to treat hyperedge size as the predictor
(X-axis) and node degree as the dependent variable (Y-axis) when fitting GAM models. While this decision
does not influence the outcome of the F -test used for comparing linear regression with a constant model, it
can substantially affect the fit and flexibility of nonparametric models like GAMs, which in turn may influence
the final classification into one of the four relationship types. To assess the robustness of our conclusions, we
repeated the entire classification procedure after switching the roles of the two variables.
Table 4 presents a confusion matrix comparing relationship classifications under the original (columns) and

reversed (rows) configurations. A notable trend is the increase in the number of hypergraphs classified as non-
monotonic under the reversed setup: 22 out of 36, compared to 15 in the original. Meanwhile, the number of
linear classifications drops from 6 to just 1, and the count of “no relationship” cases remains unchanged at
3. This confirms our earlier finding from Subsection 3.3.2 that hypergraphs without any significant structural
relationship are rare. The shift toward more complex categories upon reversing axes suggests that our original
classifications may, if anything, understate the prevalence of non-monotonic patterns.
A closer inspection reveals that 21 out of 36 hypergraphs (58%) are classified identically in both settings,

while only 2 hypergraphs (5.5%) are placed in entirely different categories (e.g., from “no relationship” to “non-
monotonic”). Of the 15 cases that were differently reclassified, 12 shifted toward a more complex relationship
type, most frequently from monotonic to non-monotonic, while only 3 moved to a simpler category.
This tendency toward increased complexity is expected. In most hypergraphs, node degree tends to have a

higher variance than hyperedge size. Since GAMs are more flexible when the predictor variable spans a wide
range, reversing the axes effectively exposes the model to greater variation, allowing it to detect more nuanced,
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X: Hyperedge size, Y: Degree
None Linear Monotonic Non-mon. Total

None 2 0 0 1 3
X: Degree, Linear 0 1 0 0 1
Y: Hyperedge size Monotonic 0 2 6 2 10

Non-mon. 1 3 6 12 22
Total 3 6 12 15 36

Table 4: Confusion matrix comparing relationship classifications with original variable assignment (columns)
versus reversed (rows).

non-monotonic patterns. This reinforces the idea that the relationship between degree and hyperedge size is
often complex and context-dependent.

Summary Reversing the roles of predictor and response variables confirms the robustness of our core findings
while also highlighting an important asymmetry: more complex, non-monotonic relationships become even
more prevalent when degree is used as the predictor. While over half of the classifications remain unchanged,
most discrepancies result in a shift toward greater complexity, not simplification. This suggests that our main
conclusions about the widespread and intricate nature of degree–hyperedge size relationships are, if anything,
conservative.

3.3.4 Summary and Recommendations

This section consolidates the findings of our investigation into the types of relationships between hyperedge
size and node degree across 36 empirical hypergraphs and provides actionable recommendations for researchers
analyzing such data. Our classification procedure, grounded in a sequence of nested statistical tests applied to
shape-constrained GAMs and linear models, revealed that structural dependencies between these two quantities
are widespread, often non-linear, and in many cases non-monotonic. This holds true even under stringent
significance thresholds and is robust to modelling assumptions, such as the choice of predictor and response
variable.
Only a small minority (3 out of 36) of hypergraphs exhibited no detectable relationship. The majority fell into

the monotonic (including linear) or non-monotonic categories, with non-monotonic relationships constituting
42% of cases. Bayesian inference confirms that such patterns likely generalize beyond our finite dataset, with
the fraction of hypergraphs showing no relationship unlikely to exceed 25%. These results challenge common
modeling assumptions of independence or linearity between hyperedge size and node degree and call for more
nuanced representations in both descriptive and generative settings.
We recommend that analysts avoid relying solely on a single correlation coefficient, especially rank-based ones

such as Spearman or Kendall, as these may fail to capture underlying complexity, particularly in the presence
of U-shaped or multimodal trends. Instead, we suggest a model-based classification approach, such as the one
used here, which compares the fit of multiple nested models and provides interpretable outcomes grounded in
statistical evidence. When a single summary metric is needed, we recommend using Pearson correlation on data
preprocessed via the bipartite representation, as this approach showed the strongest alignment with model-based
trends across semantic segments.
In sum, we recommend that researchers treating hypergraph data, whether for descriptive analysis, predictive

modelling, or generative simulation, take into account the existence and complexity of the hyperedge size–
degree relationship. This dependency is both widespread and interpretable, varies systematically across semantic
domains, and should be incorporated into statistical modelling and synthetic data generation to ensure more
faithful and functionally relevant representations of hypergraph structure.

4 Discussion: On the Impact of Degree–Hyperedge Size Correlation
in Social Dynamics

The primary motivation for this study is to identify and quantify the relationship between two fundamental
structural properties of hypergraphs: hyperedge size and node degree. This relationship is of particular interest
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due to its potential influence on emergent behaviours and dynamical processes that unfold on such higher-order
structures. In the context of classical pairwise networks, extensive research has shown that structural features,
such as degree distribution, clustering, and degree-degree correlations, can critically affect dynamics including
epidemic spreading [104, 97], diffusion [71, 29], and the emergence of cooperation [117, 107].
Although the literature on dynamical processes in hypergraphs is still emerging, it has already produced a

growing body of work demonstrating the importance of higher-order interactions in shaping collective behaviour.
This section reviews selected processes modelled on hypergraphs, such as social contagion, influence diffusion,
and multiplayer cooperation, and proposes hypotheses on how structural correlations between hyperedge size
and node degree might impact these dynamics. By doing so, we aim to highlight the broader relevance of our
empirical findings to modelling and understanding complex systems through a higher-order lens.

4.1 Spreading Dynamics of Social Contagions and Epidemics

Understanding how behaviours, ideas, and infectious diseases propagate across social systems is a central topic
in network science and social network analysis. Traditional models of contagion dynamics, such as SIS or SIR
(Susceptible-Infected-Susceptible / Susceptible-Infected-Recovered), have been extensively studied in the con-
text of pairwise networks, where each edge represents a dyadic interaction between individuals [6, 58, 74]. In
such settings, it is well-established that community structure, clustering, and degree heterogeneity strongly
influence both the epidemic threshold and the eventual prevalence of contagion [87, 70, 101]. More recently,
researchers have extended these models to higher-order structures, particularly hypergraphs, which allow for
the direct modelling of group interactions that cannot be reduced to dyads [113, 21, 121, 34]. Unlike simplicial
complexes, which require inclusion of all lower-order simplices, hypergraphs offer greater flexibility in represent-
ing complex social contexts, where group interactions do not always entail all possible sub-interactions [49, 100].
This makes them particularly well-suited for modelling settings such as classrooms, households, or workplaces,
where contagion spreads through collective exposure rather than simple pairwise contact.
One of the earliest contributions to modelling spreading dynamics in higher-order social systems is the work

by [21], summarized in [17]. In this framework, individuals are modelled as nodes, and each hyperedge represents
a shared social context such as a household or workplace [60, 13]. The authors analyzed an SIS model governed by
a continuous-time Markov chain in which the infection and recovery processes follow Poisson dynamics. Notably,
the infection probability of a susceptible individual v depends on higher-order group structures. Specifically, the
probability of infection over a small time interval ∆t is given by:

Pinfect = 1− exp

(
−τ∆t

∑
v∈e
f(ie)

)
,

where the summation is over all hyperedges e containing the susceptible node v, ie is the number of infected
nodes in hyperedge e, and f(ie) is a non-decreasing function capturing the infection pressure. While prior work
explored various forms of f , including linear and tangent functions, [21] showed that much of the qualitative
behaviour of the system could be reproduced with a simple piecewise-linear function:

f(x) =

{
x, if 0 ¬ x ¬ c
c, if x > c.

Here, the parameter c serves as a saturation threshold: once the number of infected individuals in a group exceeds
c, additional infections no longer increase the infection rate. This diminishing returns property, frequently
observed in socio-economic systems [126, 84, 63], adds realism to the modelling of social contagions.
Simulations using this model revealed that both hyperedge size and structural heterogeneity significantly

influence the contagion dynamics. Larger average hyperedge sizes accelerate the early stages of spread, while
greater heterogeneity in group sizes leads to faster initial outbreaks but lower long-term infection prevalence. De-
gree heterogeneity, the variation in the number of groups an individual belongs to, further modulates outcomes:
homogeneous degree distributions yield slower onset but higher final infection levels, whereas heterogeneous
configurations enable rapid early transmission that later plateaus at lower steady-state levels.
However, this line of research has not yet addressed the potential role of correlation between hyperedge size

and node degree. In scenarios where both node degree and hyperedge size are fixed or drawn independently, the
correlation between them is by design zero. But it remains unclear whether the heterogeneous configurations
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used in simulations by [21] unintentionally introduced non-zero correlations due to the design of generative con-
figuration model [30]. If such correlations were present, they may have contributed to the observed acceleration
in early contagion spread. Disentangling the effects of degree/size heterogeneity from the correlation between
them requires simulation experiments on hypergraphs where both marginal distributions and correlations can
be independently controlled.
We hypothesize that a positive correlation between hyperedge size and node degree, empirically observed

in many social hypergraphs as demonstrated in this paper, could amplify the early phase of spreading even
further. Intuitively, individuals who are more socially active tend to participate in larger group settings (e.g.,
conferences, social events), making them likely early spreaders. This structural coupling concentrates initial
exposure in hubs of group activity, facilitating rapid diffusion of behaviours or infections. However, as shown
in [21], such accelerating effects may also lead to earlier saturation or reduced steady-state levels, especially if
bottlenecks form. These dynamics carry important implications for understanding not only epidemic outbreaks
but also the spread of social behaviours, norms, or innovations within networked populations.

4.2 Social Influence Diffusion Process on Hypergraphs

Social influence refers to the capacity of individuals to affect others’ beliefs, attitudes, or behaviours, often
through mechanisms such as imitation, persuasion, or peer pressure [32]. With the advent of digital platforms
and online social media, word-of-mouth diffusion, a form of peer-to-peer information spread, has become a
dominant mechanism of influence, widely exploited in domains such as viral marketing [79] or recommender
systems [137]. The core computational challenge in this context is known as Social Influence Maximization
(SIM): identifying a small seed set of influential individuals in a network whose activation leads to maximal
spread of influence [82].
Traditionally, SIM and its variants have been studied on graphs where nodes represent individuals and edges

represent pairwise interactions. One prominent formulation is the Target Set Selection (TSS) problem [71],
which seeks the smallest set of initially activated nodes that can eventually activate the entire network under
a diffusion model, typically the linear threshold (LT) model [53, 116]. In this model, each node has a threshold
and becomes active when the sum of influence weights from active neighbours exceeds it.
In reality, however, social interactions are often group-based rather than pairwise. Examples include par-

ticipation in online communities, co-authorships, or collaborative projects. Hypergraphs, where hyperedges can
connect any number of nodes, offer a natural and lossless representation of these many-to-many relationships.
Extensions of SIM and TSS to hypergraphs are therefore crucial for modelling higher-order social influence.
One such extension is the Target Set Selection on Hypergraphs (TSSH) problem introduced in [10], where

influence diffuses not only from node to node but through the entire structure of the hypergraph, accounting for
both node and hyperedge thresholds. The diffusion process is defined over the incidence graph of the hypergraph,
a bipartite representation connecting nodes and hyperedges. At each discrete step, influence alternates between
nodes and hyperedges: nodes activate hyperedges if enough of their members are active, and hyperedges, in
turn, activate nodes based on their thresholds.
This alternating, bipartite mechanism allows for modelling realistic social scenarios where an individual may

be influenced by the collective stance of a group. The TSSH problem seeks the smallest seed set of nodes S
such that, through this process, all nodes eventually become influenced. Several greedy heuristics have been
developed to approximate TSSH [9], and empirical results show the model’s effectiveness on both synthetic and
real-world data.
An open question, however, concerns how structural properties of the hypergraph, particularly the correlation

between node degrees and hyperedge sizes, impact the required size of the seed set. Since the diffusion operates
on the incidence bipartite graph, a positive correlation between node degree and hyperedge size corresponds
to positive assortativity in the bipartite structure. Prior work in network epidemiology shows that positive
degree–degree correlations can slow diffusion [104, 96]. Hence, we hypothesize that in hypergraphs with positive
node–hyperedge size correlation, the TSSH seed set must be larger to achieve full diffusion. Conversely, in
negatively correlated structures, fewer influential nodes may suffice to trigger widespread influence. This insight
underlines the importance of measuring and understanding degree–size correlations in empirical hypergraphs.
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4.3 Cooperation in the Public Goods Game on Hypergraphs

The public goods game is a model in evolutionary game theory that extends the prisoner’s dilemma to group
interactions [117, 107]. In its simplest form, each of the G players in a group decides whether to contribute
a token (cooperate) or not (defect). The total contributions are then multiplied by a synergy factor r > 1
and equally distributed among all group members, regardless of their strategy. If Nc players cooperate, then
a cooperator receives πC = rNc/G − t (paying cost t), and a defector receives πD = rNc/G. Thus, the game
captures the essential social dilemma: while defection is individually rational, collective cooperation yields the
highest group payoff.
Multiplayer games such as the public goods game are typically studied on classical graphs by randomly

selecting an edge, i.e., a pair of neighbouring players (i, j). Each node participates in k + 1 games: one as the
focal player and k as a co-player in the games initiated by its neighbours, where k denotes the node’s degree.
After payoffs are computed, player i may adopt the strategy of player j with a probability that depends on
the relative difference in their payoffs. Two cost-allocation schemes are commonly considered: (i) fixed cost per
game (t = const), in which the total cost incurred by a player increases linearly with degree, and (ii) fixed cost
per individual (t ∝ 1

k+1 ), which distributes the cost evenly across all games, keeping the total cost constant
regardless of degree.
Simulations on lattices showed that cooperation is sustained for the synergy factor below the critical condi-

tion, i.e. r < G [122, 25]. Additionally, scale-free networks networks enhance cooperation more under the fixed
cost per individual setup (rather than fixed cost per game) due to the disproportionately high payoffs collected
by high-degree nodes [115]. This example is particularly relevant to our study, as it highlights the crucial role
of degree–degree correlations in shaping cooperative dynamics. Specifically, it is shown that positive degree
correlations tend to suppress cooperation [114].
A more realistic formulation by playing the public goods game on bipartite networks that explicitly represent

the group structure was introduced by [51]. In their model, one node set represents individuals and the other
set represents groups (e.g., papers in scientific collaborations). They showed that cooperation is systematically
enhanced when the game is implemented on the bipartite network rather than its one-mode projection, for both
cost schemes. Moreover, under the fixed cost per individual setup, cooperation tends to increase among players
who are involved in fewer but tighter groups, i.e., when there is a positive correlation between hyperedge size
and node degree. This result is particularly relevant to our study, as it highlights the potential influence of the
observed correlation on the emergence of cooperative behaviour. Interestingly, increasing group size generally
reduces cooperation levels in both formulations.
Building on this foundation, [4] developed a public goods game directly on hypergraphs, representing groups

as hyperlinks and individuals as nodes. In a newly introduced formulation, each individual i accumulates payoffs
from all hyperlinks they participate in and imitates the strategy of its best performing neighbour j with a
probability which depends on πj − πi. They studied this model on both uniform and heterogeneous random
hypergraphs, as well as empirical ones. Key findings include that larger group sizes promote cooperation in harsh
conditions (low r), and that heterogeneous hypergraphs allow for nuanced control over the critical threshold for
cooperation and the speed of convergence to steady states.
These findings prompt two hypotheses that directly relate to our empirical observations. First, the positive

correlation between hyperedge size and node degree observed in many real-world hypergraphs of physical con-
tact, see Figure 3b, is likely to promote cooperation, particularly under the fixed cost per individual scheme, as
suggested by [51]. Intuitively, individuals who participate in many groups (i.e., high-degree nodes) also tend to
be part of larger groups (i.e., large hyperedges), enabling them to access greater pooled benefits at relatively
lower individual cost. Second, the seemingly contradictory results regarding the effect of group size on coopera-
tion between [51] and [4], the former reporting decreased cooperation with increasing group size, and the latter
showing enhanced cooperation under similar conditions, could potentially be reconciled by accounting for the
correlation between group size and node degree. Future theoretical work and simulations that allow for indepen-
dent control of both node degree and group size distributions, as well as their correlation, may clarify whether it
is heterogeneity alone or its alignment across structural features that drives cooperation in higher-order systems.

5 Conclusions and Further Research

The structural relationship between hyperedge size and node degree is a fundamental yet understudied property
of hypergraphs. Understanding whether and how these two features co-vary is essential not only for characterizing
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real-world hypergraph data but also for designing more realistic generative models and interpreting dynamical
processes that unfold over such structures. This section summarizes our key findings and offers guidance for
future research and tool development aimed at incorporating these insights into empirical analysis and synthetic
graph construction.

Conclusions This study systematically investigated the empirical relationship between hyperedge size and
node degree across 36 real-world hypergraphs, using linear models, non-parametric correlations, and flexible
Generalized Additive Models (GAMs). We classified each hypergraph according to the complexity and direction
of its underlying trend: linear, monotonic, non-monotonic, or absent, using a sequence of statistical tests. Our
results reveal that such relationships are not only widespread but also often complex: nearly 42% of hyper-
graphs exhibit non-monotonic patterns, and only a small minority (3 out of 36) show no significant dependency.
These findings directly challenge common assumptions of structural independence in generative models and
downstream hypergraph applications.
An important practical takeaway for data analysts and hypergraph modellers is the critical role of data

preprocessing. Among the three examined strategies: node-centric, edge-centric, and bipartite representation,
we recommend the bipartite projection as the default. It consistently exhibited the lowest within-segment
variability and highest η2 effect sizes.
Moreover, we found that the sign of classical correlation coefficients, especially Pearson, aligns well with the

direction of the dominant trend estimated by GAMs, particularly when statistical significance is evaluated at
conventional levels (α = 0.05). However, we also showed that Spearman and Kendall coefficients can misrepresent
global trends in the presence of multimodal or U-shaped relationships, often due to data density and structure-
induced dependencies.
Importantly, our analysis uncovered strong consistency in the direction of monotonicity within semantically

defined hypergraph categories, such as Physical Contact, User-Thread, or Political. These patterns were not only
statistically robust but also interpretable based on the domain-specific meaning of nodes and hyperedges. For
example, a positive relationship is expected in contact networks where individuals participating in larger groups
naturally accumulate more contacts, while negative correlations in political networks align with institutional
constraints or specialization effects.
Although our primary focus was on empirical hypergraphs, we also applied our analytical and statistical

procedures to a well-known class of synthetic hypergraphs, namely, the h–ABCD synthetic model [69]. While
detailed results are omitted here, it can be shown analytically that h–ABCD hypergraphs exhibit no structural
relationship between hyperedge size and node degree. Consistent with this, our full statistical pipeline, including
Pearson, Spearman, and Kendall correlations, as well as model-based classification, correctly identified these
cases as exhibiting no relationship. This serves as an important validation of our methodology, demonstrating
that the proposed procedure does not spuriously detect structure where none exists.
Taken together, this work highlights that the relationship between hyperedge size and node degree is not a

marginal feature but a structurally and semantically meaningful property of empirical hypergraphs. It should
therefore be measured carefully, interpreted in context, and considered when designing models, generating
synthetic data, or studying dynamics on hypergraph-structured systems.

Further Research Directions A direct application of this work is to inform the next generation of generative
models for synthetic hypergraphs, which typically neglect the rich, empirically observed relationships between
hyperedge size and node degree. Many existing generative models either ignore these correlations entirely or
assume overly simplistic linear dependencies. One promising approach is to leverage algorithms designed for de-
gree–degree correlations in bipartite graphs, such as the method proposed by Xulvi-Brunet and Sokolov [136, 68],
and adapt them for hypergraph construction via bipartite representations. Since Pearson correlations between
hyperedge size and node degree translate directly to degree–degree correlations in bipartite graphs, steering
such dependencies during bipartite construction enables generation of synthetic hypergraphs with empirically
realistic structure.
However, as our findings show, linear measures like Pearson often fail to capture the full complexity of

these relationships, many of which are non-linear and non-monotonic. A promising direction is to model this
complexity explicitly by introducing dependencies into the data-generation process. For instance, by duplicating
hyperedges according to simulated weights drawn from power-law distributions, one could mimic the empirical
fluctuations and multimodal structures observed in real hypergraphs. These patterns often reflect structural
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dependencies and repeated groupings (e.g., recurring meetings or standard mailing lists), and embedding such
mechanisms into generative models could substantially increase their realism.
Another critical avenue for future research is to examine how the strength and form of the correlation between

hyperedge size and node degree affect dynamical processes on hypergraphs. A particularly relevant testbed
for this inquiry is the Target Set Selection problem, discussed in Subsection 4.2, which seeks the smallest
set of initially activated nodes that can trigger full diffusion under a specified activation rule. Based on the
discussion in Section 4, we hypothesize that stronger positive correlations may hinder diffusion by concentrating
activation capacity in a subset of high-degree nodes participating in large hyperedges, potentially requiring
a larger seed set to achieve full coverage. However, testing this hypothesis empirically is complicated by the
presence of confounding structural features that co-vary with degree–size correlation across real datasets. To
overcome this, a promising direction is the development of generative hypergraph models that can vary the node
degree–hyperedge size correlation in a controlled manner while holding other properties constant. Such models
would enable rigorous ceteris paribus experiments to isolate the causal effects of this correlation on influence
diffusion and related dynamics.
Finally, the statistical procedure developed in this study, implemented in R, provides an end-to-end frame-

work for assessing the relationship type in a collection of empirical datasets. Beyond hypergraph science, such a
tool has potential applications in many disciplines that require robust classification of structural dependencies
in large, noisy datasets. Future research could extend the tool in several directions:

• enhancing statistical robustness by accounting for correlated or clustered observations (e.g., repeated
measures),

• enabling richer feature engineering, such as logarithmic, Box–Cox, or user-defined transformations,

• packaging the method into accessible software libraries in R, Python, or Julia, and

• disseminating the software and methodology through publications, tutorials, and conference workshops to
promote its cross-disciplinary adoption.

By combining rigorous empirical analysis, domain-informed interpretation, and practical tooling, this study
lays the foundation for future theoretical, algorithmic, and applied research into the structural dependencies
that underlie real-world hypergraph data.
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[45] Mathieu Génois and Alain Barrat. Can co-location be used as a proxy for face-to-face contacts? EPJ
Data Science, 7(1):1–18, 2018.
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[61] Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den
Broeck. What’s in a crowd? analysis of face-to-face behavioral networks. Journal of theoretical biology,
271(1):166–180, 2011.
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A Appendix

A.1 Empirical Hypergraph Datasets: Domains and Descriptive Statistics

The dataset analyzed in this study consists of 36 empirical hypergraphs drawn from a wide variety of domains, en-
compassing both physical and digital social networks, biological networks and political structures. This breadth
includes physical contact networks (e.g., hospital-lyon, contact-primary-school), online user interactions
(e.g., threads-math-sx, tags-ask-ubuntu), institutional affiliations (e.g., house-committees, senate-bills),
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and domain-specific scientific data such as drug composition (NDC-substances) or disease-gene associations
(diseasome, disgenenet). All 36 hypergraphs are organized into semantically coherent and internally homo-
geneous segments, such as User-Answer, Physical Contact, Email, and others. The complete list of datasets,
along with their assigned segments and detailed interpretations of both nodes and hyperedges, is provided in
Table 5. This interpretability is critical, as it allows us to meaningfully analyze and interpret the relation-
ship between node degree and hyperedge size. The node and hyperedge semantics ensure that our calculated
correlations are not just statistical artifacts but reflect domain-relevant structural patterns. All datasets are
publicly available through their respective sources, and we additionally host them in our GitHub repository:
https://github.com/AleksanderWWW/hypergraph-properties.

Hypergraph name Segment Node interpretation Hyperedge interpretation
algebra [11] User-Answer users of mathoverflow.net users who answered a particular type of

question about algebra within a month
amazon [11] Product-Category products reviewed by users on

Amazon
groups of similar items

contact-high-school [11] Physical Contact people at a high school interactions at a resolution of 20 seconds
contact-primary-school
[11]

Physical Contact people at a primary school interactions at a resolution of 20 seconds

dblp [11] Part-Whole DBLP paper authors documents published between January
and May 2017

diseasome [50] Diseases and
Gene

diseases genes associated with diseases

disgenenet [108] Diseases and
Gene

genes associated with diseases diseases

email-enron [11] Email email addresses at Enron sender and all recipients of the email
email-eu [18] [138] [80] Email email addresses at a European

research institution
sender and all receivers grouped by
timestamp

email-W3C [11] Email email addresses on W3C
mailing lists

set of email addresses on the same email

geometry [12] User-Answer users of mathoverflow.net sets of users who answered a certain
question category about geometry

got [11] Person-Place GoT characters GoT scenes linking characters appearing
in the same scene

hospital-lyon [125] Physical Contact patients and health-care
workers in a hospital ward in
Lyon, France

group interactions

music-blues-reviews [11] User-Review Amazon users users who reviewed a blues music product
within a month

nba [12] Part-Whole NBA players players involved in a match up to 2012
NDC-classes [12] Drugs class labels applied to drugs drugs
NDC-substances [12] Drugs substances making up a drug drugs
restaurant-reviews [11] User-Review Yelp users users who reviewed restaurants in

Madison, WI within a month
tags-ask-ubuntu [18] Tag-Question tags sets of tags applied to questions on

askubuntu.com
tags-math-sx [18] Tag-Question tags sets of tags applied to questions on

math.stackexchange.com
threads-ask-ubuntu [11] User-Thread users on askubuntu.com users participating in a thread lasting ¬

24 hours
threads-math-sx [11] User-Thread users on

math.stackexchange.com
users participating in a thread lasting ¬
24 hours

twitter [11] User-Thread
vegas-bars-reviews [11] User-Thread Yelp users users who reviewed the same bar in Las

Vegas within a month
evernote-places [83] Person-Place artists or artist groups places where idol/voice actor events took

place
house-bills (House) [31] Political political affiliation bill cosponsorship in the US House of

Representatives
house-committees
(House) [31]

Political political affiliation committee membership in the US House
of Representatives

Hypertext-conference
[61]

Participant-
Conference

conference attendees face-to-face interactions over 2.5 days

InVS13 [47], InVS15
[45], science-gallery [62]

Physical Contact participants with sensors snapshots of groups present at specific
times

kaggle-whats-cooking [5] Part-Whole ingredients dishes comprising those ingredients
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Malawi-village [102] Physical Contact individuals living in a village interactions in a rural Malawi village
house-bills (Senate) [31] Political political affiliation bill cosponsorship in the US Senate
house-committees
(Senate) [31]

Political political affiliation committee membership in the US Senate

SFHH-conference
[46, 119, 27]

Participant-
Conference

conference attendees face-to-face contacts every 20 seconds

Table 5: List of hypergraph datasets with their sources, assigned semantic segments, and interpretations of
nodes and hyperedges.

Beyond their domain diversity, the hypergraphs analyzed in this study exhibit substantial variation in struc-
tural characteristics, particularly in the size and distribution of node degrees and hyperedge sizes. This variabil-
ity is essential for assessing the correlation and relationship between these two quantities. In contrast, classical
graphs with binary edges lack such variability, as edge size is fixed at 2. Consequently, in standard graphs, the
notion of a relationship between edge size and node degree is either undefined or trivially zero. Tables 6 and 7
provide detailed summary statistics of node degrees and hyperedge sizes, including the number of observations
(n), average value (avg), standard deviation (sd), skewness (skew), and observed range (range).

name n avg sd range skew

algebra 423 19.53 34.01 1–375 5.03
amazon 4989 1.02 0.18 1–4 8.98
contact-high-school 327 55.63 27.06 2–148 0.48
contact-primary-school 242 126.98 55.15 28–261 0.31
dblp 71116 1.24 0.80 1–25 7.33
diseasome 516 2.15 2.15 1–22 3.84
disgenenet 12368 9.09 16.87 1–377 6.67
email-enron 143 32.33 24.26 2–118 1.22
email-eu 1005 88.96 116.35 1–918 2.52
email-W3C 5601 2.39 11.43 1–282 17.23
geometry 580 21.53 36.26 1–260 3.72
got 577 20.99 59.79 1–632 5.83
hospital-lyon 75 59.03 48.99 6–205 1.22
music-blues-reviews 1106 9.49 10.72 1–127 3.25
nba 2191 293.95 308.26 1–1476 1.12
NDC-classes 1161 134.53 402.96 1–5357 7.88
NDC-substances 5311 10.08 35.11 1–579 8.85
restaurant-reviews 565 8.14 7.22 1–59 3.51
tags-ask-ubuntu 3029 164.84 606.11 1–12931 10.31
tags-math-sx 1629 364.10 1039.61 1–13950 6.80
threads-ask-ubuntu 125602 2.76 20.78 1–2332 51.55
threads-math-sx 176445 9.13 92.98 1–12511 59.98
twitter 22964 2.21 4.61 1–266 18.03
vegas-bars-reviews 1234 9.62 7.37 1–147 7.85
eventernote-places 71890 9.92 25.02 1–421 5.70
house-bills 1494 835.79 815.06 1–6220 2.10
house-committees 1290 9.18 7.09 1–44 1.16
Hypertext-conference 113 345.56 304.16 2–1446 1.52
InVS13 92 210.65 193.14 5–1089 2.13
InVS15 217 691.01 488.80 1–3192 1.50
kaggle-whats-cooking 6714 63.78 388.31 1–18048 22.99
Malawi-village 86 2338.01 1780.06 12–7636 0.63
Science-Gallery 10972 65.41 56.06 1–486 1.66
senate-bills 294 789.62 640.09 1–3514 1.31
senate-committees 282 19.18 14.85 1–63 0.85
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name n avg sd range skew

SFHH-conference 403 289.42 311.67 2–1960 2.64

Table 6: Node degree distribution

name n avg sd skew range

algebra 1268 6.52 6.58 6.32 2–107
amazon 1176 4.35 2.27 -0.71 1–6
contact-high-school 7818 2.33 0.53 1.38 2–5
contact-primary-school 12704 2.42 0.55 0.88 2–5
dblp 25624 3.45 2.12 5.24 1–69
diseasome 481 2.31 1.50 1.95 1–11
disgenenet 2069 54.36 169.31 7.38 1–2453
email-enron 1514 3.05 2.29 5.92 1–37
email-eu 25148 3.56 3.40 4.51 1–40
email-W3C 6000 2.23 0.99 10.11 2–23
geometry 1193 10.47 15.65 4.11 2–230
got 4165 2.91 2.35 2.33 0–24
hospital-lyon 1824 2.43 0.56 0.92 2–5
music-blues-reviews 694 15.13 14.71 1.81 2–83
nba 31686 20.33 1.89 0.18 14–28
NDC-classes 49724 3.14 2.10 2.66 1–24
NDC-substances 9906 5.40 5.78 1.49 1–25
restaurant-reviews 601 7.66 7.28 1.90 2–43
tags-ask-ubuntu 147222 3.39 1.03 0.04 1–5
tags-math-sx 170476 3.48 0.97 0.02 1–5
threads-ask-ubuntu 192947 1.80 0.80 1.29 1–14
threads-math-sx 719792 2.24 1.04 1.48 1–21
twitter 4065 12.51 16.90 3.40 1–207
vegas-bars-reviews 1194 9.94 13.82 2.65 2–73
eventernote-places 19033 37.48 185.35 12.84 0–6420
house-bills 60987 20.47 33.83 4.27 2–399
house-committees 341 34.73 21.39 -0.03 1–81
Hypertext-conference 19036 2.05 0.24 5.51 2–6
InVS13 9644 2.01 0.10 10.72 2–4
InVS15 73822 2.03 0.18 5.50 2–4
kaggle-whats-cooking 39774 10.77 4.43 0.86 1–65
Malawi-village 99942 2.01 0.11 9.18 2–4
Science-Gallery 338765 2.12 0.35 3.13 2–5
senate-bills 29157 7.96 10.27 3.23 2–99
senate-committees 315 17.17 6.79 -0.53 4–31
SFHH-conference 54305 2.15 0.50 5.34 2–9

Table 7: Hyperedge size distribution

This structural heterogeneity, combined with interpretability and semantic clarity, makes our dataset partic-
ularly suitable for a robust investigation of correlations between hyperedge size and node degree. The richness
of the dataset ensures that the findings are not limited to a single domain or structure, while the semantic
interpretability allows us to validate the significance of results in real-world terms. Altogether, this provides a
strong foundation for generalizable and meaningful analysis.
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A.2 Computational Implementation and Complexity

In this section, we outline the implementation details behind the analysis hypergraph properties employed in
this paper. The key components involve:

• data ingestion from various source formats,

• construction of efficient data structures for hypergraph representation,

• tools used to optimize computations on hypergraphs.

The data used for the process was obtained from different sources and was therefore stored in diverse file
formats. Those included JSON (JavaScript Object Notation), HGF (Hypergraph format), XGI (CompleX Group
Interactions) and plain text (.txt). A different strategy was necessary for each. Additionally, for all but for JSON
the code for line-by-line reading had to be crafted (Python’s built-in json library handled JSON files without
the need of custom reading and parsing implementations).
Based on the loaded file contents, an instance of a sparse matrix was created. Choosing this type of data

structure allowed for efficient storage of large hypergraphs (dense matrices would quickly drain memory resources
and cause crashes in the processing pipeline), while remaining on par with the representation used in literature.
The latter significantly simplified the translation from theory into software implementation.
For the JSON files, it was possible to use the scipy.sparse.coo array object and construct the entire sparse

matrix in one function call. In the other cases, an incremental line-by-line approach was needed. For synthetic
hypergraphs generated by the h–ABCD synthetic benchmark [69], scipy.sparse.lil array was the most
efficient type for construction, whereas for empirical hypergraphs, scipy.sparse.dok array performed best.
Based on this observation, we recommend further research into a potential relationship between a hypergraph
type, and the optimal sparse matrix type for incremental construction. In all cases, the constructed object
was converted in the scipy.sparse.csr array type, as it is best suited for fast data indexing, crucial to the
calculations performed in the following parts of the process.
The achieved space complexity was O(nnz) + O(n), where nnz is the number of non-zero elements and n

is the number of rows in the matrix. This is more efficient for hypergraphs, where the nnz will typically be
substantially smaller than the dense matrices’ O(n ·m) complexity (m being the number of columns).
Upon receiving the object representing a hypergraph, the downstream tasks in the pipeline utilized numpy’s

array and scipy’s sparse array methods optimized for fast vector computations, to calculate correlations and
descriptive statistics of the data. Initially, numba was employed in hopes of taking advantage of the JIT (Just-in-
time) compilation. This approach, however, yielded no significant improvements in the processing speed, while
increasing the complexity of the implementation details.
Predominant operations in the process of correlation computation were summing over rows, summing over

columns and indexing non-zero elements of the CSR matrix. The first two operations are of O(nnz) time
complexity, and the indexing of O(1). Those characteristics allowed for efficient data processing even for large
hypergraph files.
All statistical analyses, including correlation computations, model fitting, and figure generation, were per-

formed using the R programming language [111]. Correlation measures such as Pearson’s r, Spearman’s ρ, and
Kendall’s τ were calculated using base R functions, while statistical modeling was conducted using Generalized
Additive Models (GAMs) and shape-constrained additive models (SCAMs). Specifically, unrestricted GAMs
were fitted using the mgcv package [132], and monotonic (increasing or decreasing) GAMs were implemented
with the scam package [110], which extends mgcv to support monotonicity constraints.
Model comparisons were carried out using ANOVA F -tests from base R functions [28]. For data wrangling

and summarization, we employed the dplyr [131] and data.table [37] packages. Figures were produced using
ggplot2 [130], with ggrepel for improved label placement and ggpubr for consistent theming. Supplementary
LaTeX-ready tables were generated using xtable, and eta-squared (η2) statistics were calculated with the lsr
package [90]. Altogether, the R ecosystem provided a flexible and reproducible framework for executing the
statistical pipeline described in this study.
All reproducible code used in this study, including both Python and R scripts for data processing, statistical

analysis, and figure generation, is available in the public repository: https://github.com/AleksanderWWW/
hypergraph-properties.
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A.3 Correlation Measures for Hyperedge Size and Node Degree

To characterise the statistical association between hyperedge size and node degree, we employ three standard
correlation measures: Pearson’s r, Spearman’s ρ, and Kendall’s τ . Each captures a different notion of dependence
and responds differently to nonlinearity, outliers, and the shape of the relationship. In this subsection, we briefly
define each measure, discuss their strengths and limitations, and outline when their use is most appropriate.

Pearson Correlation Pearson’s correlation coefficient r quantifies the strength and direction of a linear
relationship between two continuous variables: x and y [106]. It is defined as:

r =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2)

Pearson’s r assumes that both variables are linearly related. It is sensitive to outliers and may be misleading
in the presence of nonlinear or monotonic but non-linear relationships [43]. However, recent work by van den
Heuvel and Zhan (2022) challenges the conventional wisdom distinguishing Pearson’s r for linear relationships
and Spearman’s ρ or Kendall’s τ for nonlinear monotonic associations. They argue that “Pearson’s correla-
tion coefficient should not be ruled out a priori for measuring nonlinear monotonic associations,” and further
demonstrate via counterexamples that Pearson’s r can be preferred over Spearman’s ρ and Kendall’s τ in test-
ing dependency even when the association is monotonic but nonlinear [124]. Therefore, Pearson’s r tends to be
more robust and interpretable in contexts where the global trend described by a single summary of direction
and strength is desired.

Spearman Correlation Spearman’s rank correlation coefficient ρ is a non-parametric measure that assesses
the strength of a monotonic relationship between two variables [118]. It is defined as the Pearson correlation
between the ranks of the variables:

ρ =
∑n
i=1(R(xi)− R̄x)(R(yi)− R̄y)√∑n

i=1(R(xi)− R̄x)2
√∑n

i=1(R(yi)− R̄y)2
(3)

where R(xi) and R(yi) are the ranks of xi and yi, respectively. Spearman’s ρ is less sensitive to outliers and
appropriate when the relationship is monotonic but not necessarily linear [127]. It provides a more flexible
summary than Pearson’s r but is less interpretable in terms of raw variable scales.

Kendall Correlation Kendall’s tau (τ) is another non-parametric measure of monotonic association, based
on the number of concordant and discordant pairs in the data [72]. It is defined as:

τ =
C −D(
n
2

) (4)

where C is the number of concordant pairs and D the number of discordant pairs. A pair of observations (xi, yi)
and (xj , yj) is said to be concordant if the ranks of both elements agree in direction: that is, either xi > xj and
yi > yj , or xi < xj and yi < yj . Conversely, the pair is discordant if the ranks disagree: one variable increases
while the other decreases (e.g., xi > xj but yi < yj). Ties may be handled differently in various adjusted versions
of Kendall’s tau, but in the basic form shown above, tied pairs are typically excluded from C and D.
Kendall’s τ is often considered more conservative than Spearman’s ρ in the sense that it yields smaller values

in absolute magnitude, particularly in small samples. This makes it less prone to detecting spurious associations,
but potentially less sensitive to weak monotonic trends [59]. It is particularly well-suited to ordinal data and
robust against anomalies [59], but may lack sensitivity to more subtle trends in large-scale, noisy data.

Comparison and Application In the context of our hypergraph analysis, Pearson’s r offers a direct assess-
ment of global trends between hyperedge size and node degree and is meaningful when such trends are present.
Spearman’s ρ and Kendall’s τ , on the other hand, are more appropriate when the relationship is suspected to
be nonlinear but monotonic, especially common in empirical network data. While Spearman tends to be more
sensitive, Kendall is more statistically robust and better suited to small or highly discrete datasets.
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Non-parametric correlation coefficients such as Spearman’s ρ and Kendall’s τ are designed to capture rank-
based, monotonic associations and are known for their robustness to outliers and non-normal distributions [124,
39]. These coefficients rely on relative ordering rather than the actual magnitudes of data, making them less
sensitive to the shape and sign of complex, nonlinear relationships when compared to Pearson’s r, which directly
assesses covariance between variable magnitudes [81, 134].
The statistical literature supports three relevant findings regarding the use of Pearson’s r, Spearman’s ρ,

and Kendall’s τ for measuring association. First, although non-parametric measures like ρ and τ are valued for
their robustness, they exhibit higher variance and bias than Pearson’s r even under non-normal, contaminated,
or curved distributions [135]. Second, Pearson’s r remains the most statistically efficient estimator even when
the underlying relationship is approximately linear or near-normal, conditions that are frequently approximated
in large empirical datasets [33]. Third, while Spearman’s and Kendall’s measures are designed to detect mono-
tonicity, they may fail to reflect the dominant global trend direction, especially when the relationship is weakly
monotonic or contains local non-monotonic variations [124]. In this paper, we further investigate this third
point by directly comparing the signs of Pearson’s r, Spearman’s ρ, and Kendall’s τ to the global direction of
association estimated by monotonic Generalized Additive Models (GAMs) [56, 132]. This allows us to evaluate
how well each correlation measure captures the overarching trend in the data, even when local fluctuations or
curvature are present.

A.4 Supplementary Analyses Referenced in Main Text

A.4.1 Optimal Choice of Hypergraph Preprocessing Strategy and Correlation Coefficients

In our experiments, all three correlation coefficients are evaluated across different data preprocessing strategies,
as defined in Section 2.1 and analyzed in Section 3.1. In particular Figure 6 presents the variability of correlation
values for six selected combinations of data preprocessing method and correlation coefficient, specifically, all
pairings of Pearson and Spearman correlations with the three preprocessing strategies: node-centric, edge-
centric, and bipartite representation. It is discussed and referenced in subsection 3.1.2.
Figure 7 presents Pearson correlation values between hyperedge size and node degree for all hypergraphs,

computed under three data preprocessing strategies: node-centric, edge-centric, and bipartite representation.
The hypergraphs are sorted by decreasing Pearson correlation under bipartite representation. This ordering
allows to visually identify clusters of hypergraphs that exhibit similar correlation structure, that is discussed
and interpreted in detail in subsection 3.1.4.
The combination of preprocessing method and correlation measure that best aligns with the structural dis-

tinctions between semantic hypergraph segments is selected in Section 3.1, based on the η2 criterion introduced
in Section 2.2. In addition, we consider the alignment between the sign of each correlation coefficient and the
monotonicity direction inferred from GAM models in Section 3.2. This analysis draws extensively on Table 8,
which reports Pearson, Spearman, and Kendall correlations (sorted by decreasing Pearson) for all 36 empirical
hypergraphs, along with the monotonicity direction of the fitted monotonic GAM in the bipartite representation.
This allows us to compare the sign of each coefficient with the inferred trend direction. A condensed summary
of this alignment is presented in Table 2, and both tables are discussed in detail in Subsection 3.2.2.
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by hypergraph segments. Labels bi, edge, and node denote bipartite, edge-, and node-centric strategies.
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Hypergraph Pearson Spearman Kendall GAM Mono-
tonicity

hospital-lyon 0.337*** 0.343*** 0.278*** Inc.
NDC-classes 0.191*** 0.157*** 0.119*** Inc.
contact-high-school 0.180*** 0.189*** 0.152*** Inc.
tags-math-sx 0.116*** 0.114*** 0.086*** Inc.
threads-ask-ubuntu 0.104*** 0.263*** 0.208*** Inc.
threads-math-sx 0.099*** 0.220*** 0.165*** Inc.
tags-ask-ubuntu 0.095*** 0.126*** 0.095*** Inc.
NDC-substances 0.090*** 0.191*** 0.129*** Inc.
contact-primary-school 0.089*** 0.084*** 0.068*** Inc.
Science-Gallery 0.086*** 0.097*** 0.079*** Inc.
amazon 0.044** 0.041** 0.040** Non-sign.
vegas-bars-reviews 0.037** 0.102*** 0.073*** Non-sign.
twitter 0.035*** 0.098*** 0.073*** Inc.
Malawi-village 0.034*** 0.025*** 0.021*** Inc.
InVS15 0.020*** 0.025*** 0.020*** Inc.
email-enron -0.002 0.125*** 0.093*** Inc.
senate-bills -0.013*** -0.003 -0.002 Dec.
dblp -0.022*** 0.013** 0.011** Dec.
Hypertext-conference -0.023*** -0.010* -0.008* Dec.
SFHH-conference -0.027*** 0.012** 0.010** Dec.
InVS13 -0.030** -0.019** -0.016** Non-sign.
kaggle-whats-cooking -0.030*** 0.014*** 0.009*** Dec.
house-bills -0.031*** 0.031*** 0.020*** Dec.
house-committees -0.036** -0.011 -0.007 Dec.
senate-committees -0.048** -0.019 -0.013 Dec.
diseasome -0.067* -0.186*** -0.138*** Dec.
got -0.073*** -0.141*** -0.100*** Dec.
restaurant-reviews -0.079*** -0.046** -0.032** Dec.
nba -0.083*** -0.083*** -0.059*** Dec.
email-eu -0.084*** 0.037*** 0.024*** Dec.
algebra -0.097*** -0.112*** -0.078*** Dec.
eventernote-places -0.097*** -0.071*** -0.048*** Dec.
email-W3C -0.118*** -0.033** -0.029** Dec.
geometry -0.129*** -0.112*** -0.078*** Dec.
music-blues-reviews -0.132*** -0.228*** -0.159*** Dec.
disgenenet -0.166*** -0.182*** -0.123*** Dec.

Table 8: Correlation measures (sorted by decreasing Pearson) for bipartite representation with significance stars
(* p < 0.05, ** p < 0.01, *** p < 0.00001) and the monotonicity direction of fitted monotonic GAM.

A.4.2 Identification of Relationship Types: Results of Statistical Tests

Table 9 reports, for each hypergraph, the p-values from the three nested statistical tests and the resulting
classification of the relationship type, following the procedure outlined in Subsection 2.3. The classification is
based on a conservative significance threshold of α = 0.00001, ensuring robustness against spurious detections.
The overall distribution of relationship types across the 36 empirical hypergraphs is summarized in Table 3 and
discussed in Subsection 3.3.2.

A.4.3 Identification of Relationship Types: Visual Inspection

Subsection 3.3.1 introduced and discussed four representative examples (out of 36) of hypergraphs, each il-
lustrating one of the four identified relationship types: non-monotonic, monotonic, linear, and no relationship.
These examples were visualized in Figures 4 and 5. The remaining 32 empirical hypergraphs are presented in
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Hypergraph Relationship p-val for H0 :
monotonic

p-val for H0 :
linear

p-val for H0 :
R2 = 0

N

hospital-lyon Linear 1 0.012 4.00E-118 4,427
NDC-classes Non-monotonic 0 0 0 156,185
contact-high-school Monotonic 0.19 3.00E-07 1.90E-132 18,192
tags-math-sx Monotonic 0.088 0 0 593,121
threads-ask-ubuntu Monotonic 0.26 1.10E-214 0 346,537
threads-math-sx Monotonic 1 0 0 1,610,393
tags-ask-ubuntu Monotonic 0.2 0 0 499,298
NDC-substances Non-monotonic 2.40E-104 0 1.10E-97 53,528
contact-primary-school Linear 0.016 0.016 8.80E-55 30,729
Science-Gallery Non-monotonic 2.10E-32 9.60E-292 0 717,690
amazon No relationship 0.081 0.077 0.0015 5,112
vegas-bars-reviews No relationship 0.065 0.016 4.60E-05 11,865
twitter Non-monotonic 0 4.70E-105 3.70E-15 50,850
Malawi-village Linear 0.01 0.01 2.00E-52 201,069
InVS15 Linear 0.28 0.0051 3.80E-14 149,949
Medium ABCD-h No relationship 1 0.056 0.2 1,079,154
Big ABCD-h No relationship 1 0.14 0.72 2,000,000
email-enron Non-monotonic 1.80E-09 5.40E-27 0.87 4,623
Small ABCD-h No relationship 0.057 0.057 0.33 107,960
senate-bills Non-monotonic 1.40E-06 0.00096 9.00E-10 232,147
dblp Non-monotonic 1.30E-109 1.50E-31 2.30E-11 88,458
Hypertext-conference Linear 0.13 0.12 6.50E-06 39,048
SFHH-conference Non-monotonic 1.30E-31 2.80E-57 8.40E-21 116,636
InVS13 No relationship 0.0099 0.0099 2.50E-05 19,380
kaggle-whats-cooking Non-monotonic 2.90E-35 6.10E-34 6.90E-87 428,249
house-bills Non-monotonic 0 0 1.70E-260 1,248,666
house-committees Non-monotonic 1.10E-21 9.30E-31 7.10E-05 11,843
senate-committees Monotonic 0.056 2.00E-21 0.00038 5,408
diseasome Monotonic 0.34 6.00E-06 0.026 1,109
got Monotonic 1.20E-05 2.10E-42 9.80E-16 12,114
restaurant-reviews Linear 0.0044 0.0044 8.20E-08 4,601
nba Non-monotonic 4.90E-37 2.50E-87 0 644,051
email-eu Non-monotonic 0 2.90E-103 7.80E-141 89,409
algebra Monotonic 0.11 7.00E-07 1.20E-18 8,262
eventernote-places Non-monotonic 2.40E-13 0 0 713,400
email-W3C Monotonic 1 1.50E-26 1.20E-42 13,361
music-blues-reviews Non-monotonic 7.70E-33 3.60E-19 9.00E-42 10,499
geometry Monotonic 0.00078 1.20E-06 8.10E-48 12,485
disgenenet Monotonic 0.89 1.50E-112 0 112,471

Table 9: Results of statistical tests (p-values) identifying one of four relationship types, i.e. non-monotonic,
monotonic, linear, no relationship, by running following three statistical tests: (1) ANOVA test comparing
two models with H0 : unrestrictedGAM = monotonicGAM , (2) ANOVA test comparing two models with
H0monotonicGAM = OLS, (3) F -test with H0 : R2 = 0. Significance level α = 10−5.
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Figures 8, 9, 10, 11, 12, and 13, along with an additional synthetic hypergraph generated using the ABCD-h
algorithm, shown in Figure 9.
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Figure 8: Scatterplots of node degree vs. hyperedge size (bipartite) with GAM, monotonic-GAM and OLS
fits (99.999% CIs) for contact-high-school, contact-primary-school, dblp, diseasome, disgenenet and
email-enron.
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Figure 9: Scatterplots of node degree vs. hyperedge size with GAM, monotonic-GAM and OLS fits (99.999%
CIs) for synthetic hypergraph generated by the ABCD-h algorithm and empirical hypergraphs: algebra,
eventernote-places, geometry, got and amazon.
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Figure 10: Scatterplots of node degree vs. hyperedge size (bipartite) with GAM, monotonic-GAM and
OLS fits (99.999% CIs) for house-bills, house-committees, Hypertext-conference, InVS13, InVS15 and
kaggle-whatscooking.
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Figure 11: Scatterplots of node degree vs. hyperedge size (bipartite) with GAM, monotonic-GAM and
OLS fits (99.999% CIs) for Malawi-village, Medium ABCD-h, music-blues-reviews, nba, NDC-classes and
NDC-substances.
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Figure 12: Scatterplots of node degree vs. hyperedge size (bipartite) with GAM, monotonic-GAM and
OLS fits (99.999% CIs) for restaurant-reviews, Science-Gallery, senate-bills, senate-committees,
SFHH-conference and Small ABCD-h.
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Figure 13: Scatterplots of node degree vs. hyperedge size (bipartite) with GAM, monotonic-GAM and OLS fits
(99.999% CIs) for tags-ask-ubuntu, tags-math-sx, threads-ask-ubuntu, threads-math-sx and twitter.
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