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The semi-random hypergraph process is a natural generalisation of the
semi-random graph process, which can be thought of as a one player game.
For fixed r < s, starting with an empty hypergraph on n vertices, in each
round a set of r vertices U is presented to the player independently and
uniformly at random. The player then selects a set of s — r vertices V
and adds the hyperedge U UV to the s-uniform hypergraph. For a fixed
(monotone) increasing graph property, the player’s objective is to force the
graph to satisfy this property with high probability in as few rounds as
possible.

We focus on the case where the player’s objective is to construct a subgraph
isomorphic to an arbitrary, fixed hypergraph H. In the case r = 1 the
threshold for the number of rounds required was already known in terms of
the degeneracy of H. In the case 2 < r < s, we give upper and lower bounds
on this threshold for general H, and find further improved upper bounds for
cliques in particular. We identify cases where the upper and lower bounds
match. We also demonstrate that the lower bounds are not always tight by
finding exact thresholds for various paths and cycles.

1 Introduction

In this paper, we consider a hypergraph generalization of the semi-random graph
process suggested by Peleg Michaeli (see [2] and [3, Acknowledgements]) and studied
recently in [1-3,7-12,16] that can be viewed as a “one player game”. Such a generaliza-
tion was first proposed in [1] and also studied in [16].
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The semi-random process on hypergraphs, (GET’S))t, is defined as follows. Fix integers

r > 1 to be the number of randomly selected vertices per step, and s > r to be the
uniformity of the hypergraph. The process starts from GST’S), the empty hypergraph
on the vertex set [n] := {1,2,...,n}, where n > s (throughout, we often suppress the
dependence on n). In each step t > 1, a set U, of r vertices is chosen uniformly at random
from [n]. Then, the player replies by selecting a set of s — r vertices V;, and ultimately
the edge e; := Uy UV, is added to Ggﬁ) to form Ggr’s). In order for the process to be
well defined, we allow parallel edges. For instance, they are necessary if an r-element
set U has been chosen more than (Z::) times.

Note that the resulting hypergraph is s-uniform, or shortly an s-graph. If »r =1 and
s = 2, then this is the semi-random graph process. Further, if we allowed the degenerate
case r = s (that is, the player chooses V; = () for all t), then GET’T) = (Uy,...,U;) would
be just a uniform random r-graph process with ¢ edges selected with repetitions.

To avoid ambiguity in using the notions of uniform hypergraph and uniform distribu-
tions, we will use the synonym equiprobable for the latter.

Let us mention briefly some other variants of the semi-random process. In [15], sharp
thresholds were studied for a more general class of processes that includes the semi-
random process. In [4], a random spanning tree of K, is presented, and the player keeps
one of the edges. In [13], vertices are presented by the process in a random permutation.
In [17], the process presents k random vertices, and to create an edge the player selects
one of them, and freely chooses a second vertex.

The goal of the player is to build an s-graph Gir’s) satisfying a given monotone property
P as quickly as possible. To make it more precise we define the notions of a strategy
and a threshold.

A strategy S of the player consists, for each n > s, of a sequence of functions (f;)22,,
where for each t € N, V; := fi(U,V1,..., U1, Vi1, Uy) € (S[f]r) Thus, the player’s
response, V4, is fully determined by Uy, Vi, ..., U1, Vi_1, U, that is, by the history of
the process up until step t — 1, and by the random set U; chosen at step t. Given
t == t(n), let Ggr’s) [S] be the sequence of semi-random (multi)-s-graphs obtained by

following strategy S for ¢ rounds; we shorten Ggr’s) [S] to GET’S) when clear.

Throughout the paper we write a,, > b, if b, = o(a,), and say that an event holds

asymptotically almost surely (a.a.s.) if it holds with probability tending to one as n — oc.

For a monotonically increasing property P of s-graphs, we say that a function 7‘7(;) (n) is

a threshold for P if the following two conditions hold:

(a) there exists a strategy S such that if ¢ :=t(n) > 7'7(;) (n), then a.a.s. G’ET’S) eP,
(b) for every strategy S, if t :=t(n) = 0(7'7(37")(71)), then a.a.s. GY’S) ZP.

Observe that 77(;) (n) > T7(3T_1)(7’L) for all » > 2. Indeed, one can couple the two games
)

by always including one of the r random vertices chosen in the Ggr’s

s — (r — 1) vertices selected by the player in the Ggr_l’s) process.

process among the



In [16] it was shown for any s > 2 and r € {1,2} that for both, P being the property
of having a perfect matching and P being the property of having a loose Hamilton cycle,

7'7(;) (n) = n (in fact, the results are even sharper).

In this paper we focus on the problem of constructing a sub-s-graph of fo’s) iso-

morphic to an arbitrary, fized s-graph H. Let Py be the property that H C Ggr’s).
We abbreviate 77(32(11) to 7("(H,n) and often suppress the dependence on n, writing
simply 7(") (H).

It was proved by the authors and T. Marbach in [1] that for » = 1, that is, when
just a single vertex is selected randomly at each step, the threshold T(l)(H ) can be
determined fully in terms of the degeneracy of H. For a given d € N, a hypergraph
H is d-degenerate if every sub-hypergraph H' C H has minimum degree §(H') < d.
The degeneracy d(H) of H is the smallest value of d for which H is d-degenerate.
Equivalently, d(H) = maxy/cy 6(H'), where §(H) is the minimum vertex degree of a
hypergraph H.

Theorem 1 (Behague, Marbach, Pratat, Rucinski [1]). Let s > 2 and H be a fized
s-uniform hypergraph of degeneracy d € N. Then, T(l)(H) =nl-l/d,

Note that, in particular, for s = 2 and any tree T we have d(T) = 1, and so 7()(T") = 1.
In fact, in this case one can easily show a stronger statement: there exists a strategy

S such that a.a.s. T C G£1’2) [S] for t = |E(T)], as a.a.s. the first ¢ random vertices

U, ..., U, selected in the semi-random process G§1’2), are all distinct from each other,
as well as, from a fixed vertex ug € [n]. On the other hand, for any (graph) cycle C,
d(C) = 2, yielding 7™M (C) = \/n by Theorem 1.

A similar contrast takes place for s > 2. A tight cycle Cf,f) is an s-graph with m
vertices and m edges, whose vertices can be ordered cyclically so that the edges are
formed by the consecutive s-element segments in this ordering. (E.g., the set of triples
123,234, 345,456, 567,671,712 forms a copy of Cég) on [7].) A tight path Pr(,f) is an s-
graph with £ = m + s — 1 vertices and m edges, whose vertices can be ordered linearly
so that the edges are formed by the consecutive s-element segments in this ordering.
Alternatively, it can be obtained from C’f,fzrs_l by removing s — 1 consecutive edges,
while keeping all vertices intact. (E.g., the set of triples 123,234, 345, 456, 567 forms a

copy of P5(3) on [7].) We have d(PT(nS)) =1, so T(l)(Pr(rf)) = 1, while d(CT(rf)) = s and so
7'(1)(01(5)) = n!~1/$ (see Appendix, Claim 20).

2 New results

Our understanding of semi-hypergraph processes with r > 2 is far from complete. For
property Ppr, we can only prove a general lower bound, show its optimality for certain
classes of hypergraphs and its suboptimality for others. We defer the proofs of these
results to later sections. Throughout, for a hypergraph H, we will be using notation
vy =|V(H)| and eg = |E(H)].



2.1 Lower bound

Our general lower bound on T(’”)(H ), proved in Section 3, depends only on the number
of vertices and edges of H so, in a sense, it is also quite generic. Surprisingly, it provides
the right answer for a broad class of s-graphs.

Theorem 2. Let k> s>r > 1, and let H be an s-graph with k vertices and m edges.
Then, for every strateqy S, if t = o (nr_(k_5+7")/m), then a.a.s. Gﬁ’"’s) & Py. It follows

that
T(r) (H) > nr—(k—s—i—r)/m'

Example 1. Let H be a 3-graph consisting of 5 vertices a,b,c,d,e and 5 edges made
by all triples from {a,b,c,d} plus {c,d,e} (see Figure 1). Then, with r =2, s = 3, and
k=m=25, we get T (H) > n%>.

Figure 1: The 3-graph H described in Example 1.

Of course, it might happen that the main “bottleneck” is not the original hypergraph
H as a whole, but one of its sub-hypergraphs H' C H. Trivially, creating H requires
creating H' in the first place, so we immediately obtain the following corollary. For
2 <r < s and an s-graph H with at least s vertices, define

(r) __ 1 (r) - (g
JH) Vg — S+ and  p(H) = H’C?as{H/>sf (-

Corollary 3. Let 1 <r < s and H be an s-graph with at least s vertices. Then,
7 (H) > pr=1/p ),

If " (H) = f)(H), then we call such an H r-balanced. This is, for instance, the
case for the tight cycle C?, (see Appendix, Claim 20). For r-balanced H, the bounds in
Theorem 2 and Corollary 3 coincide. However, for non-r-balanced H Corollary 3 may
give a significantly better lower bound on (") (H).

Example 2. Let H be as in Exzample 1 (see Figure 1) and H’ be the clique Kf) on
vertices a,b,c,d. Then, H C H and fAH)) =4/3 > 5/4 = fQ(H). It is easy to see
that n® (H) = 4/3 and, in fact, 7?) (H) > n?=3/* = pd/4



Note that, by considering a single edge as H’, we always have ug) > 1/r, and so the
lower bound in Corollary 3 cannot be less than 1. However, for most hypergraphs H we
have (") (H) > 1/r, giving us a nontrivial lower bound on 7(")(H). Note also that in the
special case when r = s > 2, we are looking at the random s-graph (with repeated edges)
and the bound in Corollary 3 corresponds to the threshold for appearance of a copy of
a given s-graph H (see [14, Chapter 3| for the case r = s = 2 or [6] for non-uniform
hypergraphs, though neither model allows edge repetitions, as we do here).

Finally, let us mention that we included the case r = 1, already covered by Theorem 1,
to emphasize the potential weakness of this general lower bound. Indeed, note that
pM(H) > d(H) unless u™"(H) = d(H) = 1, so in most cases the bound in Corollary 3 is
weaker than the optimal bound in Theorem 1. However, for some s-graphs it is optimal.
For example, when H is the tight path PT(,f), we have p)(H) = d(H) = 1 and Theorem 1
yields 7()(H) = 1 (see the comment after Theorem 1 above).

2.2 Upper bounds which match lower bound

We now identify a class of s-graphs H for which we are able to establish an upper bound
on 7("(H) which matches the lower bound in Theorem 2.

For integers 1 < ¢ < s < k, a k-vertex s-graph S is called a c-star if each of its edges
contains a fixed vertex set C of size |C| = c¢. The set C is then called the center of the
star and the (s — ¢)-graph S} := {e\ C': e € S} is the flower of the star S. A c-star is
full when it has all (kjg) edges, that is, if its flower is the complete (s — c¢)-graph K ,(j:cc).

S
A full star will be denoted by S\,

An (s, c)-starplus with \; rays and excess \g is defined as an s-graph obtained
from a c-star S with A\ edges by arbitrarily adding to it Ay edges not containing C' (but
not adding any new vertices). For ¢ > 1, the additional edges may intersect the center C'
(but not contain it). Call the (s — ¢)-subgraph H; := {e\ C: C C e € H}, the flower
of the starplus H, and the s-graph Hs consisting of the Ay excess edges of H — the cap
of H. (Note that Hy = Sq, the flower of S.)

Example 3. Let V(S) = {a,b,c,d,e, f} and E(S) consist of all 4-tuples containing
C :={a,b} and one pair from {c,d, e, f} except {e, f} (see Figure 2). Then S is a 2-star,
though not full (as the edge {a,b,e, f} is missing and thus its flower S; = K4 — {e, f}).
By adding to S three edges: {c,d,e, f},{a,c,d,e}, and {b,c,e, f}, we obtain a (4,2)-
starplus H with 5 rays and excess 3. Its flower is the graph Hy = S1 = K4 — {e, f} on
vertex set {c,d, e, f}, while its cap Ha consists of the three 4-tuples we have added to S.

For an r-graph F, r > 2 let us define its density g(F') as 1/r if ep = 1, and
f}F:i if er > 1. We call F' edge-balanced if all sub-r-graphs F’ C F with epr > 0
satisfy g(F’) < g(F). For starpluses which are not too dense and whose flowers are

edge-balanced, we can prove (see Section 4) the following.

Theorem 4. Forr > 2 and s > r, let H be an (s,s — r)-starplus on k vertices with A\



Figure 2: The (4, 2)-starplus H described in Example 3, where the black solid edges are
the edges of the 2-star S and the red dashed edges are the excess edges.

rays and excess Ao, such that

)\1-|-)\2§]€—S-|-?”7 (1)
)\1 -1 k—s
and whose flower Hy is edge-balanced. Then, there exists a strategy S such that, if

_k—s+4r
t>n"" M2 then a.a.s. GET’S) € Pyg. Thus, combined with Theorem 2,

_k—s+r

T(H) =n" e,

It follows that, in view of Corollary 3, any (s, s —r)-starplus H satisfying the assump-
tions of Theorem 4 is r-balanced, a fact whose direct proof would be quite tedious (see
Appendix, Proposition 18, for a proof in the special case of full (s, s —r)-starplus defined
prior to Corollary 5 below).

Note also that the assumptions of Theorem 4 do not impose any structural restrictions
on the cap Hy. Therefore, once the flower H; of an (s — r)-star S is edge-balanced and
the parameters satisfy (1), we can take any s-graph with Ao edges and k vertices (edge-
disjoint from S) as a cap, obtaining a whole family of (s,s — r)-starpluses to which
Theorem 4 applies.

Example 4. One such class of starpluses is defined in terms of tight cycles. FEvery
tight cycle is edge-balanced (see Appendiz, Claim 21). Thus, every (s,s — r)-starplus

H on k vertices whose flower is Hi = C,gr_)erT

Zi (k—s-+r) edges, satisfies the assumptions of Theorem 4. In particular, for the wheel

H = Wés’s_r) defined as an (s,s — r)-starplus H with Hy = Clii)sw and Hy = C,gi)s”,

and for k < s+7r—1, we have 7" (H) = n"~Y2 (see Figure 3 for the wheel WE§5’1) which
satisfies the above assumptions with s =5 and r =4).

and whose cap Hy has no more than

Assumption (1) is quite restrictive, because its left-hand-side cannot be too large. It
becomes more relaxed, though, when we enlarge A;. At the extreme, \; can be as large
as (k7j+7"). This leads to the following notion.
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Figure 3: The wheel Wés’l), with the ‘ray’ edges containing the centre in blue and the
‘excess’ edges of the cap in red.

For integers 1 < ¢ < s < k, an (s, c)-starplus H with A; rays and surplus As is called

a full (s,c)-starplus with excess X if H} = K ,gs:cc), that is, the flower is a complete

k;c)), while A2 = A. Alternatively, an (s, ¢)-starplus with
excess A is an edge-disjoint union of a full c-star S,(CS’C) and an s-graph Hs with A edges
and the same vertex set as the star. Note that, in this case, H; is edge-balanced (see

Appendix, Claim 22) and thus, Theorem 4 immediately implies the following result.

(s — c)-graph (and so Ay = (

Corollary 5. Let r > 2 and s > r, and let H be a full (s,s — r)-starplus on k vertices
with excess

k—s+r
r( )—(k—s+r)
A< r . 2
- k—s @)
Then,
T*%
Oy =n 7
Example 5. For r = 2 and s = 3 the upper bound on excess in (2) is k — 1, so

Corollary 5 applies in this case to all s-graphs whose cap has the same number of edges

®3)

and vertices. One example is the 3-uniform clique K53 on 5 vertices which can be viewed

as a (3,1)-starplus consisting of the full 1-star and the cap forming a copy of K® ; S0,
7(2)(Ké3)) — n27i6 = nd/5,

Another example, this time for k = 8, is presented in Figure 6 in Section 4. Here H is
the full 3-uniform 1-star on 8 vertices topped with the Fano plane; thus, 7'(2)(H) =n'/4,
Our last example is the full (3,1)-starplus on k vertices whose cap Hs is a tight cycle

2
C,g?i)l,' then, (") (H) = n’ k.

As hinted at in Example 5, Corollary 5 can be sometimes applied to complete s-

)

graphs K ]is . Indeed, since cliques can be viewed as (s,s — r)-starpluses with excess



A= (k) - (k_err), assumption (2), for cliques, becomes

(<t () )

Thus, in particular, Corollary 5 covers cliques K Lgi)v whenever s < 72 4+ 7 — 1, and
cliques Kiiz, whenever (s + 2)(s + 1) < r(r +2)(r + 3). For r = 2 this covers the

cliques Kf’), Ké?’), Ké4), Ké5). At the other extreme, when r = s — 1, assumption (2) for
cliques becomes

k—1
(1:1) . (S_l)(sk_l_);(k_l)’ @

which holds whenever k < 2s —1 (see Appendix, Claim 23). So, in addition, Corollary 5
covers cliques K§4) (for r = 3), KS), Kég') (for r = 4), and so on. The smallest case

among cliques, not covered by Corollary 5, is thus Ké?’) and r = 2.1

2.3 Upper bounds for general s-graphs and cliques

Corollary 5 can be used as a black box to derive a generic upper bound on T(T)(H ) for
any H, just in terms of its maximum degree and the number of edges. For 1 < d < s,
let Ay(H) denote the maximum degree of a d-set of vertices of H, that is, the maximum
number of edges that contain a given subset D C V(G), |D| = d.

The following consequence of Corollary 5 has a very simple proof which, therefore, we
present right after the statement. Observe that the right-hand-side of (2) is an increasing
function of k (as k = s is a root of the numerator viewed as a polynomial in k).

Corollary 6. Let s > r > 2 and let H be an arbitrary s-graph. Further, let k > vy be
the smallest integer for which (2) holds with A := ey — Ag_(H). Then

k—s+r

r(H) < nr_ (")

Proof. Let C C V(H), |C| = s — r, be a subset which achieves the maximum in the
definition of As_,(H). Further, let H' be the sub-s-graph of H obtained by deleting all
edges containing C' and let H be the full (s, s — r)-starplus on a k-vertex set containing
C' and with the A surplus edges forming a copy of H'. (Alternatively, H is obtained from
H by adding k — vy new vertices and (k7j+r) — As_,(H) new edges containing C.) See

Figure 4 for an example. As H has excess \ := ey — As_,(H) satisfying (2), we may
apply Corollary 5 to it, obtaining the bound

r— kk75+r
TM(H) <n ()

Clearly, H D H and the statement follows by monotonicity. O

'Recently, it was determined in [5] that 7—(2)(Ké3)) = nl6/9,



Figure 4: An example of the graphs H' and H constructed in the proof of Corollary 6
for a given H. The red dashed edges represent the edges of H'.

The bound in Corollary 6 is generally very weak, but its strength lies in its universality.
In particular, it implies that 7(") (H) = o(n") for all s-graphs H. In some cases, however,
it is not so bad.

Example 6. Consider the clique H := Ké3) andr =2. We have ey = 20 and A(H) =
10. So, we set A := 20 — 10 = 10 and, remembering that the right-hand-side of (2) in
this case is just k — 1, apply Corollary 6 with k = 11. As a result, we obtain the bound

1
7'(2)(H) < n?711, not so far from the lower bound n*~1 established in Theorem 2 and

2
even closer to the correct bound n*~9 from [5].

The ideas used in the proof of Theorem 4 can be extended to cover families of s-
graphs violating assumption (1), but the obtained upper bounds do not match the lower
bounds in Theorem 2. They are, however, better than those established in Corollary 6.
In Section 5 we prove such bounds for general cliques. (Note that this theorem is also
true in the case r = 1 yielding, however, a worse bound than the optimal Theorem 1.)

Theorem 7. Given 2 <r < s <k, let { := l(r,s) be the smallest integer such that
k—0 (¢ k—1 r
k—0—r— ——p , =) =0 5
(f;)—(ﬁ)é(s—) (5)-0)] ®)
Then there exists a strategy S such that for
TRy
ts>n ()-0)
a.a.s. K,(:) C Ggr’s). Thus,
r— k—¢
T(T)(Klgs)) <n (%)- ﬁ),

In fact, the conclusion of Theorem 7 remains true for any ¢ satisfying (5). However, as
shown in the Appendix (see (29)), the exponent r — ﬁ is an increasing function of

¢, so the best upper bound on 7(") (K,gs)) is, indeed, obtained for ¢ = i (r, s). Moreover,

¢ =k — r satisfies (5), so £i(r,s) is well-defined and ¢ (r,s) < k —r.

s



Observe also that ¢x(r,s) > s — r, since otherwise the left-hand-side of (5) would be
equaltok—¢—r>k—(s—r)—r=k—s>0. Moreover, {y(r,s) = s —r if and only if

k—s—w [(kz—s—l—r) _1] <0
(5) r

which is equivalent to inequality (3), stated after Corollary 5, characterizing those cliques

for which the upper bound of Theorem 4 matches the lower bound of Theorem 2. Indeed,

we see that in that case the conditions on ¢ in Theorems 7 and 4 are the same.
It is not easy, in general, to compute ¢x(r, s). We only managed to show (see Appendix)

that
O = 0(2,3) = {k+;—\/6k+1/4-‘ . (6)

In the next smallest case we were only able to get the asymptotic lower bound ¢x(2,4) =
k—Q(WVk).

Example 7. Set s =3 and r = 2 and note that lg = {7 = 2. Thus, we get upper bounds
n%% and n*3/7 for 7'(2)(H) where H 1is, respectively, Ké3) and Kés), which are not far
from the lower bounds n™/* and n%/3> given by Theorem 2. We also have lg = 3, so the
threshold for KE(;S) is squeezed between n'95/% and n197/56  The values of £}, grow rapidly
with k, getting closer and closer to k in ratio. Already f29 = 11.

2.4 Better lower bounds

Finally, let us identify examples of hypergraphs H for which 7(") (H) is of a strictly
greater order of magnitude than the lower bound given by Theorem 2 or its corollary. In
fact, we have an infinite family of them. We will find them within a class of hypercycles
which we define now, along with the corresponding paths.

An /-tight s-uniform cycle C’,({f’e) is an s-graph with k£ = (s — £)m vertices and
m edges which are formed by segments of consecutive vertices evenly spread along
a cyclic ordering of the vertices in such a way that consecutive edges overlap in ex-
actly ¢ vertices. (E.g., the set of triples 123,345,567,781 forms a copy of Cf”l) and
12345, 34567, 56781, 78123 forms a copy of C\*).) Note that m > | (s +1)/(s — £)] and

that non-consecutive edges may also overlap (if £ > s/2). An (-tight s-path Rgf ) with
m > 1 edges is defined similarly. It has exactly (s — ¢)m + ¢ vertices. In particular,
C,(qf’s_l) = Cf(,f) and PT(,f’S_l) = P,S,f) are the tight cycle and tight path defined earlier.
(Often, 1-tight cycles and path are called loose.) See Figure 5 for an example of Cé5’3)
and P4(5’3).

Let us first summarize what we already know about the threshold function 7(") for
£-tight paths and cycles based on Theorem 1, Theorem 2, and Corollary 3. Since the de-
generacies are d(P},f ,e)) =1 and d(C,(;f’f)) = | ;%] (see Appendix, Claim 19), Theorem 1

10



Figure 5: A 3-tight 5-uniform cycle Cé5’3) and a 3-tight 5-uniform path P4(5’3).

yields T(l)(P,Sf ’é)) =1 and, in particular,

1 for (< s/2,
Wl = n for £=s/2,

ni=ls for ¢ =s—1.

By monotonicity, the above quantities set also lower bounds for T(’”)(C’éf’é)), r>2.

Next, let us have a closer look at the lower bounds in Theorem 2 and Corollary 3
in the context of /-tight paths and cycles (all calculations are deferred to Appendix,
Claim 20). We have

Lofor s—r>v¢
W0 = {

m .
m otherwise.

Thus, for s —r < £ —1,
s—r—4

7_(7") (PT(;LS,E)) > nrJréfer g

)

while for the remaining values of r, we get the trivial bound of 1.
For /-tight cycles one can show that

1 1o —r >
M(r)(C’y(rf’g))zmax{ m }Z{T o e = (7)

(s—Om—s+r'r (s—ﬁ)m+s+r for s—r <V

Thus, for s —r < ¥,

T(T)(Cf,f’z)) > pr st

For /+1 <s—r <2¢—1, however, the formula for u(r)(C’,(ﬁ;’e)) depends on how large
m is: more precisely, it is % for m > == and =) otherwise. These are the

s—{—r zferr
cases within which the lower bound on T(’")(Cy(,f’g)) can be improved. Indeed, with some

extra assumptions on £ and r, in Section 6 we are able to prove the following.

Proposition 8. Let m >3, s >3,1</(<s/2, and s —r > (. Then, T(’”)(Rgf’f)) =1

while
=1 if s—r>20
T(T)(C'r(rf’é)) — nl/2 if s—r=20-1
i if s—r<20-2.

11



Notice that all thresholds stated in Proposition 8 are independent of m, the number of
edges. Moreover, the thresholds T(T)(C,(,f’g)) for £ < s —r < 2¢ — 1 are higher than the
lowers bound in Corollary 3, except when m = 3 and s —r = £. To see this, note that
1/2>1/3=(r—s+2¢)/3 for s —r = 2¢ — 1 and, in general, the inequality
_ 20 _
% >r+{—s+ S

is equivalent to (s — r)(2m — 3) > ¢m, which holds for m > 3, since s —r > ¢, and
is strict for m > 4 or s —r > £+ 1. Hence, for s > 3, 1 < ¢ < s/2, m > 3, and
s—20+4+1<r <s—{ with the above mentioned exception,

T(r) (C;}f’z)) > n?"*l/u("‘) (CS_;:»E))’

improving the lower bound from Corollary 3. The smallest instances in this class, with

2) 1/2

r = 2, are C£4’2) — for which the two lower bounds on 72 are, respectively, n

and n%/3, and 0355’2) — with the two lower bounds, 1 and n'/2. The first one can be

generalized: by Theorem 8, for all m > 4, we have 7(?) (C’,(,;l’z)) = n?/3, while the lower
bound in Corollary 3 is n?/™.

2.5 Probabilistic tools

Here we gather some elementary probabilistic facts and estimates to be used later
throughout the proofs. We begin with a version of the second moment method, use-
ful for so called counting random variables, where the variance is being expressed in
terms of the second factorial moment. Let Y be a nonnegative, integer-valued random
variable. Then, for every € > 0, Chebyshev’s inequality gives

P(|Y—EY|26EY)§m:;(W%—I&/—l). (8)

Assuming that EY — oo as n — oo, in order to show that the above probability tends
to 0, it suffices to show that E(Y (Y — 1)) ~ (EY)2.

Next, we give an estimate of the probability that the random multi-r-graph R,Er) =
{U1,...,U} contains a fixed sub-multi-r-graph. More precisely, let F' be a multi-r-graph
with the vertex set V(F) C [n], h vertices, m edges, and multiplicities my, ... ,m(h)

r

(some of which may be equal to 0). We want to estimate P(F C Rtr)).

Consider first a small example. Let » = 2 and T be the triangle on a fixed vertex set
{1,2,3} with the edge {1,2} doubled, that is, the multiplicities are 2,1, 1. If one insists
that the times of hitting particular edges are fixed, say, at 1 < t13 < t12 < ta3 < thy < t,
then the probability of actually creating T' at these designated times is precisely

3 t13—1 ) 5 tia—t13—1 .
(1—(3)> x(;l)x<1—(g)> x@x
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as long as t = o(n?). The number of ways to select the four hitting times and assign
them to the four edges, due to the exchangeability of t12 and t},, is (i) x 41/2. Thus,

- (02(3) -5

Similarly, in the general case, setting p =t/ (:),

m

P(F c R") ~ (9)

ml'm(h)'

The proof of Proposition 8 uses the following simple lemma.

Lemma 9. For all |z/2] < q <, a.a.s. every g-element subset of [n| is contained in
at most three sets U;, 1 =1,...,t.

Proof. Let X be the number of g-element sets contained in at least four sets U;, i =
1,...,t. For a fixed g-element set (, the probability that it is contained in at least four
sets U; is O(t*/n*9). Thus, as there are (Z) < n? such sets and 4z/3 < 3|z/2] < 3q for
x> 2, EX = O(t*/n1) = w*n**/3-3¢ = o(1). O

For the proof of Theorem 4 we will need the following lemma which is a straightforward
generalization of Theorem 3.29 from [14] (the edge-disjoint case) to hypergraphs. Given
integers 2 < r < n, areal p:=p(n) € (0,1), and an r-graph F, let

Op := Pp(n,p) = min{n"*p°* : F' CF, e > 0}

be the order of magnitude of the expectation of the “least expected” sub-hypergraph
of F'. This quantity, in turn, determines the order of magnitude of the largest number
Dp := Dp(n,p) of edge-disjoint copies of F' one can find in G (n,p), a random n-vertex
r-graph obtained by turning each r-element subset of vertices into an edge independently
with probability p.

Lemma 10 (Janson, Luczak, Ruciniski [14]). For all integers r > 2 and every r-graph
F, there exist constants 0 < a < b such that if & — o0, then a.a.s. a®p < Dp < bPp.

Lemma 10 will be used to facilitate the desired outcome of Phase 1 of a strategy
supporting the proof of Theorem 4. However, in order to apply this lemma in our
context, we need first to address two issues: (i) the appearance of repeated edges and (ii)
the uniformity of the model — as opposed to the binomial model G() (n,p). For the latter
we will use a consequence of an asymptotic model equivalence result from [14, Corollary
1.16(i)]. Let G")(n,t) be an r-graph chosen uniformly at random from all r-graphs on
vertex set [n] which have t edges.

Lemma 11 (Janson, Luczak, Ruciiiski [14]). For all integers r > 2 and every increasing
property Q of r-graphs, if G")(n,p) has Q a.a.s., then G")(n,t) also has Q a.a.s.,
provided p =t/ (2)

13



The issue of repeated edges can be resolved by taking an appropriate random subse-
quence of the process (R,gr))t.
Lemma 12. For all integers v > 2 and every sequence t := t(n) = o(n"), there is a
joint distribution of the random multi-r-graph RET) and the random equiprobable r-graph
G (n,t), where t' =t —t3/2/n"/2 =t — o(t) such that a.a.s. GT(n,t') C R,Er).

Proof. The expected number of times a repetition occurs in (Rgr))t = (U1,...,U;) (that
is, an edge is selected again) is at most t x ¢/ (:f) = o(t). Thus, by Markov’s inequality,
a.a.s. there are no more than #3/2/n’/2 such times. This means that along with (Rgr))t one
can a.a.s. generate its sub-process (Uj,,. . .,th,) with ¢ “unparalleled” edges. Indeed,
just ignore a chosen edge whenever it had been chosen before. Then the next edge,
provided it is not ignored, is selected uniformly at random from those r-tuples of vertices
that are not present already. We may identify the sub-process (Uj,,...,U;,) with the
“static” equiprobable r-graph G(") (n,t"). Finally, note that when ¢t = o(n"), we have
t3/2 /"2 = o(t). O

Lemmas 11 and 12 together imply a swift transition between our model and the
standard binomial model.

Corollary 13. Let r > 2 and Q be an increasing property of r-graphs. Further, let
t:=t(n)=o(n"), t' =t—t3?/n"/2, and p := p(n) = ¢/, If G")(n,p) has Q a.a.s.,
then RET) ={Ui,..., Ut} also has Q a.a.s.

Proof. 1f G(’")(n,p) has @ a.a.s., then, by Lemma 11 G(T)(n,t’) also has @ a.a.s. By
Lemma 12, a.a.s. Ry) contains a copy of G(")(n,t') and thus, by the monotonicity of @,
it too possesses Q a.a.s. O

Before turning to the proof of Theorem 4, we need to show a simple fact.
Claim 14. If an r-graph F is edge-balanced and p = o(n_l/g(F)), then ®p = nVFper,

Proof. First observe that for all F/ C F with vp > v > r the inequality g(F’) < g(F)
implies that g(F) < £="F°_ Thus,

VFp—Vp/

vp=vpr \ VETUFR -
nvpva/peFfeF/ _ <npeF—eF/) < (npg(F)>vF VEs = 0(1)7

which yields that, indeed, ®p = n"Fpr. O

3 Proof of Theorem 2

Here we prove Theorem 2, restated below for convenience.
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Theorem 2. Let k> s>r > 1, and let H be an s-graph with k vertices and m edges.
Then, for every strateqy S, if t = o (n“(k””)/m), then a.a.s. Ggr’s) & Pr. It follows
that

T(r)(H) > nr—(k—s—i—r)/m'

Proof. Set G; = Ggr’s) and let H be an s-graph with k vertices and m-edges. This
generic proof relies on an obvious observation that for a copy of H to exist in Gy, there
must be, in the first place, a set of k vertices spanning at least m edges of G;. Formally,
for any j, 1 < 7 < m, any time ¢, and any strategy S, let X f (t) be a random variable
counting the number of k-element sets of vertices that induce in G} at least j edges
at the end of round ¢t. We will assume that the player plays according to a strategy S.
However, since we only provide a universal upper bound for the expected value of XJ‘-S (1),
it will actually not depend on S. Therefore, to unload the notation a little bit, let us
suppress the dependence on the strategy S.
We will show by induction on j that for any 1 < j < m we have

EX;(t) < U ks tr=rj for all ¢ > 1. (10)

The base case j = 1, holds trivially and deterministically, as we have

n—s s
X (t) gt(k_s) < tnks.

Indeed, there are precisely ¢ edges at the end of round ¢, and each of them is contained
in (Z:j) sets of size k (as we are after an upper bound, we ignore the possible repetitions
of the k-sets here).

For the inductive step, suppose that (10) holds for some value of j —1, 1 <j—1<m
(and all ¢) and our goal is to show that it holds for j too (again, for all ¢). We say that
aset W C [n], [W| =k, is of type j at time t if it spans in G; at least j edges and we
define an indicator random variable I jW (t) equal to 1 if W is of type j at time ¢, and 0
otherwise. Thus (as a sanity check),

Xjt)= Y L. (11)
we (%)

Note that in order to create a set W of type j at time ¢, it is necessary that W was
of type j — 1 at time ¢ — 1 (in fact, having exactly j — 1 edges), as well as, the r-vertex
set selected by the semi-random hypergraph process at time ¢ is contained in W, that
is, U; C W. Thus, setting also JW (t) = 1 if U; C W and 0 otherwise, we have

t
X0 <S ST G- 1)), (12)
=1 WG([Z])
Since Uj; is selected uniformly at random from ([Z]),

6w

E(JV(0) =P (i) =1) =
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as k <n.
We now take the expectation on both sides of (12). Using the linearity of expectation,
and the independence of IjVKI(i) and JW (i), (11), we get that

t t
. k" . k"
EX;(t) < > E| > IV (i-1) — = > EX;a(i- N
i=1 we(lr) i=1
t L
< (ij—lkr(j—l—l)nk—s—f—r—r(j—l)) o G kst
= n,r. — 9

=1

and so (10) holds for j too. This finishes the inductive proof of (10).
The desired conclusion is now easy to get. Note that, by (10) with j = m,

nT‘

EXm(t) < tmkr(mfl)nkfs+rfrm -0 <nks+7' <t> > )

Hence, if t = o(n”~(*=5t7/™) then EX,,(t) = o(1) and so, by Markov’s inequality,
Xm(t) = 0 a.a.s. Since the presence of a copy of H in G; implies that X,,(t) > 1, we
conclude that a.a.s. Gﬁ“s) ¢ Py which was to be proved. O

4 Proof of Theorem 4

In this section we prove Theorem 4, restated here for convenience.

Theorem 4. Forr > 2 and s > r, let H be an (s,s — r)-starplus on k vertices with A\
rays and excess Ao, such that

A1+ Ay < k—s—+r

1
M—1 7 k-—s ’ ()

and whose flower Hy is edge-balanced. Then, there exists a strategy S such that, if

k—s+r

t>n' M2 then a.a.s. GET’S) € Pyg. Thus, combined with Theorem 2,

O (H) =0~ isEsv

Proof of Theorem 4. For integers s > r > 2, let H be an (s,s — r)-starplus on k > s
vertices with A1 rays and excess A\, satisfying the assumptions of Theorem 4. Set

k—
m=|E(H)| =M+ A2, ﬁ:r—;—i_r, and t=wn",
m

where w := w(n) — 0o as n — oo but, say, w = o(logn).
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Let us again abbreviate G} := G,Er’s). To play the game Py, we equip the player with

the following strategy. The vertex set C' = {1,...,s —r} is put aside. From the player’s
point of view there will be two phases of the game (but just one for Ay = 0), lasting,
respectively, t1 and to := t — t1 steps, where

t when Ag =0
t1=4qt/2  when (1) is strict
t/w1  when there is equality in (1),

where
A1+Xg/2

wp=w M
For convenience, we also set

t t1 to
pzﬁv pl:ﬁv and D2 = 7o
r r

()

During Phase 1, whenever a random r-set U; lands within [n]\ C, the player draws the
edge U; U C, that is, they choose V; = C. The goal of this phase is to collect sufficiently
many edge-disjoint copies of Hy on [n] \ C created purely by the random r-sets U; of
Rtr). According to the player’s strategy, this will yield in Gy, plenty of copies of the
s-uniform c-star on k vertices with the same center C' whose flowers are isomorphic to
H,. This will end the proof when Ao = 0. In fact, in this special case all we need is just
one copy of Hi.

So, let us start with the special case Ao = 0. Then,

—s+r —
p1~rlwn m =rlon A1,

Moreover, since H; is edge-balanced, it is also balanced (see Appendix, Claim 17) in
the usual sense, that is, ep /UHi < epy, /vm, for all sub-r-graphs Hi of Hy. Thus, it
can be routinely shown by the second moment method (cf. the proof of the 1-statement
of [14, Theorem 3.4]) that a.a.s. G)(n,p;), where pj = /(") and ¢ are given in
Corollary 13, contains a copy of H; vertex-disjoint from C. (The expected number of
copies of H; containing at least one vertex of C' is O(w?! /n) = o(1).) By Corollary 13,

the same property is a.a.s. satisfied by Rl(tr), which completes the proof in this case.

From now on, assume that Ao > 1. Recall that H; is the flower of H and note that
g(Hy) = /\kl_*l. So, if (1) is strict, then

s

! _k—s+4r
P = g ~ %wn i — O(n—l/g(Hl))'

On the other hand, if there is equality in (1), then

_k—s+47r _
- wn_ Mtz W n 1/g(H1) _ O(n_l/g(Hl))
w1 whz2/2M1 ’
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again. Thus, in either case we have
p1 = o(n”Yality) (13)

By Lemma 10 (noting that ®p, = nF~5tp1 = @ (p—s+n(1=2/m)) _ o) Claim
14, Equation (13), and Corollary 13, for some a > 0, there is a.a.s. a family H” of edge-
disjoint copies of H;y in RET) of size [H"| ~ ank_s”pi‘l. The expected number of copies
of Hy intersecting C'is O(|H"|/n), so, after deleting them, we obtain a family H’ of edge-
disjoint copies of Hi, all of which are vertex-disjoint from C, of asymptotically the same
size as H”. Also, crucially, the expected number of pairs of edge-disjoint copies of H
which share at least r vertices is, by (1) and the definition of t1, O(|H'|?/n") = o(|H'|).
Thus, by further deleting from H’ one copy of each such pair, we obtain the ultimate
family H of edge-disjoint copies of H; which avoid C, and pairwise share fewer than r
vertices, whose size is

J = [H| ~ an* =5t

Let H = {HP, e ,Hf‘])}. By the player’s strategy, each H{i) forms in GE:’S) the
flower of an (s — 7)-star S with center C. In order to turn one of them into a copy of
the starplus H, during Phase 2, it has to be hit Ay times by the random r-sets which,
collectively, should be extendable (by the player) to a copy of Hj, the cap of H, and
thus create a copy of H. For simplicity, we assume that the Ay r-sets are to be contained
in the Hfl), that is, disjoint from C.

To this end, as a preparation, for each ¢ = 1,...,J, we designate a multi-r-graph M;
of A2 r-element subsets of V(sz)) (with possible, and sometimes necessary, repetitions)

such that their suitable extensions to s-sets lead to a copy Hél) of Hs. This can be
easily done by selecting (in a template copy of Hs) one r-element subset of each edge of
H,, disjoint from C'. See Figure 6 for one example; as another, more abstract example,
consider an instance where the flower Hy O Ké?’) and r = 2 — clearly, some of the 15
pairs of the vertices of the clique must appear in M more than once (as there are 20
edges to be covered).

Since the Hl(z)’s share pairwise fewer than r vertices, the families M; are pairwise
disjoint, so there is no ambiguity for the player. During Phase 2, whenever a random
r-set U; lands on one of the r-sets in M; for some ¢, the player draws the corresponding
s-edge (within V(S{Z))) and gradually builds a copy of H.

Next, we move to a detailed description of Phase 2 of the process which lasts to :=

t — t1 steps. Set Rt(g) to be the random r-graph consisting of the random r-sets Uj,

i=1t +1,...,t. Thus, Rg) adds random r-edges to a fixed, typical instance of Gg’s).

Further, let I; = 1 if M; C R;, and I; = 0 otherwise. Then, our goal is to prove that
a.a.s. Y = Z;.Izl I; > 0. Unlike in phase one, we cannot rely on Corollary 13, as M
may be a multigraph. Instead, we apply the second moment method, as described in
Subsection 2.5, to Y along with the estimate (9).

By symmetry, the expectation EI; = P(M; C Ry,) is the same for all 7. Denoting by
mi, ..., my the multiplicities of the r-sets of vertices in M, where mi +--- 4+ my = Ao
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Ve

Figure 6: A 3-uniform starplus on 8 vertices with surplus edges forming the Fano plane
(the 21 edges containing v are not shown). The dashed-line red pairs indicate
a possible choice of the graph M (one of 37). In this particular case, obviously,
M cannot be a multigraph.

k—s+r
r

and ¢ = ( ), we obtain, using (9) and the definitions of J and ¢y,

© (w™)  when (1) is strict

14
) (w)‘2/2) when there is equality in (1),. (14)

3’
mi!---myg!
where m = A1 4+ Xo. In fact, the choice of w; has been driven by this very calculation.
Again by symmetry,
EY(Y -1)=JJ-1D)P([;1 =1 =1).

Since the families M; and My are edge-disjoint (and the number of common vertices
does not matter), similarly as above, applying (14) to M; U My, we get the estimate

22

2 Py 2
So, by (8) with e =1/2, a.a.s. Y > %EY > 0, which completes the proof. O

5 Proof of Theorem 7

We restate Theorem 7 below for convenience.

Theorem 7. Given 2 <r < s <k, let { := l(r,s) be the smallest integer such that

g OG0l

s/ j=1
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Then there exists a strategy S such that for

k—¢

tsn (-0

a.a.s. K,(j) C GET’S). Thus,
r— k—¢
rOED) <n ()0,
The proof of Theorem 7 relies on a bold extension of the strategy used in the proof
of Theorem 4. Since the details are quite technical, we decided to present the argument

gently, beginning with the smallest open case, Kég), then outline the proof for all cliques

K ,gg), k > 6 and r = 2, before finally moving to the general case. For an r-graph H and
a natural number m, we denote by mH the multi-r-graph obtained by replacing every
edge of H by m parallel edges.

5.1 The clique K.”

Although 7() (Kég)) has been already determined in [5], we use this special case as a
gentle introduction to the general proof of Theorem 7. To this end, we prove the following
weaker bound.

Proposition 15. 7(2)(Ké3)) < nd/°

Proof. Consider the following version of the strategy used in the proof of Theorem 4.
In essence, we alter the way the edge set of the target hypergraph Kég) is split between
Phase 1 and Phase 2. Although s—r =3—2 = 1, we put aside not one but two vertices,
say n — 1 and n. Set t = wn®/5 where w = w(n) — oo with n and w < logn say, and set
ti=te=1t/2,p=1t/(5) and p; =t;/(3), i =1,2.

In Phase 1 the first time a 2-element subset U of [n — 2] is randomly selected, it is
extended by the player to the 3-edge U U {n — 1}, while if U is selected for the second
time, it is extended to U U {n}. In addition, whenever a random pair U contains n — 1
but not n, it is extended to the triple U U {n}. So, in R;, = Ggf’z), we are after double
cliques 2K, with vertex sets in [n—2], rooted at n— 1 with the root connected by a single
edge to all four vertices of the double clique (see Figure 7). Let us denote such a graph
by QKII. By player’s strategy, each copy of 2KZ1 in Rg) yields a copy of Ké3) — Kf’)
in Gl(f’?’).

As in the previous proof, we would like to show that a.a.s. there are many copies of
2K2‘1 in Rgf) which pairwise share at most one vertex from [n—2]. We cannot, however,
apply the approach presented before and based, in particular, on Corollary 13, because
now we are counting copies of rooted multi-graphs 2KZ1. Let X be the number of
copies of 2KI1 in Ry,. By the second moment method, we are going to show that a.a.s.
X = O(EX) = O(n*pi%). In doing so, we follow the technique described in Section 2.5.

By (9),

B 16
EX ~ (n 4 2)216 = O(npif) = O(w'%n?/").
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Figure 7: The graph 2K j L

To estimate EX (X — 1), we split all pairs of distinct copies of 2K j Lin K, according to
the size g of their non-rooted vertex-intersection (disregarding the root n — 1). Then,

by (9),

3 /n—2 8—g o < w)3=9’ 8—g—(32—¢2)/5
EX(X — 1)~ ~ n8—9-(32-9%)/5
( ) gz:(:) (8 - g> <(4 9)Pg! >212 ; 4—g) ‘2g'212 (3)

Denoting the four summands above by Sy, g = 0,1,2,3, we see that Sy ~ (EX)? =
O(n¥%), while S; = O(n*?) and Sy, S3 = ©(n?/%). In conclusion, by (8), a.a.s. X =
O(EX) as claimed.

The above estimates, in addition, imply that the expected number of pairs of copies of
2K, Lin Rg), which share at least one double edge is n?/° = o(n*/%). Hence, removing
one copy from each such pair, we obtain a.a.s a family G of @(n4/ %) copies of 2K4+1 in

Rg), which pairwise share at most one vertex other than the root n — 1.

To see what happens in Phase 2, consider the double clique contained in one of the
copies of 2K4+1 belonging to G, say, on vertices 1,2,3,4. In order to turn the corre-
sponding copy of Kég) - K f’) into a copy of Kﬁ(?’), one needs to add to it four edges
— the four 3-element subsets of [4]. This can be facilitated by the following strategy:
when during the process Rg) apair {j,7+1} is hit, j = 1,...,4, the player extends it to
{j,7+1,7+2} (here 5 := 1 and 6 := 2), that is, by adding the next vertex along the cycle
12341. In the notation of the proof of Theorem 4, we thus have M = {12,23,34,14}
and |G| designated copies of the 4-cycle M at the end of Phase 1. By (9), the expected
number of those of them which will be hit in Phase 2 is ©(n?pi®pl) = O(w?) — oo.
Again, by the second moment method (details, similar to those at the end of the proof

of Theorem 4, are omitted) a.a.s. at least one of them will be present in G, completing,
) (3)
per player’s strategy, a copy of K. O

5.2 Larger 3-uniform cliques (r = 2)

Here we prove Theorem 7 still in the case r = 2,s = 3, but for all k. We singled out
this special case, because it is the only one in which we may express the result explicitly.
Indeed, as proved in the Appendix (around inequality (30)), for s = 3, r = 2, and every
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k, the smallest integer which satisfies (5) is given by (6), that is,

Op = 04(2,3) = {k + g — 6k + 1/4} .

where £y, is as above.

Proof (outline). The proof is by induction on k. The need for induction comes from a

new phase of the player’s strategy, Phase 0, when a copy of the clique K lf;:’) is built. It
follows from Theorem 4 and Proposition 15 that the statement is true for £ < 6 (with
ly=1V05=1and lg = 2), so let k> 7. For ease of notation we put £ := ¢;. To facilitate

induction, set
(= PJFg— \/6€+1/4 :

and observe that by the monotonicity of function fs(k,¢) (see Appendix, the comment
after the proof of (29))

(15)

Set

9__ k=t 9 L=t __

o OO and gm0,

for w = w(n) — oo with n and w < log n, say, and note that, by (15), top = o(t). Further,
set t; = t/wy, where
(5)=(

W] =w (lg),(

Finally, set to = ¢t — to — t1, and p; = ¢;/(5), i = 0,1, 2.

We split the game into three phases. In the preliminary Phase 0 which lasts tg steps,
we produce a.a.s. a copy of K f’) by the induction’s hypothesis applied to ¢. Fix one such
copy with vertex set L. Without loss of generality, we may assume that L = [/].

In Phase 1, which lasts ¢; steps, whenever a 2-element subset U of [n]\ L is randomly
selected for the i-th time, i = 1,...,¢, we extend it to the triple U U {i}. Moreover,
whenever a 2-element subset U of the form U = {u,j}, where v € [n]\ L and j € L, is
randomly selected for the i-th time, i = 1,...,¢—j, we extend it to the triple UU{j+i}
(see Figure 8).

Thus, our goal is to produce many copies of the rooted multi-graph F consisting
of a multi-clique (K ,22_)5 with vertices in [n] \ L and, for each vertex u € [n] \ L, of
-1)+---+1= (g) extra edges connecting u with L in such a way that the multiplicity
of the edge uj is £ — j, 7 = 1,...,¢ (see Figure 9 for an example in the case k = 9 and
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Uj, =U;j

Figure 8: How two different sets U are extended to edges each time they are randomly
selected in Phase 1, where ¢ = 3, i1 < i3 < i3 and j1 < jo.

L7 3K6

Figure 9: The multigraph F when £ =9 and ¢ = 3

¢ = 3). By the player’s strategy, a copy of F' in REIQ) corresponds to a copy of K,gg) —K,g?l)g

in Gt0+t1.
Let X be the number of copies of F' in Rgf). Setting

h=k—¢
)+ ()= () (5)- ()
we have, by (9),

Bx~ (" ) <w>—;<§> )

h w1

and noting that

()-G) | & .

By the second moment method, we will soon show that a.a.s. there are ©(EX) copies
of F' at the end of Phase 1. But crucially, we need that, as before, most of them are
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edge-disjoint (within [n]\ L), to avoid ambiguity in Phase 2. “To kill two birds with one
stone”, we will estimate quantities Sy, g = 0,...,h — 1, defined as expected numbers

of ordered pairs of copies of F' in Rg) which share g vertices outside of L. Note that

EX(X—-1)= ZZ;é Sg, while 3 ZZ;QI Sy is the expected number of pairs of copies of F’
which share at least one pair of vertices outside L. We aim at showing that

EX(X — 1) ~ Sy ~ (EX)? (16)
and
h—1
Sy = o(EX). (17)
g=2
We have
o (n=tY( 2h-g ) e)-@)rOeno
97 \eh—g)\h—g,h—g,9)" '
Thus,
n?P o(e(M)+ ()
So ~ Wpl( (2) (2) ) ~ (EX)Z
Next,

610 (OO Lo (BF) _,
£ )
e
4
as npgz) — 00 (since £ < k —2). Now comes the critical So. We claim that, by the
definition of ¢ and (5),

equivalently,

-2 (D02 _ )

Indeed, if there is a strict inequality in (5), then the left-hand-side above is of the order
O(n~°) for some € > 0. Otherwise the polynomial term disappears and we are looking
at

( w )(2)(5)(3)42

w1

(5)- ()~ () -0

is equivalent to ¢ < k — 3 which is true for k > 7 (see Appendix, (31)). Thus, in this
case S = o(EX) as well.

However,
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The same is true for ¢ = 3,...,h — 1, which can be demonstrated by induction on g.
Assume that for some 2 < g < h — 2,

Sg -0 <n2hgpi(Q(g)_(g))"’(g)(Qh_g)) — O(EX),

equivalently,

n

e (-0 _ )

However, the equation above can be rewritten as
U(k+g—2)/2\ "9
npy = 0(1)7

which implies that
npy T = o(1),
This, in turn, implies that
npli(k+(9+1)*2)/2 = o(1)

(as, trivially, p1 = O(1)), and, consequently,

h—g—1
(mptterrs D203y =0 _ iy

which, by the same token as above, is equivalent to Sgy1 = o(EX). Thus, we have
proved (16) and (17). Consequently, by (8) with, say € = 1/2, a.a.s. X = O(EX), and,
more importantly, by standard removal, we obtain a.a.s. a family F of ©(EX) copies of
F in R;, which pairwise share at most one vertex outside L. As mentioned earlier, each
copy of F' yields a copy of K ,23) - K ,Si)e in Gy, -

(3)

In Phase 2, a.a.s. the player’s goal is to extend at least one of them to a copy of K.
This will be possible if a copy of F' is hit by the random pairs of Ry, at least (g) times
and onto appropriate spots. To this end, let M be a multi-graph obtained by selecting
one pair of vertices from each triple of K 123_)4. For each F' € F, let M’ be a copy of M
on V(M')\ L. Let M be the family of such copies of M and let Y be the number of
them present in Ry,. Then, by (9),

n B (O (h (5)-(5) 1
E(Y) = 6 (EX y p§3>> _o (nhpgw»hpgg)) _o @V ) _g (W(s)) ,
w1<3)_(3)_(3)
which goes to co as n goes to co. Finally, one can easily show, again by the second
moment method, that a.a.s. ¥ > 0, which means that the player can indeed create a

copy of K;z’ in G§2’3). O
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5.3 General cliques

In this subsection we prove Theorem 7 in its full generality. Experienced with the proofs
presented in the two previous subsections, we just outline here how to extend them to
arbitrary 2 < r < s. Given r,s, k, and ¢ := {i(r,s), so far the general scheme for the
player has been to build a desired clique in three big chunks: K és) (Phase 0, vacuous

when ¢ < s), Késk)% (Phase 1), and K,g‘i)g (Phase 2). We basically follow that suit in the
general case, with the border between Phases 1 and 2 refined.

Proof of Theorem 7 (outline). We proceed by induction on k > s, with r and s fixed,
2 < r < s. The base of induction, the case k = s is trivial (then fs(r,s) = s — r). Fix
k > s and assume the statement is true for all s < k" < k. Let ¢ = {i(r,s) > s —r be
the smallest integer satisfying (5) and

If ¢ < s, we set L = [{] and skip Phase 0. Otherwise, let l stand for the smallest integer
¢ satisfying (5) with k and ¢ replaced, respectively, by ¢ and ¢. Phase 0 will last

b=l

to = wn (ﬁ)f(g)

steps. Again, tg = o(t), by the monotonicity of ﬁ. Since s < ¢ < k —r < k, by the

-G
induction assumption we a.a.s. get and fix a copy of K, és) whose vertex set we denote
by L. Without loss of generality, set L = [¢].
Let Hy be the sub-s-graph of K ,gs) consisting of all edges with at least s — r but fewer
than s vertices in a fixed f-element vertex subset Lg. Further, let Hs be the sub-s-graph
of K ,gs) consisting of all edges with fewer than s — r vertices in Lo (see Figure 10).

Observe that K,(f) = Kés) U Hy U Hy. Moreover,

ol :;<k;£> (sfj) and I :];1 <k;£> (sf)’

so [Hi| + [Ha| = (¥) — (%), as it should. Set m; = |Hj|, i = 1,2, for convenience. If

S
¢ =k —r, then 172 = 0 and no second phase is needed. Indeed, we then take t; =t — tg

and a.a.s. find a copy of Hj in Gg’s) by the second moment method and the player’s

strategy described below.
Otherwise, that is, when ¢ < k — r, we take t; = t/w;, where

n1+mn2/2
W] = w m

In Phase 1, we are going to build many copies of H; in Rg) with the set Ly mapped

onto L (order preserving). In Phase 2 at least one of them will be extended by a copy

of Hs to form an ultimate copy of K ,gs).
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Figure 10: The edges of K,gs) lying in H; and Hos.

The player’s strategy in Phase 1 is, thus, as follows. Set jo := max{1, s—/¢}. For every
Jjo < j <, assign to each (s — j)-element subset S of L one of its (r — j)-element subsets
and denote it by Ts. Note that for j = r all (s — r)-element sets S are assigned the

empty set, that is, Ts = (). Given an (r — j)-element subset T of L, let S}l), cee S;mT)

be all sets S € (Sfj) for which T'= Tg. Observe that for some T we may have mp = 0,

and that ZTG( L )mT = (Sfj). Whenever a random r-set U is hit for the i-th time,
r—j

i=1,...,mynL, the player extends it to the s-set U U S((]zr)jL.

Thus, in order for the player to generate a copy of Hy rooted at L, the random r-sets
in Rg) must form a copy of the r-graph F', rooted at L, which consists of k — £ vertices
in addition to L, and such that every r-element subset e of vertices in F' has multiplicity
menr. Note that F' has the same number of edges as Hy, that is, |F| = ;. Let X be

the number of copies of F' in Rg). Then, by (9), letting h = k — ¢,

m h
BX = 0 (n' ) =0 <(W) nhmizz> S oo,

w1

because the exponent of n is positive, while w and w; are at most logarithmic in n. Now,
by a standard second method one can show that a.a.s. X = O(n*~ ). Moreover,
similarly to the proof of Proposition 16, one can show that most of the copies of F' share
pairwise fewer than r vertices outside L. Indeed, setting as before Sy, g =0,...,h — 1,
(r)
t1

for the expected numbers of ordered pairs of copies of F' in R; ’ which share g vertices

outside L, we have

5 n—2¢ 2h — g p%l*Z?ﬂ(?)(ij)_
97 \2n—g)\h—g,h—g,9)"

Hence, So ~ (EX)? and, for g < 7,

(EX)?

g () 0((EX)2),
ngpl j=1 (j)(s—j)

Sy ~
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since (h/g) ?:1 (;’) (sfj) < m and, recall, (lz) - (ﬁ) =11 + 2. For g > r, however, we

need a stronger bound on Sy, namely, that S, = o(EX), or equivalently,

g S {0

Ty :=n""9p, )} =o(1).

This can be shown by induction on g, g =r,...,h — 1. Let « denote the left hand side
of (5), that is,

v b (O[)-0)

For g =,

If @ < 0, we are done. Otherwise, observe that w = o(wi) while 1 > >7"_, (sfj) (;)
as r < h, and we are done again. Now assume that for some r < g < h — 2 we have

Ty = o(1). To proceed, we rewrite T, as

T — nh—ng;:l (Sfj) hj_ggfj (h,9)
g — 1 )

where

J C(a)
= 35 = 0
=1

is an increasing function of g (see Appendix, (29)). As T, = o(1) implies that

;21 (sfj)%fj(h’g)

np = o(1),

() A g\
<np1 = (S_J)J'fj( I )> = 0(1)7

which is equivalent to Ty1 = o(1), or Sgy1 = o(EX). We conclude that at the end of
Phase 1, there is a.a.s. a family F of G)(nhp?l) copies of F' every two of which share fewer
than r vertices outside L. Every copy F’ of I, via the player’s strategy, corresponds to
(r,5)
U

a copy Hj of Hy in G,

we also have

)

In Phase 2, to turn a copy Hj into a copy of K¢ , we still need to place onto it

=2 (5005)

extra edges forming a copy H) of Hy. These are the edges with at least r 4+ 1 vertices
outside L, so the player can create them all from random r-edges U of Rt(g) falling onto

the L-free part of a copy of F'. Similarly as in Phase 1, we assign to each s-edge S of Hy
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an r-element subset Tg disjoint from Ly, and the sets S(TZ), i =1,...,mp, are defined
as before. This way we obtain a multi-r-graph M whose edge multiplicities sum up to
n2. For each F' € F, let M’ be a copy of M on V(M')\ L, and let M be the family of
all those copies of M. Further, let Y be the number of the copies of M in M present

in Rg). Then, by (9),
(-0
EY =0 (nhpgllpén) =0 (w o — 00.

Finally, by the second moment method, one can routinely show that a.a.s. ¥ > 0 and,
consequently, the player will create a copy of K ,gs) by the end of Phase 2. The player’s
strategy is straightforward again: whenever a random r-edge U C V(M') is drawn for

the i-th time, ¢ = 1,..., my, the player extends it to the s-edge SZ(JZ) C V(F') which has
been assigned to U. O

6 Proof of Proposition 8

In this section we prove Proposition 8, repeated below for convenience.

Proposition 8. Let m >3, s >3,1<(<s/2, and s —r > (. Then, T(T)(Pr(rf’g)) =1

while
=1 if s—r>20
M (ClD) $ = pl/? if s—r=20-1
e if s—r<20-—2.

Due to the assumption ¢ < s/2, non-consecutive edges of an ¢-tight s-cycle and s-path
are disjoint. Also, for cycles, every edge has exactly s — 2¢ vertices of degree 1 and 2/
vertices of degree 2, while in paths of length at least 2, one can distinguish two edges,
each with s — ¢ vertices of degree 1 and ¢ vertices of degree 2. We refer to them as the
end-edges of the path.

Recall that in the i-th step of the semi-random process, U; is a random r-element
subset selected uniformly from all r-element subsets of [n]. Thus, for any fixed subset
T C [n], by Bernoulli’s inequality,

n—|T| r
PUNT #0)=1- ) <1- (" |T‘) < 7"|nT| = O(|T|/n). (18)

(7) no /)7

Set e; = U; U'V; for convenience, and assume throughout that s —r > £.

Proof of Proposition 8. Case H = PT(,f’Z).

We equip the player with the following strategy. The player will grow just one copy of
P7(rf 4 beginning with e; and extending it whenever the next random edge U; is disjoint
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Figure 11: An example of how to build the path P,Sf’Z) when r = 2.

from the so far built path. If this happens, then one constructs the set V;, and conse-
quently the whole edge e;, by including in it £ vertices of degree one belonging to an
end-edge of the current path, and any s — ¢ — r “fresh” vertices, that is, not belonging
to the current path (see Figure 11). Otherwise, the player “wastes” the move by doing
whatever. The probability of failure in at least one of the first m steps is, by (18),
O(1/n) = o(1) and so the player can complete a copy of H a.a.s. in just m steps. Thus,
we have 7(") (H) = 1.

Case H = Céf’g), s—1r > 20,

A similar strategy also works in this case. The player first constructs a path P := Pﬁf’ﬁ,

as described above. Then, in the m-th and final step, provided U,, N V(P) = 0, the
player composes V,,, of £ vertices of degree one from each end-edge of P and any s — 2¢
fresh vertices. The probability of failure is, again, o(1). Thus, 7(") (H) = 1.

Case H = C,(,f’“), s—r <2¢{—1, lower bound

To establish the desired lower bound on 7(")(H), notice that no matter how the game
progresses, in order to achieve a copy of H, the final edge e;, ¢ > m, has to connect the

two end-edges, say ¢ and ¢, of a copy of po

1 built so far. As the player can only
contribute s — r < 2¢ vertices to e;, the random set U; must draw at least 2¢ — (s — r)
vertices from the one-degree vertices of ¢/ and e”.

We consider separately the case s — r = 2¢ — 1, since then U; needs just one vertex
from €’ Ue”. Since at time ¢ there are ¢ — 1 edges, the probability of U; intersecting at
least one of them is, by (18), O(i/n). Summing over all times 7 < ¢, the probability that
this will happen by time t is O(t?/n) = o(1) whenever t = o(n'/?). This proves that
(" (H) > n'/? in this special case.

When s —r < 2¢ — 2, U; may hit both, ¢’ and €”, so we need to consider all pairs of
edges. Since, at any time ¢, there are (’51) < 42 pairs of edges, the probability of U;
hitting at least r — s 4 2¢ vertices from the union of one pair is

r—(20—s+r) -2
9 N B i
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Summing over all times ¢ < ¢, the probability that this will happen by time t is

r—s+24

O (t3/n"=*+26) | which is o(1) for any ¢t = o (n 3 ) This proves that 7(")(H) >

r—s+2¢
3 .

CaseH:C’,(ﬁ’g), s—r=2¢0—-1.

We have TI(_;) > nl/2 and want to prove a matching upper bound. Let t = wn'/2, where
w := w(n) — oo arbitrarily slowly. This time we propose a more sophisticated player’s
strategy which consists of three phases. In Phase 0 we build, a.a.s. in just m — 3 steps
the path P = Pr(,f’_zi))) of length m — 3, as described earlier in this proof. At this point
we see already that the smallest cases m = 3 and m = 4 are somewhat special. Indeed,
for m = 3 Phase 0 is vacuous, while for m = 4 it consists of just one step as we take
P ={ei}.

For m > 5, in each end-edge of P we fix a set of ¢ vertices of degree one and call these
sets L' and L”. For m = 4, we take L', L" C ey, 'NL"=0. Form=3,L' =L" =L
is an arbitrary fixed subset of [n] of size /.

In Phase 1, which lasts t; := [ (¢t —m+3)/2] steps, the player in alternating time steps
creates a set E' of t' := |t1/3] edges containing L', and a set E” of ¢ edges containing
L”, whose sets of new vertices are disjoint from V(P) \ (L' U L") as well as from each
other. (For m = 3, the player creates 2t' edges containing L but otherwise mutually
disjoint.)

This is feasible, because the probability that a random r-set U; is not disjoint from all
previously built edges is, by (18), O(t1/n). Thus, the expected number of such “failed”
steps is O(t3/n) = O(w?), and so, a.a.s. at least t; —w® > #' sets U; drawn in Phase 1 are
disjoint from all previously built edges. FEach time such a U; arrives, the player extends
it to an s-edge e; by including in V; the set L’ for ¢ odd and to L” for i even, while the
remaining ¢ — 1 vertices of V; are to be “fresh”, that is, not belonging to any previous
edge (see Figure 12).

Figure 12: Phase 1 of building Cg,z for r = 2, where ¢ is odd and j is even.

In Phase 2, lasting to = t; steps, the player waits until a random set U; satisfies
UNV(P)=0 (for m =3, U; N L =0) and, for some edges ¢’ € E' and ¢’ € E", we
have |U;Ne'| =1 and |U; Ne”’| = 0 (note that the existence of ¢” satisfying the second
condition is trivially guaranteed by the disjointness of edges in E”, since t' > r). Once
this happens, a copy of H can be created by including in V; £ — 1 vertices from ¢’ \ L’
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and ¢ vertices from e” \ L” (see Figure 13). Then, P together with edges €', ¢;, €’ form
a copy of H.

Figure 13: Phase 2 of building Cg,z for r = 2.

For ease of calculations, we will bound from below the probability that U; has this
desired property by adding the constraint that

vin |J (e\NL)=0.

ecE'\{e'}

Setting z = |V (P)| for m > 4 and z = ¢ for m = 3, the probability that U; satisfies the
stronger property is
t'(s _ 6) (n—z—t_’(ls—é)))
B - =0 (t/n)
T

and so, the probability that it will not happen at all during Phase 2 is, by the chain
formula,

(1 - ©(t/n))" < exp{~O(t2/n)} = exp{-O(2)} = o(L).

Hence, a.a.s. it will happen at least once during Phase 2 and the player will be able to
construct a copy of H.

CaseH:C’,(?f’z), s—r<2{-—2.

For s — r = 2¢ — 2 we could basically repeat the above argument. However, for smaller
values of s — r, due to the threshold being of order 2(n), it stops working. The reason
is that we cannot have more than n disjoint sets. Therefore, we unify our approach and
present a proof valid for all cases when s —r = 20 — z, 2 < & < min{r, ¢} — the upper
bound on z follows from the assumptions s > 2¢ and s > r + £. Recall that we have
Tg) > n®/3 and are after a matching upper bound. Let t = wn®/3
arbitrarily slowly.

Now, we are ready to present player’s strategy which a.a.s. results in creating a copy

, where w := w(n) — oo

of H in Ggs’r). Phase 0 is the same as in the case z = 1. Before Phase 1, in addition
to fixing sets L' and L” (L for m = 3), we partition the vertex set [n] \ V(P) ([n] \ L
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for m = 3) into three sets Wy, Wa, W3 of sizes n; = |W;| ~ n/3, j = 1,2,3 (in fact,
n; = ©(n) would suffice).

In Phase 1, which lasts ¢1 := [ (t — m + 3)/2] steps, every time a set U; is contained in
Wy (Wa, resp.) the player extends it by including in V; the set L’ (L”, resp.) plus some
arbitrary ¢ — x vertices of Wy (Wa, resp.) (see Figure 14). Clearly, there is a constant
c > 0 such that a.a.s. at least ct sets U; are contained in W and the same holds for W5.
The two sets of edges obtained that way are denoted E’ and E”, resp.

Figure 14: Phase 1 of building 057’3 for r = 3.

In Phase 2, which lasts to = ¢; steps, the player waits until an edge U; arrives which,
for some ¢’ € E’ and €’ € E”, contains exactly |x/2] vertices from €'\ L, [x/2] vertices
from €” \ L”, and all remaining r — x vertices belong to W3. Then the player simply
extends U; by adding ¢ — |x/2] vertices of ¢’ \ L’ and ¢ — [x/2] vertices of ¢\ L”. Then

P plus the edges €, ¢;, ¢’ form a copy of cled (Figure 15).

Figure 15: Phase 2 of building C’g’3 for r = 3.

By Lemma 9, there are at least ct(Lx?2 J) /3 = cit distinct [x/2]-element sets contained
in sets ¢/ \ L', ¢ € F’, and the same is true for [z/2]-element sets in €’ \ L", ¢"” € E”.
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Hence, the probability that U; has the desired property is at least

2 9
(e1t)® x (%)
()
T
Consequently, the probability that it will not happen at all during Phase 2 is, by the
chain formula,

= O(t*/n").

(1—6(2/n")" < exp{—0(t*/n")} = exp{—O(w*)} = 0(1).

This completes the proof of Proposition 8. 0

7 Open Questions

An interesting question is for what H the weak lower bound from Theorem 2, or more
generally from Corollary 3, yields the correct value of 7(") (H). In Theorem 4 we described
a broad class of such hypergraphs, but we doubt it is complete.

1
"=

Problem 1. Given 1 < r < s, determine all s-graphs H for which 7")(H) =n "¢
A more ambitious goal is to pinpoint the threshold 7(")(H) in full generality.
Problem 2. Given 1 < r < s, determine 7")(H) for all s-graphs H.

So far, beyond Theorem 4, we succeeded only for ¢-tight s-uniform paths and cycles
under, however, quite strong assumptions on ¢ and r (see Proposition 8). Thus, a first
modest task could be to solve Problem 2 for the remaining cases of paths and cycles.
Another target class is that of complete s-graphs where, except for a handful of small
cases, we only have some lower and upper bounds.
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Appendix

Edge-balanced implies balanced

Recall that an r-graph F, r > 2, is edge-balanced if for all sub-r-graphs F’/ C F with
err > 1 we have g(F') < g(F'), where g(F) =1/r ifep =1 and g(F) = i?—j ifep > 1.
Further, we call F' balanced if ep/ /vp < ep/vp for all sub-r-graphs F’ of F.
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Claim 17. If an r-graph F' is edge-balanced, then it is also balanced.

Proof. Let F' be an edge-balanced r-graph. Observe that 6(F) > 1, since otherwise it
would not be edge-balanced. Set v := vp and e := ep. Let F/ C F, € := ep > 1.
Setting also v' := vpr, we have by assumption that

e—1 e—1
— <

v—r T v—1r

Our goal is to show that

e e
< 2 20
v T (20)

Equation (19) is equivalent to
ve + (v+re) <ve+ (v+re) (21)

as well as to

e—e _e—1
>

. 22
v—v T v—r (22)
It follows from (21) that if
e 1
v +rv>v4re, or, equivalently, > -, (23)
—v T r
then (20) must hold. Now, (23) follows from (22) and
e—1 1
> —, 24
v—r " T ( )

Finally, (24) is equivalent to v < re which is trivially true, as F' has no isolated vertices.
O

Balanced starpluses

Recall that for 2 < r < s, an s-graph H is r-balanced if for every subgraph H' C H with
at least one edge, f")(H') < f0)(H), where f(")(H) = % By just comparing
the statements of Theorem 4 and Corollary 3 it follows that all starpluses satisfying the
assumptions of the former statement must be r-balanced. Nevertheless, we provide here
a direct proof of this fact in the special case of full (s, s — r)-starpluses, which can be

viewed as a double check of the correctness of our results.

Proposition 18. Let 2 <r < s and let H be a full (s,s — r)-starplus on k vertices with
excess A satisfying inequality (2). Then H is r-balanced.

Proof. Let H' ¢ H, H' # H. Without loss of generality, we assume that H' is an
induced sub-s-graph of H. Let s < k/ < k be the number of vertices of H and set
c=s—r. If k' =s, then e(H') =1 and so f")(H') = 1/r, while

k—c k—c
(r) _(r)+)\ (r) -
FOH) = 2l > o >

—_
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because the last inequality is equivalent to (k;fIl) > 1.
Assume from now on that ¥’ > s+ 1. We do not know how many vertices of the center
of H belong to H’, but nevertheless, the number of edges of H' can be bounded from

above by (k/;C) + A. We are going to prove that

(72 (79 +A
k—c K —c ’

(25)

which is, in fact, a bit stronger statement than what is claimed. First note that (25) is
equivalent to
k—c k'—c ’
k—k
() (), .
k—c kK —c (k—c)(K —c)

k—c
As, by (2), A < 7“267)7 the above inequality, and thus, (25) itself, follows from

T
—S

(7)o (0 = Er(5)
k—c = k’—c+ (k—c)(k' —c)(k —s)
which, in turn, is equivalent to
(K =)k —¢)r > (k—c)(K — ¢),. (26)

To prove (26), we consider three cases with respect of k —k&’. Assume first that k— &' > 3
and transform (26) to

k- Y 1 |
I — > .
<1+k:—c> (1+k—s+2)(1+k—s>_1+k’—s

Imagining the left-hand-side completely cross-multiplied, we infer that the above in-
equality follows from

S Ll AN S
— k—i +l<:—s k-5

As ¢c=s—1r > s— 2, the sum above has at least one summand and the L-H-S can be
bounded from below by ,f%ié which, in turn, is at least ﬁ

When k — k' = 1, setting x := k — s, (26) becomes (x — 1)(z + r) > 2%, equivalently,
r > 5 which is true, because k > k' + 1 > s + 2. Similarly, when k — k' = 2, (26)
becomes (z — 2)(x + r)(x + 7 — 1) > 2%(x — 1). As r > 2, the latter follows from
(x —2)(z +2)(z + 1) > 2?(x — 1) which is true for z > 3. But k > k' +2 > s+ 3, so
indeed x = k — s > 3. O

Properties of /-tight paths and cycles

In this subsection we prove some properties of ¢-tight paths and cycles used in the main
body of the paper. We begin with an observation which follows from the definitions of
both structures.
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Observation 1. The following two statements are true:

(i) Every induced sub-s-graph of PT(,f 9 s a spanning sub-s-graph of a path Pr(ns,’z) for
some m' < m.

(ii) Every induced and proper sub-s-graph of C,(,f’[) s a spanning sub-s-graph of a path
(s,0)
P for some m' < m. O
Recall that d(H) = max{§(H') : H' C H} is the degeneracy of a hypergraph H.
Claim 19. For all1 < ¢ < s and m > 1 we have d(P,gf’e)) = 1, while for m >
(s + 1)/ (s = 0], we have d(C") = [32).
Proof. For the first statement observe that Py(,f 9 as well as every sub-s-graph of PT(,f 6

contains a vertex of degree 1 (in fact, there are at least two such vertices). As for the
cycle, by Observation 1(ii) and the first part of this proof, it suffices to consider only

H = Cf(,f’f. Then, the conclusion follows, because d (C’,(yf’e) = 5] O
Recall that for 2 < r < s and an s-graph H with at least s vertices
E(H)|
gy~ 4 1 (H) = ") (H"),
PO = ) —svr @0 #TE = S

Claim 20. Forallr >2,1</{ < s,

1
, s = for r<s—/{
M( )(pr(nf)) - . ‘
—Dmtistr Otherwise

and, assuming m > [(s+1)/(s—1¢)],

u<f><c<sﬂ>>_max{ m 1}_ bofor r<s—2
m (S—E)m—s—i-r’T (5—6)27—5-1-7" f07“ r>s—4.

In particular, forr > s — ¥, C’T(qf’e) 18 r-balanced.

Proof. By Observation 1 it suffices to consider only those (proper) sub-s-graphs of P,Sf 6

and C’T(,f’g) which are ¢-tight paths themselves. Thus,

m/

") (pls:Oy —
w (P ) 1§I?nz}}§{m(s—€)m’+£—s+r

and

!
() (50 m o
19 (Cm ) maX{(.g—f)m—s—kr’ 1<r£1nélp<(m(5—€)ml+f—8+7“}‘

has the derivative f/(z) = ——&T=5 . we have

As function f(l’) = ( ((s—0)+l—s+1)2>

s—é)mf—ﬂ—s—&—r
f(z) < f(1) = 1/r whenever £ — s +r < 0 whereas

@) < fm) = (s=m+L—s+r < (s—0Om—s+r
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whenever ¢ — s +r < 0. This yields the formula for ,u(r)(R(rf ,z)) and the left-hand-side

formula for ,u(’”)(CT(,f’Z)). Finally, notice that for r < s — 2/,

m>2> ST
- T s—r—V4
which implies that
m 1
< —.
(s—=0m—s+r ~r

O]

Recall that for an s-graph F', s > 2, its density g(F') is defined as 1/s if ep = 1 and
¢r=Ll it ¢p > 1, and that we call F edge-balanced if for all sub-hypergraphs F' C F

VEp—S

with ep > 0 the inequality g(F”) < g(F) holds.
Claim 21. For all s > 2 and m > s+ 1, the tight cycle C'?(Tf) is edge-balanced.

Proof. Recall that Rgf) has exactly m + s — 1 vertices. We have g(Cy(,f)) = % > 1.

Moreover, for every induced proper subgraph F' of C’S) we have, for some m’ < m,

g(F) < g(PT(rf,)) = (m,_m;ﬁ = 1 which finishes the proof. O

In particular, for m = s + 1, we infer that the clique K gl is edge-balanced. Below,
we show that all hyper-cliques are edge-balanced. (We switch from s- to r-uniformity,
as we apply this result to H; — see Section 2.2.)

Claim 22. For all 2 < r < t, the r-uniform clique Kt(r) on t vertices is edge-balanced.
Proof. We have to show that for every t > q > r + 2,

(-1 (-1

g—r —gqg—1-—r

(q—l—r)(z>+12(q—r)<q;1>-

Skipping +1 we get a stronger inequality, equivalent, after cancelation, to ¢g(¢ —1—7)
2

>
(¢ —r)?. This one, in turn, is valid, since for r» > 2 we have ¢ > r +2 > - O

which is equivalent to

Proof of inequality (4)
Claim 23. If s > 3 and s < k < 2s—1, then

(k_l)gw—l)(’;})—(k—l)

s k—s
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Proof. First, note that if k = s + 1 the equation becomes

() =e-0(,0,)-©

which is easily seen to be true.
Thus we may suppose that k& > s+ 2. We have

k—s<s-1
= (k—5)? < (s—1)2
= (k—s)?<s(s—1)—(s—1)
. k:—s<3—1_ s—1
s “k—s s(k—s)
. k—s<k—1><s—1<k—1>_ s—1 (k—l)
s \s—1) " k—s\s—1 s(k—s)\s—1

= (V)==l0) )

so it suffices to show that

or equivalently that

)= ()= )

Since (’g:g) > (%) = 8(82_1) and s > 3, equation (27) holds and the proof is complete.
O
Functions f,(k,¢) and 0y (r, s)

Recall that function fs(k, () = % has appeared in the exponent of the upper bound
on the threshold 7(" (K ,gs)) in Theorem 7, while ¢ := ((r, s) was the smallest integer ¢

such that PR o
g OGOl e

s s/ j=1

(Here, for convenience, we repeat inequality (5) from Section 2.3.)
We first show that

fs(k,€) is (strictly) increasing in both variables. (29)

Indeed, one can show the recurrence fq(k,¢) = fs_1(k — 1,0 — 1)+ (k — 1)5—1, which
implies, by induction on s, that

s

fS(kve) = Z(ﬁ)s—z(k —s+i— 1)i—1-

i=1
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This form reveals that fs(k,¢) is increasing in ¢, as well as in k. In particular, it follows
that with ¢ := £;(r,s) and £ being the smallest integer ¢ satisfying (28) with k and ¢
replaced, respectively, by ¢ and £, we have fs(k,£) > fs(¢,f) (since £ < k —r < k and
(<l—7r<d).

Next, we are going to determine £ := (;(2,3) explicitly, that is, to prove (6). For
r=2and s = 3, (28) becomes

6k — )¢ [(k—1 (-1
k—f—Z—MK 5 >—1+2(k:—€—2) <0,

which, in turn, is equivalent to
2 — 2k +3)+ kK —3k+2<0. (30)

By solving the above quadratic inequality, we obtain
3
by, = [k%— 5~ \/6k+1/4—‘ ,

the same formula which appears in (6) and in Proposition 16.

It has been mentioned earlier that s —r < ¢i(r,s) < k —r. However, for {;(2,3) the
upper bound can be sharpened under a mild assumption on k. Indeed, dropping the
ceiling,

€k§k+g—\/6k+1/4§k:—a (31)

forall k > a(a+5)/6+ 1. E.g., b < k—3for k> 5, while ¢, <k —4for k>7.
It is not easy to compute ¢x(r,s) in general. We have made an attempt at the next
smallest case: r =2, s = 4. In this case (28) becomes

A O]y |

equivalently
k* + 8kl 4 20k0? 4 26k0 + 23k + 12 < 30* + 8k20 + 6k%0% + 8k> + 403 + 502 + 20¢,
which, after setting x = k — £ becomes
4k + 8kx® 4 21k + 10kx + 20z + 12 < 32t 4 20kx + 522 4 20k.

Assuming k is large and focusing on the leading terms, 4kz3 on the left and 3z* + 202z
on the right, it is easy to show that x = O(Vk), and so £;(2,4) = k — Q(vk). Indeed,
first note that x = O(k:2/3), since otherwise 4ka® — 3z* > 2% > k2x, a contradiction. So,
assume that = = w(k)Vk, where w(k) — oo, but w(k) = O(k'/6). Now the left-hand-
side is ©(w(k)3k%/2), while the right-hand-side is O (w(k)*k? 4 w(k)k>/?), a contradiction

again.
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