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Abstract

The Artificial Benchmark for Community Detection (ABCD) graph is a random
graph model with community structure and power-law distribution for both degrees
and community sizes. The model generates graphs similar to the well-known LFR
model but it is faster, more interpretable, and can be investigated analytically. In this
paper, we use the underlying ingredients of the ABCD model, and its generalization to
include outliers (ABCD+o), and introduce another variant that allows for overlapping
communities, ABCD+o2.
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1 Introduction

One of the most important features of real-world networks is their community structure, as it
reveals the internal organization of nodes. In social networks, communities may represent groups by
interest; in citation networks, they correspond to related papers; in the Web graph, communities are
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formed by pages on related topics, etc. Identifying communities in a network is therefore valuable,
as it helps us understand the structure of the network.

Detecting communities is quite a challenging task. In fact, there is no definition of community
that researchers and practitioners agree on. Still, it is widely accepted that a community should
induce a graph that is denser than the global density of the network [17]. Numerous community
detection algorithms have been developed over the years, using various techniques such as opti-
mizing modularity, removing high-betweenness edges, detecting dense subgraphs, and statistical
inference. We direct the interested reader to the survey [15] or one of the numerous books on
network science [22].

Most community detection algorithms aim to find a partition of the set of nodes, that is, a
collection of pairwise disjoint communities with the property that each node belongs to exactly one
of them. This is a natural assumption for many scenarios. For example, most of the employees on
LinkedIn work for a single employer. On the other hand, users of Instagram can belong to many
social groups associated with their workplace, friends, sports, etc. Researchers might be part of
many research groups. A large fraction of proteins belong to several protein complexes simulta-
neously. As a result, many real-world networks are better modelled as a collection of overlapping
communities [30] and, moreover, many community detection problems should be tackled by finding
overlapping sets of nodes rather than a partition.

In the context of overlapping communities, detection is even more challenging. For example, in
non-overlapping community detection one can easily verify that a node i is highly connected to its
proposed community C, whereas in overlapping community detection a node i might be assigned
to many communities C1, . . . , Ck, and the number of connections from i into each community may
vary drastically.

To support the development and analysis of overlapping community detection algorithms, a
large and diverse catalogue of networks with ground-truth communities is required for testing, tun-
ing and training. Unfortunately, there are few such datasets with communities properly identified
and labelled. As a result, there is a need for synthetic random graph models with community
structure that resemble real-world networks to benchmark and tune unsupervised clustering algo-
rithms. The popular LFR (Lancichinetti, Fortunato, Radicchi) model [27, 26] generates networks
with communities and, at the same time, allows for heterogeneity in the distributions of both node
degrees and of community sizes. Due to this structural freedom, the LFR model became a standard
and extensively used model for generating artificial networks with ground-truth communities.

A model similar to LFR, the Artificial Benchmark for Community Detection (ABCD) [21],
was recently introduced and implemented1, along with a faster and multithreaded implementa-
tion2 (ABCDe) [19]. Undirected variants of LFR and ABCD produce graphs with comparable
properties, but ABCD (and especially ABCDe) is faster than LFR and can be easily tuned to
allow the user to make a smooth transition between the two extremes: pure (disjoint) commu-
nities and random graphs with no community structure. Moreover, ABCD is easier to analyze
theoretically—for example, in [20] various theoretical asymptotic properties of the are investigated,
including the modularity function that, despite some known issues such as the “resolution limit”
reported in [16], is an important graph property of networks in the context of community detec-
tion. In [6], some interesting and desired self-similar behaviour of the ABCD model is discovered;
namely, that the degree distribution of ground-truth communities is asymptotically the same as

1https://github.com/bkamins/ABCDGraphGenerator.jl/
2https://github.com/tolcz/ABCDeGraphGenerator.jl/
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the degree distribution of the whole graph (appropriately normalized based on their sizes). Finally,
the building blocks in the model are flexible and may be adjusted to satisfy different needs. Indeed,
the original ABCD model was adjusted to include outliers (ABCD+o) [23] and was generalized
to hypergraphs (h–ABCD) [24]3. For these reasons ABCD is gaining recognition as a benchmark
for community detection algorithms. For example, in [2] the authors use both ABCD and LFR
graphs to compare 30 community detection algorithms and, in their work, highlight that “being di-
rectly comparable to LFR, ABCD offers additional benefits, including higher scalability and better
control for adjusting an analogous mixing parameter.”

In this paper we introduce the ABCD+o2 model: a generalization of the ABCD+o model
that allows for overlapping communities. The LFR model has been extended in a similar way [26],
and in this model the nodes are assigned to communities based on the construction of a random
bipartite graph between nodes and communities resulting in (a) a small amount of overlap between
almost every pair of communities, and (b) rarely any pair of communities with a large overlap.
In ABCD+o2, we instead generate overlapping communities based on a hidden, low-dimensional
geometric layer which tends to yield fewer and larger overlaps. This geometric approach to com-
munity structure is justified by the fact that latent geometric spaces are believed to shape complex
networks (e.g., social media networks shaped by users’ opinions, education, knowledge, interests,
etc.). These latent spaces have been successfully employed for many years to model and explain
network properties such as self-similarity [33], homophily and aversion [18]. For more details, we
direct the reader to the survey [9] or the book [32]. In addition to the geometric layer, the ancillary
benefits of the ABCD model (an intuitive noise parameter, a fast implementation, and theoretical
analysis) are still present, making the ABCD+o2 model an attractive option for benchmarking
community detection algorithms.

The remainder of the paper is organized as follows. In Section 2 we present the ABCD+o2

model, with a full description of generating a graph in Section 2.5. Next, in Section 3 we show some
properties of the model and compare these properties to those of real graphs with known overlapping
communities. In Section 4 we demonstrate an application of the model by benchmarking community
detection algorithms and comparing their quality under different levels of noise and overlap. Finally,
some concluding remarks are given in Section 5.

2 ABCD+o2 —ABCDwith Overlapping Communities

and Outliers

As mentioned in the introduction, the original ABCD model was extended to include outliers
resulting in the ABCD+o model. For our current needs, we extend ABCD+o further to allow for
non-outlier nodes to belong to multiple communities, resulting in the ABCD+o2 model, ABCD
with overlapping communities and outliers.

2.1 Notation

For a given n ∈ N := {1, 2, . . .}, we use [n] to denote the set consisting of the first n natural
numbers, that is, [n] := {1, 2, . . . , n}.

3https://github.com/bkamins/ABCDHypergraphGenerator.jl
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We use standard probability notation throughout the paper. For a random variable X, write
P (X = k) for the probability that X = k, and write E [X] for the expected value of X. For a
distribution D, write X ∼ D to mean X is sampled from the distribution D.

Power-law distributions will be used to generate both the degree sequence and community sizes
so let us formally define it. For given parameters γ ∈ (0,∞), δ,∆ ∈ N with δ ≤ ∆, we define a
truncated power-law distribution P (γ, δ,∆) as follows. For X ∼ P (γ, δ,∆) and for k ∈ N with
δ ≤ k ≤ ∆,

P (X = k) =

∫ k+1
k x−γ dx∫ ∆+1
δ x−γ dx

. (1)

2.2 The Configuration Model

The well-known configuration model is an important ingredient of all variants of the ABCD models,
so let us formally define it here. Suppose that our goal is to create a graph on n nodes with a
given degree distribution d := (di, i ∈ [n]), where d is a sequence of non-negative integers such that
m :=

∑
i∈[n] di is even. We define a random multi-graph CM(d) with a given degree sequence known

as the configuration model (sometimes called the pairing model), which was first introduced
by Bollobás [10]. (See [7, 36, 35] for related models and results.)

We start by labelling nodes as [n] and, for each i ∈ [n], endowing node i with di half-edges.
We then iteratively choose two unpaired half-edges uniformly at random (from the set of pairs of
remaining half-edges) and pair them together to form an edge. We iterate until all half-edges have
been paired. This process yields a graph Gn ∼ CM(d) on n nodes, where Gn is allowed self-loops
and multi-edges and thus Gn is a multi-graph.

2.3 Parameters of the ABCD+o2 Model

The following parameters govern the ABCD+o2 model.
Note that the ranges for parameters γ and β are suggestions chosen according to experimental

values commonly observed in complex networks [3, 29]. In fact, users may inject any degree sequence
and sequence of community sizes as inputs to the model.

2.4 Big Picture

The ABCD+o2 model generates a random graph on n nodes with degree sequence (di, i ∈ [n])
and community size sequence (si, i ∈ [L]) following truncated power laws with exponents γ and,
respectively, β. There are s0 outliers and n̂ = n−s0 non-outliers. The non-outliers span a family of
L communities (Cj , j ∈ [L]) with each non-outlier belonging to at least one such community. These
communities are generated, and will overlap (unless η = 1), according to a hidden d-dimensional
reference layer in such a way that non-outliers will belong to η communities, on average. The
non-outliers, with their respective degrees, populate (Cj , j ∈ [L]) randomly with the caveat that
high degree nodes cannot enter small communities unless absolutely necessary. Moreover, one may
insist on a correlation between the degree of a node and the number of communities it belongs to.
This correlation is controlled by the parameter ρ.

Parameter ξ ∈ [0, 1] dictates the amount of noise in the network. Each non-outlier node i has its
degree di split into two parts: community degree Yi and background degree Zi (and thus di = Yi+Zi).
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Parameter Range Description
n N Number of nodes
s0 N Number of outliers
η [1,∞) Average number of communities a non-outlier node is part of
d N Dimension of reference layer
ρ [−1, 1] Pearson correlation between the degree of nodes and

the number of communities they belong to
γ (2, 3) Power-law degree distribution with exponent γ
δ N Min degree as least δ
∆ N \ [δ − 1] Max degree at most ∆
β (1, 2) Power-law community size distribution with exponent β
s N \ [δ] Min community size at least s
S N \ [s− 1] Max community size at most S
ξ [0, 1] Level of noise

Table 1: Parameters of the ABCD+o2 model.

Using a random rounding technique, we choose the community degrees and background degrees so
that E [Yi] = (1 − ξ)di and E [Zi] = ξdi. Note that the neighbours of outliers are sampled from the
entire graph, ignoring the underlying community structure, meaning Yi = 0 and Zi = di if i is an
outlier.

Once nodes are assigned to communities and their degrees are split, the edges of each community
are then independently generated by the configuration model on the corresponding community
degree sequences, i.e., community C is generated by the configuration on the degree sequence (Yi, i ∈
C). Once communities are generated, the background graph is generated by the configuration model
on the degree sequence (Zi, i ∈ [n]). The final ABCD+o2 model, after an additional clean-up phase
to rewire self-loops and duplicate edges, is the union of the community graphs and the background
graph.

2.5 The ABCD+o2 Construction

The following 6-phase construction process generates the ABCD+o2 synthetic networks.

Phase 1: creating the degree distribution.

This phase is the same as in the original ABCD model and its generalization, ABCD+o. By
default, we sample di ∼ P (γ, δ,∆), independently for each i ∈ [n], then re-label the samples so
that d1 ≥ · · · ≥ dn. To ensure that

∑
i∈[n] di is even, we decrease d1 by 1 if necessary; we relabel as

needed to ensure that d1 ≥ · · · ≥ dn. Alternatively, the degree sequence can be given explicitly as
an input.
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Phase 2: assigning nodes as outliers.

This phase is also the same as in the ABCD+o model. As mentioned in the big picture summary,
the neighbours of outliers will be sampled from the entire graph, ignoring the underlying community
structure. It feels that this part is straightforward, but a problem might occur when ξ is close to
zero. In the extreme case, when ξ = 0, only the outliers have a non-zero degree in the background
graph, and for a simple background graph to exist all outliers must have degree at most s0 − 1. To
handle this issue, we restrict which degrees can be assigned to outliers in the following way. We have
that ℓ =

∑
i∈[n] min(1, ξdi) is a lower bound for the expected number of nodes with positive degree

in the background graph. Moreover, the s0 outliers will have a positive degree in the background
graph. Thus, we expect ℓ + (n− ℓ)(s0/n) nodes to have positive degree in the background graph,
assuming outliers are selected uniformly at random. Therefore, we insist that a node i of degree di
cannot become an outlier unless

di ≤ ℓ + s0 − ℓs0/n− 1. (2)

In practice (when the number of nodes n is large, the number of outliers s0 is relatively small, and
the level of noise ξ is not zero), there are plenty of nodes with a non-zero degree in the background
graph, and so there is no restriction needed for outliers. Nevertheless, we include the restriction
to ensure no issues during Phase 6; a subset of s0 nodes satisfying (2) are selected uniformly at
random to become outliers.

Phase 3: creating overlapping communities.

By the end of Phase 2, we have a degree sequence (di, i ∈ [n]) and an assignment of degrees to
outliers and non-outliers. It is important to keep in mind that, although communities are created
in this phase, we do not delegate degrees to these communities until Phase 4. We instead construct
a collection of elements which will be points in d-dimensional space, each assigned to some number
of communities. We will construct n̂ = n− s0 elements and they will belong to η ≥ 1 communities
on average. To be compatible with the original ABCD model, each element will belong to a single
primary community, and these primary memberships will partition the elements. Then, we will
grow each community by a factor of η, according to the geometric layer, so that the collective
size of all communities is equal (in expectation) to ηn̂ = η(n − s0). For each element v added to
community C during the growth process, C will be referred to as a secondary community of v.

Similar to the degree sequence, the community size sequence (sj , j ∈ [L]) follows a power-law
with parameter β, minimum value s, and maximum value S. Hence, the sequence of primary
communities (ŝj , j ∈ [L]) will need to follow a power-law with parameter β, minimum value ŝ =
⌈s/η⌉, and maximum value Ŝ = ⌊S/η⌋. In addition, we require

∑
j∈[L] ŝj = n̂. To satisfy both

requirements, we sample ŝj ∼ P
(
β, ŝ, Ŝ

)
independently until the sum of samples is at least n̂.

If, at this point, the sum is n̂ + a with a > 0 then we perform one of two actions. If the last
added sample has size at least a + ŝ, we reduce it by a. Otherwise (that is, if c < a + ŝ), we
delete this sample, select c − a old samples uniformly at random and increase each by 1. Lastly,
let L be the random variable counting the number of communities, and relabel (ŝj , j ∈ [L]) so that
ŝ1 ≥ · · · ≥ ŝL. Similar to the degree sequence, the sequence of community sizes can instead be
given explicitly as an input. Each primary community of size ŝj will grow to size sj = ⌊ηŝj⌉ where,
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for a ∈ Z and b ∈ [0, 1), the random variable ⌊a + b⌉ is defined as

⌊a + b⌉ :=

{
a with probability 1 − b, and
a + 1 with probability b .

Note that E [⌊a + b⌉] = a(1 − b) + (a + 1)b = a + b. As a result,

E

∑
j∈[L]

sj

 =
∑
j∈[L]

E [sj ] = η
∑
j∈[L]

ŝj = ηn̂ = η(n− s0),

as desired.
We now create our d-dimensional reference layer that will guide the process of assigning elements

to communities. One may think of this reference layer as various latent properties of objects
associated with nodes (such as people’s age, education, geographic location, beliefs, etc.) shaping
communities (such as communities in social media). In this reference layer, each of the n̂ elements
is generated as a vector in Rd, sampled independently and uniformly at random from the ball of
radius 1 centred at the origin 0 = (0, 0, . . . , 0). Let R be the set of n̂ elements and initalize R1 = R.
We assign elements to their primary communities, dealing with one primary community at a time.
To form primary community Ĉj , we first select the element in Rj furthest from 0. This element,
together with its ŝj − 1 nearest neighbours in Rj , form the elements of Ĉj . We then remove these
elements from Rj to construct Rj+1 and repeat the process until all elements have been assigned
a primary community. At the end of the process, each element belongs to exactly one primary
community and the collection (Ĉj , j ∈ [L]) partitions the elements.

We now grow each primary community Ĉj of size ŝj to form the full community Cj of size sj .
Initially, we set Cj = Ĉj for all j ∈ [L]. Each community will grow independently, meaning we can
grow them in any order (or in parallel). As before, let R be the set of n̂ elements. For primary
community Ĉj , let xj ∈ Rd be the center of mass (mean) of Ĉj . We investigate elements of R in
order of increasing distance from xj . During the investigation, if an element v ∈ R is not a member
of Ĉj , then we assign Cj as a secondary community of v. We stop investigating once the number
of members in Cj (both primary and secondary) is sj . Write ηv for the number of communities
containing element v ∈ R.

At the end of the process, each element is assigned to exactly one primary community and some
(possibly zero) secondary communities. In Figure 1 we show an example of the reference layer on
n̂ = 150 elements and three communities. Each of the three primary communities in this example
consists of 50 elements before growing by a factor of η = 2.0, attracting an additional 50 elements
as its secondary members. From a computational perspective, to ensure that finding primary and
secondary communities is efficient, we use k-d trees (short for k-dimensional tree) to perform spatial
lookups of the sampled points [8].
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Figure 1: Example of the reference layer (in d = 2 dimension) on n̂ = 150 elements consisting
of 3 overlapping communities with equal sizes and η = 2.0.

Phase 4: assigning degrees to nodes.

We now have a degree sequence (di, i ∈ [n]), an assignment of degrees to outliers and non-outliers,
and a collection of overlapping communities containing elements, each element belonging to one
primary community and some number of secondary communities. Let d̂n̂ be the subsequence (of
length n̂) of (di, i ∈ [n]) corresponding to the non-outliers. We are now ready to assign degrees in
d̂n̂ to the set of elements R which will give us the nodes of the graph. Each element v ∈ R, once
paired with node i of degree di, is expected to have ξdi neighbours in the background graph and
the remaining (1 − ξ)di neighbours split evenly between its ηv communities. Note that, although
each element has a distinct primary community, its degree will be split with no preference given to
said primary community.

Similar to the potential problem with outliers, we want to avoid large degrees being assigned to
small communities. If degree di is paired with element v then, for each community Cj containing
v, sj must be at least (1 − ξ)d/ηv + 1 to accommodate for the neighbours of v. This is in fact a
lower bound as additional neighbours of v coming from the background graph might end up in Cj

as well. To make additional room in the community graph, a small correction is introduced in both
ABCD and ABCD+o guided by the parameter

ϕ = 1 −
∑
k∈[L]

(
ŝk
n̂

)2 n̂ξ

n̂ξ + s0
.

Typically, ϕ is very close to 1 and so this correction tends to be negligible in both theory and in
practice. For consistency, we keep ϕ in the ABCD+o2 model.
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Before detailing the pairing process, let us explain how we deal with the correlation parameter
ρ. Recall that our goal is to pair the n̂ non-outlier degrees with the n̂ elements such that the Pearson
correlation between the degree and number of communities is approximately ρ. To this end, we
perform multiple pairing attempts, with each attempt aiming to achieve a closer approximate the
desired correlation. In each attempt, we fix a parameter α ∈ R with negative values of α producing
negative correlations and positive values producing positive correlations. The parameter α is tuned
to achieve a correlation close to the desired value ρ. This is achieved with a binary search, starting
with αmin = −60 and αmax = 60 and stopping once the desired precision is achieved or after the
obtained correlation level stops improving. In some cases it is impossible to reach the correlation
level required by the user, in which case the closest possible correlation is produced.

In each pairing attempt with parameter α ∈ R, we iteratively assign degrees of non-outliers
to elements as follows. Recall that the degree sequence d̂n̂ is sorted with d̂1 being the maximum
degree. Starting with i = 1, let Ri be the collection of unassigned elements at step i. At step i,
choose element v with probability proportional to ηαv from the set of elements in Ri satisfying

d̂i ≤
ηv

1 − ξϕ
· min

{
|Ck| − 1 : j ∈ Ck

}
, (3)

where recall that ηv is the number of communities element v belongs to. The chosen element v
gets paired with the ith degree in the subsequence d̂n̂, namely, the degree d̂i. If the set defined
by the condition (3) is empty, then we sample from the elements in Ri for which the value of
(ηv/(1 − ξϕ)) · min{|Ck| − 1 : j ∈ Ck} maximal.

Once the pairing is complete, we relabel as follows. The nodes are labelled as [n], with node
i having degree di. The communities (Cj , j ∈ L) now contain non-outlier nodes corresponding to
degree/element pairing. If di was assigned a non-outlier, its corresponding node i belongs to some
number ηi of communities, one of which is its primary community. If di was assigned to an outlier,
its corresponding node i is assigned to an auxiliary “community” labelled C0; the set C0 is merely
a label for the outliers and such an outlier i has ηi = 0.

Phase 5: creating edges.

At this point there are n nodes with labels from [n]; n̂ = n − s0 of them are non-outliers and
the remaining ones are outliers. There is also a family of overlapping communities with each non-
outlier node i ∈ [n] belonging to ηi ≥ 1 communities. Finally, each node i ∈ [n] (either outlier
or non-outlier) is assigned a degree di which we interpret as a set of di unpaired half-edges. The
remaining 2 steps construct the edges.

For each non-outlier i ∈ [n] we split the di half-edges of i into community half-edges and
background half-edges. To this end, define Yi := ⌊(1 − ξ)di⌉ and Zi := di − Yi (note that Yi and
Zi are random variables with E [Yi] = (1 − ξ)di and E [Zi] = ξdi) and, for all non-outliers i ∈ [n],
split the di half-edges of i into Yi community half-edges and Zi background half-edges. Community
half-edges are further split into the ηi communities the non-outlier node i belongs to, as evenly as
possible. Specifically, for the communities containing node i, Yi − ηi⌊Yi/ηi⌋ communities (chosen
randomly) each receive ⌊Yi/ηi⌋ + 1 half-edges and the remaining communities each receive ⌊Yi/ηi⌋
half-edges. On the other hand, if i ∈ [n] is an outlier then we set Zi = di.

Once the assignment of degrees is complete, for each j ∈ [L], we independently construct the
community graph Gn,j as per the configuration model on node set Cj and the corresponding degree
sequence. In the event that the sum of degrees in a community is odd, we pick a maximum degree

9



node i in said community and decrease its community degree by one while increasing its background
graph degree by one. Finally, construct the background graph Gn,0 as per the configuration model
on node set [n] and degree sequence (Zi, i ∈ [n]). Let Gn =

⋃
0≤j≤nGn,j be the union of all graphs

generated in this phase.

Phase 6: rewiring self-loops and multi-edges.

Note that, although we are calling Gn,0, Gn,1, . . . , Gn,L graphs, they are in fact multi-graphs at the
end of phase 5. To ensure that Gn is simple, we perform a series of rewirings in Gn. A rewiring
takes two edges as input, splits them into four half-edges, and creates two new edges distinct from
the input. We first rewire each community graph Gn,j (j ∈ [L]), and the background graph Gn,0,
independently as follows.

1. For each edge e ∈ E(Gn,j) that is a loop, we add e to a recycle list that is assigned to Gn,j .
Similarly, if e ∈ E(Gn,j) contributes to a multi-edge, we put all but one copies of this edge
to the recycle list.

2. We shuffle the recycle list and, for each edge e in the list, we choose another edge e′ uniformly
from E(Gn,j) \ {e} (not necessarily in the list) and attempt to rewire these two edges. We
save the result only if the rewiring does not lead to any further self-loops or multi-edges,
otherwise we give up. In either case, we then move to the next edge in the recycle list.

3. After we attempt to rewire every edge in the recycle list, we check to see if the new recycle
list is smaller. If yes, we repeat step 2 with the new list. If no, we give up and move all of
the “bad” edges from the community graph to a collective global recycle list.

As a result, after ignoring edges in the global recycle list, all community graphs are simple and
the background graph is simple. However, as is the case in the original ABCD model, an edge in
the background graph can form a multi-edge with an edge in a community graph. Another problem
that might occur, specific to ABCD+o2 model, is that an edge from one community can form
a multi-edge with an edge from a different but overlapping community. All of these problematic
edges are added to the global recycle list. We merge all community graphs with the background
graph. Finally, the global recycle list is transformed into a list of half-edges and new edges are
created from it. We follow the same procedure as for the community graphs. However, we do not
“give up” recycling and follow the process until all required edges are created. As the background
graph is sparse, this final rewiring is very fast in practice.

3 Properties of the ABCD+o2 Model

In this section, we present experiments highlighting the properties of the ABCD+o2 model. We
begin by investigating the communities generated by the reference layer as described in Section 3.1.
We then continue with additional features of the model in Section 3.2. We are mainly interested
in comparing the model’s properties with properties of real-world networks. Thus, for the model
parameters, we use values derived from several networks that have known overlapping communities.
The networks were presented in [37], and are available on the Stanford Network Analysis Project
(SNAP) website4.

4https://snap.stanford.edu/data/index.html#communities
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Parameter Description DBLP Amazon YouTube
n Number of nodes 317,080 334,863 52,675
s0 Number of outliers 56,082 17,669 0
η Average number of communities a non-outlier

node is part of
2.76 7.16 2.45

ρ Pearson correlation between the degree of nodes
and the number of communities they belong to

0.76 0.22 0.37

γ Power-law degree distribution with exponent γ 2.30 3.04 1.87
δ Min degree at least δ 5 5 5
∆ Max degree at most ∆ 343 549 1,928
β Power-law community size distribution with ex-

ponent γ
1.88 2.03 2.13

s Min community size at least s 10 10 10
S Max community size at most S 7,556 53,551 3,001
ξ Level of noise 0.11 0.11 0.59

Table 2: The parameters used for generating ABCD+o2 graphs based on the DBLP, Ama-
zon, and YouTube datasets.

DBLP: a network where nodes are authors and an edge exists between two authors if they published
a paper together. The ground-truth communities are defined by the publication venues of the
journals in which the authors published.

Amazon: a network where nodes are products and an edge exists between two products if they
are frequently co-purchased. The ground-truth communities are defined by product categories.

YouTube: a network where nodes are YouTube channels and an edge exists between two channels
if they are friends on the platform. The ground-truth communities are user-generated social groups.
In the full network over 95% of nodes are outliers and the level of noise ξ is 0.96. We consider the
subgraph induced by the non-outlier nodes to avoid such extreme values.

For each network, all parameters other than δ and s are measured directly from the data. We
set δ = 5 to avoid cases where nodes have no neighbours in their own community, and insist on
s ≥ 10. The power-law exponents γ and β are fit using maximum-likelihood estimation described
in [12] and implemented in the Python package powerlaw5[1]. In this fitting process, we set the
minimum degree as δ = 5 and the minimum community size as s = 10 for consistency. The level of
noise ξ is computed directly from the graphs as the fraction |Eb|/|E| where Eb is the set of edges
where the incident nodes share no communities. The parameters for each network are shown in
Table 2.

Additionally, some of the experiments are affected by the dimension d of the hidden reference
layer. In such cases, we compare dimensions 2, 8, and 64.

5https://github.com/jeffalstott/powerlaw
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3.1 Effects of the Reference Layer

The new and novel feature of the ABCD+o2 model is the hidden reference layer used to generate
overlapping communities. Here, we analyze the effects of this reference layer on the community
overlap sizes. For comparison, we consider the CKB model [11] following a description from [31].
The CKB model is an application of the random bipartite community affiliation graph proposed for
overlapping LFR [26] that uses a power-law distribution for the number of communities per node.
Let us briefly summarize this graph construction process. The community affiliation graph is a bi-
partite graph where one part consists of nodes and the other consists of communities. As input, the
CKB model requires the number of nodes n, a truncated power-law distribution P (Ω, xmin, xmax)
for the number of communities per node, and another truncated power-law distribution P (β, s, S)
for the community sizes. The number of communities is set to⌊

n · E[P (Ω, xmin, xmax)]

E[P (β, s, S)]

⌋
.

First, each node in the bipartite graph is assigned a number of half-edges sampled from P (Ω, xmin, xmax),
and likewise each community is assigned a number of half-edges sampled from P (β, s, S). A small
adjustment is made to ensure that the number of half-edges in both parts is equal. Lastly, the
nodes are matched with the communities based on the bipartite configuration model. Thus, each
community is populated with nodes, and each node is assigned to some number of communities.

Community sizes.

In the first experiment (see Figure 2), we compare the distributions of community sizes. Of course,
since both ABCD+o2 and CKB sample community sizes directly from the specified distribution,
it is unsurprising that the empirical distributions are near-perfect fits. Thus, this first experiment
merely acts as a sanity check ensuring that the ABCD+o2 and CKB models generate community
sizes correctly. Moreover, this experiment verifies that the distributions coming from the real
networks are indeed power-law.
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Figure 2: Distribution of community sizes for the three real-world networks and their syn-
thetic counterparts.

Number of communities per node.

Results are presented in Figure 3. In contrast with the previous experiment, there is less agreement
between the two models and the real distributions. In the case of the YouTube and DBLP networks,
the power-law distribution generated by the CKB model is a good fit for the empirical distribution,
whereas the Amazon distribution does not appear to be power-law. In contrast, the ABCD+o2

model is able to produce a distribution similar to each of the three networks with a properly
tuned dimension parameter d; for the Amazon graph a low dimensional reference layer captures the
behaviour well, and for the DBLP and YouTube graphs a high dimensional reference layer captures
the behaviour well. The flexibility and realistic distributions are even more encouraging when we
recall that the distribution is not given to the ABCD+o2model, and is instead a natural feature
of the hidden reference layer.

13



Figure 3: Distribution of the number of communities per node.

Community intersection sizes.

Results are presented in Figure 4. We examine the size of the overlaps produced by each model.
Neither the ABCD+o2 model nor the CKB model specifies a particular distribution, but we
can see the ABCD+o2 model, with a well-tuned dimension parameter, is able to create a similar
distribution to the real graph. In contrast, the CKB model does not fit the Amazon and YouTube
graphs well. Specifically, the CKB model produces too many small intersections and, moreover,
the largest intersection is several orders of magnitude too small. We consider this experiment strong
evidence for using a reference layer as the default option for generating overlapping communities.
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Figure 4: Distribution of the size of overlaps.

3.2 Additional properties of the model.

We now turn to properties of the ABCD+o2 model beyond those governed by the hidden reference
layer.
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Graph Empirical d = 2 d = 8 d = 64
DBLP 0.76 0.43 0.56 0.68

Amazon 0.22 0.20 0.19 0.20
YouTube 0.37 0.37 0.37 0.38

Table 3: Measured ρ in both the real networks and the corresponding ABCD+o2 graphs.

Degree vs. number of communities.

The ABCD+o2 model attempts to produce a correlation ρ between the degree of a node and the
number of communities it belongs to. In Table 3 we report the desired correlation ρ for each of the
networks, as well as the achieved correlation for the ABCD+o2 graphs. Note that the extreme
positive correlation found in the DBLP network cannot be matched by the model, although it can
still achieve a strong positive correlation. The maximum achievable correlation increases with the
dimension as there are more nodes belonging to a large number of communities (see Figure 3).

Density of intersections

One consequence of forcing nodes of large degree into community intersections is that those inter-
sections will be denser than the individual communities. We show this phenomenon in Figure 5 by
comparing the community and intersection densities for various ρ. Note that, given communities
Cj and Ck with sj ≫ sk, the density of Ck is nearly always larger than that of Cj since both
community graphs are sparse (at most a 1 − ξ fraction of each node’s degree is delegated to one
of its communities). Figures for the other graphs and dimensions can be found in Appendix A.
For computational reasons, we only consider overlaps of size at least 25, and to ensure we are not
simply measuring the density of the smaller community, the size of the overlap must be at most
half the size of the smaller community.

Figure 5: Community overlap densities compared to individual community densities for
various values of ρ. The line corresponds to the median, and the shaded region is the 25th to
75th quantile. We only consider pairs of communities where the overlap is at least 50 nodes
and the size of the overlap is less than half the size of the smaller community.
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Having community intersections that are denser than the respective communities is a desirable
property and one of our main motivators for introducing the parameter ρ to the ABCD+o2

model. In [38] it was found that, in real networks, community intersections can be significantly
denser than the individual communities. In Figure 6 we confirm that the DBLP, Amazon, and
YouTube networks all exhibit this phenomenon. Moreover, we compare these densities with those
coming from the corresponding ABCD+o2 graphs. Aside from confirming that the model mimics
the behaviour of real networks, we also find that the dimension of the reference layer affects the
density of both the communities and the intersections. Moreover, we see that a low-dimensional
reference layer yields a better approximation of the real data in the case of Amazon, whereas a
high-dimensional reference layer yields a better approximation in the cases of DBLP and YouTube.
Note that this high-dimensional vs. low-dimensional discrepancy is consistent with the experiment
presented in Figure 3.

Figure 6: Density of the Overlap compared to the density of the communities. We restrict to
overlaps of size at least 10 due to the discrete and unpredictable nature of small communities.

Internal edge fraction

Finally, we analyze how strongly nodes are connected to their communities. There are many
measures for community association strength, some of which we recently analyzed in [4]. For the
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sake of simplicity, the measure we will use here is the internal edge fraction IEF(v, C), defined as

IEF(v, C) =
|{{u, v} ∈ E : u ∈ C}|

deg(v)
.

For a graph G, a collection of communities {Ci, i ∈ [k]}, and a node v, let C
(v)
1 , . . . , C

(v)
k be an

ordering of the communities such that

IEF(v, C
(v)
1 ) ≥ IEF(v, C

(v)
2 ) · · · ≥ IEF(v, C

(v)
k ) .

Then, if v is a member of ℓ communities, we would expect a jump in value between IEF(v, C
(v)
ℓ )

and IEF(v, C
(v)
ℓ+1). In Figure 7 we show the range of the top five internal edge fractions, sorted in

descending order, on DBLP (left) and a generated ABCD+o2 graph (right), binned by the number
of communities the node v is in. As predicted, a node in ℓ communities tends to have ℓ relatively
large internal edge fractions. Furthermore, despite the ABCD+o2 model splitting the community
degree of a node v evenly among its ℓ communities, it is possible for v to have a higher internal
edge fraction into community C if either some of v’s edges lies in an intersection containing C or
some of v’s background edges land in C. Thus, we see a pattern in ABCD+o2 graphs where there
are ℓ large, but not equal, internal edge fraction values. This feature is also present in the DBLP
graph, the other real graphs, and the other ABCD+o2 graphs (see Appendix B for a complete
collection of figures).

Figure 7: Five largest internal edge fractions, sorted in descending order, grouped by the
number of communities.

4 Benchmarking Community Detection Algorithms

The main purpose of having synthetic models with ground-truth community structure is to test,
tune, and benchmark community detection algorithms. To showcase ABCD+o2 in this light, we
use the model to evaluate the performance of four community detection algorithms. The algorithms
are as follows.

18



Leiden [34]: a greedy algorithm that attempts to optimize the modularity function. Note that
this algorithm returns a partition, and we use it merely as a baseline to compare with algorithms
that attempt to find overlapping communities.

Edge Clustering [25]: an edge-partitioning algorithm that translates to overlapping clusters of
nodes. Pairs of edges are measured based on similarity of neighbourhoods, and these similarity
measures dictate the order in which edge-communities merge. As edge-communities merge, the
modularity is tracked on the line-graph, and the maximum modularity attained yields the edge-
communities, which in turn yields overlapping node-communities.

Ego-Split [14]: a method which finds overlapping clusters in a graph G by applying a partitioning
algorithm such as Leiden to an auxiliary graph G′ and mapping the resulting partition onto G.
The auxiliary graph G′ is constructed from G by creating multiple copies, or “egos”, of each node
based on its neighbourhood.

Ego-Split+IEF [4]: the same algorithm as Ego-Split, but with a post-processing step that re-
assigns nodes to communities based on the IEF measure.

This is by no means an exhaustive list of community detection algorithms. Moreover, we use our
own straightforward Python implementations of the above algorithms which may not be optimal.
We wish only to showcase the usefulness of ABCD+o2 in comparing various algorithms related
to the community structure of graphs.

In the first experiment, we compare the accuracy of each algorithm with respect to the ground-
truth communities. The measure we use to determine accuracy is the overlapping Normalized
Mutual Information (oNMI) measure [28]. For this experiment we fix the number of nodes n =
5, 000, the minimum degree δ = 5, the maximum degree ∆ = 100, the minimum community
size s = 50, and the maximum community size S = 500. The parameters of ABCD+o2 with
the most influence on the quality of detection algorithms are ξ (the level of noise) and η (the
average number of communities a non-outlier is part of), and we consider every combination of
ξ ∈ {0.1, 0.2, . . . , 0.6} and η ∈ {1, 1.25, . . . , 2.5}. We fix the remaining parameters according to the
YouTube graph, namely, γ = 1.87, β = 2.13, and ρ = 0.37.

Figure 8 summarizes the results of the experiment. We see that the Leiden algorithm performs
the best when η = 1, whereas for η > 1 the Ego-Split+IEF algorithm performs better. Given that
the Leiden algorithm finds a partition of the nodes, it is unsurprising that it quickly depreciates in
quality as η increases. We also see a general trend of all algorithms performing worse as the graph
gets noisier, either by increasing ξ or η. This trend is highlighted separately in Figure 9 where we
consider only results with η = 1.25 (left) or ξ = 0.1 (right). From numerous and varying tests, we
have found that, in general, increasing η is far more damming to community detection algorithms
than increasing ξ.
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Figure 8: Comparing oNMI of four clustering algorithms on ABCD+o2 graphs with 5,000
nodes.

Figure 9: Comparing oNMI of four clustering algorithms on ABCD+o2 graphs with 5,000
nodes. In the left plot, we fix η = 1.25 and vary ξ. In the right plot, we fix ξ = 0.1 and vary
η.
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Another important aspect of clustering algorithms is their performance when running on large
graphs. In our second experiment, we fix η = 1.25 and ξ = 0.1 and we vary the number of nodes
from n = 1, 000 to n = 15, 000; the parameters other than n, η and ξ are the same as in the previous
experiment. The results are presented in Figure 10. We see that all algorithms trying to recover
overlapping communities are significantly slower than the simple Leiden partitioning algorithm.
We also see that adding the IEF-based post-processing stage to the Ego-Splitting algorithm is
negligible in terms of performance. Together with the experiment presented in Figure 8, this
negligible slowdown suggests that including a post-processing stage to an overlapping community
detection algorithm yields a worthwhile improvement.

Figure 10: The performance of four clustering algorithms on ABCD+o2 graphs with 1,000
to 15,000 nodes.

5 Conclusion

We presented ABCD+o2: a generalization of the ABCD+o model that allows for overlapping
communities. We proposed a novel mechanism for producing overlapping communities, a hidden
reference layer, that requires two new parameters: the average number of communities per node
η, and the dimension for the reference layer d. Furthermore, we introduced a parameter ρ that
controls the correlation between degree and number of communities for non-outlier nodes. In a
series of experiments, we compared the properties of the ABCD+o2 model to those of real graphs
using parameters measured from the real graph. We found that the hidden reference layer can
accurately create a structure of overlapping communities similar to those in the real graph. We
also found that the model can successfully create an empirical ρ close to the requested value (except
for extreme cases). Finally, we showcased the model’s ability to benchmark community detection
algorithms and compare their quality.
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This paper acts as a first step in our study of the ABCD+o2 model and gives way to several
open problems for future research. First, a theoretical description of the distribution of the number
of communities per node and the effect of the dimension of the reference layer are clear goals. A
similar direction is understanding the effects of modifying the geometry of the reference layer. For
example, one could estimate the reference space of a network from auxiliary data and use it for
a corresponding parameter-fitted ABCD+o2 model. Using this fitting procedure, can we achieve
additional structural similarities to real networks?

We are also interested in results for the ABCD+o2 model that generalize results of the ABCD
and ABCD+o models. In [20] the modularity was studied and it was found that the maximum
modularity came from the ground truth communities until a certain level of noise, after which a
higher modularity could be attained. A similar behaviour should be seen with ABCD+o2 and its
overlap parameter η, although we would need to select an appropriate generalization of modularity
for overlapping sets, such as the generalization proposed in [13]. Additionally, in [6] it was shown
that ABCD graphs exhibit self-similar behaviour, namely, the degree distributions of communities
are asymptotically the same as the degree distribution of the whole graph (up to an appropriate
normalization). We suspect that this self-similar property persists in ABCD+o2.
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detection with outliers (ABCD+o). Applied Network Science, 8(1):25, 2023. doi:10.1007/

s41109-023-00552-9.
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[32] M Ángeles Serrano, Dmitri Krioukov, and Marián Boguná. Self-similarity of complex net-
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A Density of Intersection Figures

Figure 11: The density of overlaps compared to the empirical ρ on YouTube-like ABCD+o2

graphs.

Figure 12: The density of overlaps compared to the empirical ρ on DBLP-like ABCD+o2

graphs.
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Figure 13: The density of overlaps compared to the empirical ρ on Amazon-like ABCD+o2

graphs.
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B Internal Edge Fraction Figures

Figure 14: The top 5 IEF values in decreasing order, grouped by the number of communities
the node belongs to, for DBLP and DBLP-like ABCD+o2graphs.
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Figure 15: The top 5 IEF values in decreasing order, grouped by the number of communities
the node belongs to, for Amazon and Amazon-like ABCD+o2graphs.
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Figure 16: The top 5 IEF values in decreasing order, grouped by the number of communities
the node belongs to, for YouTube and YouTube-like ABCD+o2graphs.
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