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Abstract

We study information aggregation in networks when agents interact to learn a binary state
of the world. Initially each agent privately observes an independent signal which is correct with
probability 1

2 + δ for some δ > 0. At each round, a node is selected uniformly at random to
update their public opinion to match the majority of their neighbours (breaking ties in favour
of their initial private signal). Our main result shows that for sparse and connected binomial
random graphs G(n, p) the process stabilizes in a correct consensus in O(n log2 n/ log log n)
steps with high probability. In fact, when log n/n ≪ p = o(1) the process terminates at time
T̂ = (1 + o(1))n log n, where T̂ is the first time when all nodes have been selected at least once.
However, in dense binomial random graphs with p = Ω(1), there is an information cascade where
the process terminates in the incorrect consensus with probability bounded away from zero.

1 Introduction

Our opinions and actions we take as individuals are often influenced by both our private knowledge of
the world and the information we obtain through our interactions with others. For example, a voter
deciding which candidate’s economics policies would decrease inflation, might have an initial belief
based on her own past expenditure and later might be swayed by her friends’ opinions. Now more
than ever, with the advent of social media and online platforms, our interactions have increased many
folds and our social networks are massive. Hence, an important research question is to understand
if and how the structure of the social network and the dynamics of the interactions impact the
(mis)information propagated [37]. Do our social networks enable successful information aggregation
and lead to social learning, or do they amplify incorrect beliefs leading to an information cascade?

There has been extensive work modeling these opinion dynamics formally to study the network
effects on information aggregation; see Section 1.4. In this paper, we focus on the model of
asynchronous majority dynamics, where agents in a network (asynchronously) update their opinions
to match the majority opinion amongst their neighbours. In particular, each agent initially has a
private belief over a binary state of the world and no publicly announced opinion. At each time
step, an agent is chosen uniformly at random to announce/update her opinion and she does so by
simply copying the majority of the neighbours’ current announced opinions, breaking ties with her
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initial belief. Majority dynamics is clearly a naïve learning model, as the agents do not reason about
potential information redundancy due to interaction between one’s neighbours. Such naïve learning
(non-Bayesian) models are a more faithful abstraction of everyday interactions between agents with
bounded rationality (e.g., voters and consumers), while Bayesian models are a better abstraction
of rational agents or interactions about high-stakes information (e.g., traders and scientists). We
consider asynchronous updates which are more suitable to capture human decision making. Moreover,
asynchronous emergence of announcements also captures an initial information diffusion phase before
conventional social learning starts.

In our model, there is a correct opinion (i.e., the true state of the world) and each agent’s initial
private belief is independently drawn and is biased towards being correct (with probability 1/2 + δ).
So initially, in a large network, there is enough information so that an omniscient central planner can
infer the true state (with very high probability). However, agents in the network are updating their
opinions based on local heuristics, so the network structure can crucially alter the final outcome of
the dynamics. For example, in a complete graph, with a constant probability all the nodes converge
to the wrong opinion. On the other hand, in a star graph with high probability all the nodes converge
to the correct opinion. This brings us to the main question of interest:

“What network structures enable efficient social learning, where the dynamics stabilizes
with every agent in the network reaching the correct opinion?”

Feldman et al. [22], who initiated the study of asynchronous majority dynamics, showed that
when the network is sparse (has bounded degree) and expansive, a correct consensus is reached with
high probability. More recently, Bahrani et al. [4] studied networks that have certain tree structures
(like preferential attachment trees and balanced m-ary trees) and showed that the dynamics stabilizes
in a correct majority. Both results heavily rely on these particular assumptions on the network. For
example, to even establish that a majority of the nodes have the correct opinion at some point in the
process, it is crucial that the network is either a bounded degree graph or is a tree. In this paper, our
goal is to extend the guarantees of asynchronous majority dynamics beyond these assumptions and
to develop techniques applicable to more general networks formed through random graph models.

1.1 The Model

Consider any undirected graph G = (V,E) on n = |V | nodes. Individuals initially have one of
two private beliefs which we will refer to as “Correct” (or 1) and “Incorrect” (or 0). Formally, each
v ∈ V (G) receives an independent private signal X(v) ∈ {0, 1}, and Pr(X(v) = 1) = 1/2 + δ, for
some universal constant δ ∈ (0, 1/2). Individuals also have a publicly announced opinion which we
will simply refer to as an announcement or opinion. We define Ct(v) ∈ {⊥, 0, 1} to be the public
announcement of v ∈ V at time t.

Initially, no announcement have been made, that is, C0(v) =⊥ for all v ∈ V . In each subsequent
step, a single node vt is chosen uniformly at random from V , independently from the history of
the process. In particular, as in the classical coupon collector problem, some nodes will be chosen
many times before others will get lucky to get chosen for the first time. In step t, vt updates her
announcement using majority dynamics, while announcements of other nodes stay the same. To be
specific, for any i ∈ {⊥, 0, 1} and v ∈ V , let N t

i (v) denotes the number of neighbours of v that have
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opinion i at time t. Then,

Ct(v) =


1 if N t−1

1 (v) > N t−1
0 (v) and v = vt,

0 if N t−1
1 (v) < N t−1

0 (v) and v = vt,

X(v) if N t−1
1 (v) = N t−1

0 (v) and v = vt,

Ct−1(v) if v ̸= vt.

That is, at time step t, the opinion of the chosen node vt is updated to match the majority
opinion among the current public announcements of vt’s neighbours and ties are broken in favour of
vt’s initial private belief. Observe that when none of vt’s neighbours have announced so far, i.e.,
N t−1

1 (v) = N t−1
0 (v) = 0, we have Ct(v) = X(v).

Finally, for any i ∈ {⊥, 0, 1}, let Y t
i be the number of nodes that have opinion i at time t, that

is, Y t
i = |{v ∈ V : Ct(v) = i}|.
As shown in [22], it is easy to see that in any network this process stabilizes with high probability

in O(n2) steps. In fact, the process stabilizes in O(n log n+ n · d(G)) where d(G) is the diameter
of the graph [4]. That is, the network reaches a state at some time T where no node will want to
change its announcement and thus the process terminates. Our goal is to understand what fraction
of nodes converges to the correct opinion, that is, what the value of Y T

1 /n is.

1.2 Our Results

The main contribution of this paper is the proof that the asynchronous majority dynamics on
binomial random graph G(n, p) converges to the correct opinion, provided that the graph is sparse
(that is, the average degree np = o(n)) and connected (that is, np− log n ≫ 1). If np ≫ log n, then
the process converges to the correct opinion as quickly as it potentially could.

Theorem 1.1. Let δ ∈ (0, 1/10]. Let ω′ = ω′(n) = o(log n) be any function that tends to infinity
as n → ∞. Suppose that p = p(n) ≪ 1 and p ≫ log n/n, and consider the asynchronous majority
dynamics on G(n, p).

Then, asymptotically almost surely (a.a.s.) after n(log n + ω′) = (1 + o(1))n log n rounds the
process terminates with all nodes announcing the correct opinion. In fact, it happens exactly at time
T̂ , where T̂ is the first time when all nodes are selected at least once.

For sparser (but still connected) graphs, the process also converges to the correct opinion. In
this case, we do not aim to show that it happens at time T̂ and we only provide an upper bound for
the number of rounds. It remains an open problem to determine if the process terminates at time T̂
or it needs more time to converge.

Theorem 1.2. Let δ ∈ (0, 1/10]. Let ω′ = ω′(n) = o(log logn) be any function that tends to
infinity as n → ∞. Suppose that p = p(n) ≤ ω′ log n/n and p ≥ (log n + ω′)/n, and consider the
asynchronous majority dynamics on G(n, p).

Then, a.a.s. after O(n(log n)2/(log logn)) rounds the process terminates with all nodes announcing
the correct opinion.

These results are best possible in the following sense. If p ≤ (log n− ω′)/n, then a.a.s. G(n, p) is
disconnected. In fact, a.a.s. there are at least ω′ isolated nodes which announce their own private
believes. As a result, a.a.s. some nodes announce the correct opinion but some of them announce

3



the incorrect one. Indeed, the probability that all isolated nodes converge to the same opinion is
at most o(1) + (1/2 + δ/2)ω

′
+ (1/2− δ/2)ω

′
= o(1). On the other hand, if p ∈ (0, 1] is a constant

separated from zero, then with positive probability the process converges to the correct opinion and
with positive probability it converges to the incorrect opinion.

Theorem 1.3. Let δ ∈ (0, 1/2). Let ω′ = ω′(n) = o(log n) be any function that tends to infinity as
n → ∞. Suppose that p ∈ (0, 1] is a constant, and consider the asynchronous majority dynamics on
G(n, p).

Then, the following is true for i ∈ {0, 1}: with probability at least pi, after n(log n + ω′) =
(1 + o(1))n log n rounds the process terminates with all nodes announcing opinion i, where

p1 = (1/2 + δ) exp
(
− log(1/p)(1/p)

)
= (1/2 + δ)p1/p > 0

p0 = (1/2− δ) exp
(
− log(1/p)(1/p)

)
= (1/2− δ)p1/p > 0.

Let us stress the fact that the constants p0 and p1 in Theorem 1.3 depend on δ and p. Both
dependencies are necessary. In particular, Theorem 1.1 implies that p0 → 0 as p → 0 so there is
no universal constant that works for all values of p ∈ (0, 1]. Finally, let us mention that for some
technical reason, in Theorems 1.1 and 1.2 it is assumed that δ ≤ 1/10. However, it is easy to couple
the process with δ ≤ 1/10 with the one with δ ∈ (1/10, 1/2) to show that the result holds for any
δ ∈ (0, 1/2)—see Subsection 2.3 for more details.

Sparsity and Social Learning. In summary, we show that random graphs with sub-linear
average degree converges to the correct consensus a.a.s. On the other hand, random graphs with
linear average degree may converge to an incorrect consensus with probability bounded away from
zero. These results suggest that network sparsity is fundamental for successful social learning:
communities with sparse connections are very likely to collectively learn the correct opinion, while
dense connections may enable information cascades where the community converging to the incorrect
opinion while ignoring the correct private beliefs held by a majority.

Moreover, our analysis highlights a key phenomena behind this difference. Sparsely connected
networks allow various private beliefs to emerge independently in the network initially, which enables
the correct opinion to win eventually. In contrast, densely connected networks promote rapid copying
of early opinions, which overwhelms the natural advantage of the majority correct private beliefs.
Further, we find that the level of sparsity can determine how quickly the correct consensus is reached.
In particular, with sufficient connections, the correct opinion propagates to nearly the entire network
faster than the coupon collector bound (on time T̂ by which all nodes have announced at least once).
Consequently, when the network is sparse but not too sparse (i.e., with average degree ω(log n) but
still sub-linear), the process converges to consensus precisely when the last node makes its first
announcement.

These findings strengthens the results of [22], who show that a more restrictive notion of sparsity—
constant maximum degree—facilitates social learning in expander graphs. While our results focus
on a theoretical model of asynchronous majority dynamics, it complements experimental results of
Dasaratha and He [19], observe that people learn better in sparser binomial random graphs.

1.3 Future Directions

Let us highlight a few potential directions one might want to consider.
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• As already mentioned above, for very sparse graphs (np− log n → ∞ and np = O(log n)), it
would be interesting to determine if the process terminates at time T̂ or it needs more time to
converge to the correct opinion—see Theorem 1.2.

• Theorem 1.2 holds as long as pn = log n+ ω for some ω = ω(n) → ∞ as n → ∞. It is known
that if pn = log n+ c for some constant c ∈ R, then with probability bounded away from one
and from zero the graphs is disconnected. As a result, there is no hope to extend the result
for this range of p. But it is plausible that a.a.s. it holds right at the time the random graph
process creates a connected graph. This would be an optimal “hitting time” result.

• For disconnected graphs (np− log n → −∞), it would be interesting to investigate the process
run on the giant component of G(n, p).

• For dense graphs, it is not true that a.a.s. all nodes converge to the correct opinion—see
Theorem 1.3. Having said that, it is reasonable to expect that a.a.s. all nodes converge to the
same opinion (for example, [23] show that a consensus is reached in this case in a synchronous
setting). Is is true in our asynchronous setting? In any case, what is the asymptotic value of
the probability that all nodes converge to the correct opinion?

• It would be interesting to investigate other random graph models that are able to generate
graphs with power-law degree distributions as the Chung-Lu model [16] or the classical
configuration model. More challenging, but an important and interesting, direction would be to
understand the learning process on a network with a community structure such as the ABCD
(Artificial Benchmark for Community Detection) model [32] which produces a random graph
with community structure and power-law distribution for both degrees and community sizes. In
this model, small communities might create echo chambers, environments in which participants
encounter beliefs that amplify or reinforce their preexisting beliefs inside a community and
insulated from rebuttal.

• In this paper, we analyzed the model introduced earlier [22] that already generated some
interests. However, it is reasonable to assume that agents (in lab experiments) are likely to keep
their private signals even when the difference between public opinions among their neighbours
is small. Hence, it would be interesting to analyze the model in which agents announce their
private beliefs in such situation.

1.4 Related Work

In this section, we briefly discuss prior work on social learning mainly focusing on the setting with a
binary state of the world and the agents initially have a correct opinion independently with probability
1/2 + δ. We refer to some recent surveys on social learning and opinion dynamics [39, 8, 11] for a
more detailed literature review.

Majority dynamics falls under a wide class of naive or non-Bayesian models, where agents
use a simple local heuristic to update their opinions, to capture simple behaviours exhibited by
non-expert decision makers. Prior works have studied majority dynamics under a variety of modeling
assumptions, to understand when a consensus is possible and when there is social learning—that is,
the consensus (or the majority) is correct. These works study a variety of networks such as k-regular
trees [30, 34, 4], bounded degree graphs [22], random regular graphs [25], “symmetric” graphs and
expanders [41]. In [47], a different perspective on social learning asks when is it possible to “recover
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the correct opinion” at the end of the dynamics through any function (not just a consensus or
majority vote). Prior work has also considered models with different notions of bias towards correct
opinion, for example, each node updates to the correct opinion with some probability [3], or the
initial configuration of the network has some n/2 + δ correct opinions [48, 49].

Recently, there has been a series of work studying synchronous majority dynamics in binomial
random graphs [10, 23, 15], with a focus to showing that 99% of the nodes converge to the same
opinion (with high probability) for sparse random graphs, with p = Ω(log n/n3/5) being the best
known lower bound for the average degree. Moreover, [50] showed that a correct consensus is reached
with high probability for binomial random graphs with p = Ω(log n/n) under synchronous majority
dynamics. In contrast to these works, we focus on asynchronous dynamics and prove that a correct
consensus is reached with high probability for p = Ω(log n/n) and p = o(1). Binomial random
graphs are also studied under label propagation [36] which is a special case of synchronous majority
dynamics with non-binary opinion in [0, 1].

Many of the works mentioned above focus on synchronous updates, where all agents update
their opinions synchronously in each round. Majority dynamics with synchronous updates leads to a
correct consensus for all networks that are sufficiently connected [41], whereas with asynchronous
updates the network structure can have a huge impact on social learning. This is best illustrated
by the complete graph. With asynchronous updates, once the first agent announces their opinion
(which can be wrong with probability 1/2− δ) everyone will copy this. Hence, with a probability
bounded away from zero all the nodes converge to the wrong opinion. In contrast, if all agents
were to update synchronously, then the majority of the round one updates will be correct with high
probability, so there will be a correct consensus in round two. Recent work [5], studies the DeGroot
model with uninformed agents, to capture the different phases of information diffusion and social
learning, which is a key phenomena that occurs in our asynchronous model.

Asynchronous dynamics, where a random node is chosen to update at each time, have also been
studied under different modeling assumptions. In [45], there are no private beliefs, instead initially
all nodes have a some publicly announced opinions and ties are broken at random. They show that
for any initial configuration a consensus is reached with high probability in time O(n log n) in dense
binomial graphs (p = Ω(1)) under a general class of majority-like update rules. They leave it as an
open problem to study the consensus time of sparse binomial random graph.

Other non-Bayesian dynamics have also been extensively studied. In the Voter model, agents
choose a random neighbour and copy their opinion [17, 29]. A similar dynamics called k-majority
model are studied in the distributed computing literature, where agents choose k-neighbours at
random and copy their majority [9, 27, 26, 18, 1]. In the DeGroot Model, an agent’s opinion lies in
[0, 1] (as opposed to binary {0, 1}) and agents update to the average of their neighbours [20, 28].
In [21], an asynchronous DeGroot dynamics is considered where each node has an independent
Poisson clock which determines when they are chosen to update. A key difference between these
works and majority dynamics is that in these models a consensus is reached with probability 1 for
any connected graphs. This is not the case in majority dynamics even with synchronous updates.

While our focus is in non-Bayesian dynamics, there has also been a long line of work studying
Bayesian models, where agents update their beliefs rationally given their (local) observations
exhibiting more sophisticated decision-making. Seminal works [7, 12] introduced the study of
Bayesian dynamics and identified conditions that lead to information cascades. Here, the agents arrive
sequentially and observe all the announcements (i.e., they form a complete graph), and many other
subsequent works consider Bayesian dynamics under different assumptions and variations [46, 6, 14].
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Bayesian dynamics in general social networks were first studied in [2]. There is also a long line of
work studying Bayesian learning with repeated interactions [24, 44, 33, 43, 42, 40].

2 Preliminaries

2.1 Notation

Let us first precisely define the G(n, p) binomial random graph. G(n, p) is a distribution over the
class of graphs with the set of nodes [n] := {1, . . . , n} in which every pair {i, j} ∈

(
[n]
2

)
appears

independently as an edge in G with probability p. Note that p = p(n) may (and usually does) tend
to zero as n tends to infinity. We say that G(n, p) has some property asymptotically almost surely
or a.a.s. if the probability that G(n, p) has this property tends to 1 as n goes to infinity. For more
about this model see, for example, [13, 31, 35].

Given two functions f = f(n) and g = g(n), we will write f(n) = O(g(n)) if there exists an
absolute constant c ∈ R+ such that |f(n)| ≤ c|g(n)| for all n, f(n) = Ω(g(n)) if g(n) = O(f(n)),
f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), and we write f(n) = o(g(n)) or f(n) ≪ g(n)
if limn→∞ f(n)/g(n) = 0. In addition, we write f(n) ≫ g(n) if g(n) = o(f(n)) and we write
f(n) ∼ g(n) if f(n) = (1 + o(1))g(n), that is, limn→∞ f(n)/g(n) = 1.

2.2 Concentration Tools

In this section, we state a few specific instances of Chernoff’s bound that we will find useful. Let
(Z1, . . . , Zn) be a sequence of independent Bernoulli(p) random variables. For each j ∈ [n], let
Xj =

∑j
i=1 Zi. In particular, Xn ∈ Bin(n, p) is a random variable distributed according to a

Binomial distribution with parameters n and p. Then, a consequence of Chernoff’s bound (see
e.g. [31, Theorem 2.1]) is that for any τ ≥ 0 we have

P(Xn − E[Xn] ≥ τ) ≤ exp

(
− τ2

2(E[Xn] + τ/3)

)
(1)

P(E[Xn]−Xn ≥ τ) ≤ exp

(
− τ2

2E[Xn]

)
. (2)

Moreover, let us mention that the above bounds hold in a more general setting as well, that is,
for any sequence (Zj)1≤j≤n of independent random variables such that for every j ∈ [n] we have
Zj ∈ Bernoulli(pj) with (possibly) different pj-s (again, see e.g. [31] for more details).

Finally, we note that Xn − E[Xn] in (1) can be replaced with max1≤j≤n(Xj − E[Xj ]) and
E[Xn]−Xn in (2) can be replaced with max1≤j≤n(E[Xj ]−Xj). That is, we have

P( max
1≤j≤n

(Xj − E[Xj ]) ≥ τ) ≤ exp

(
− τ2

2(E[Xn] + τ/3)

)
(3)

P( max
1≤j≤n

(E[Xj ]−Xj) ≥ τ) ≤ exp

(
− τ2

2E[Xn]

)
. (4)

This is a consequence of a standard martingale bound (see e.g. [38] for more details).
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2.3 Coupling

Suppose that at some point of the process, the public announcement is captured by Ct(v), v ∈ V .
Let Ĉt(v) be any sequence of opinions such that the following properties hold: (a) if Ĉt(v) = 1,
then Ct(v) = 1, (b) if Ĉt(v) = 0, then Ct(v) ∈ {0, 1,⊥}, (c) if Ĉt(v) =⊥, then Ct(v) =⊥. In other
words, we get the auxiliary sequence Ĉt(v) by modifying some of the opinions 1 and ⊥ in Ct(v) to 0.
Hence, the process starting from Ct(v) can be coupled with the auxiliary process starting from Ĉt(v)
such that all the properties (a)–(c) are satisfied in every step of the process. In particular, if the
auxiliary process converges to all nodes having opinion 1, then so does the original process. This
easy observation will turn out to be useful in analyzing the process.

Similarly, suppose private beliefs in the auxiliary process are dominated by private beliefs in the
original process: for any v ∈ V , X̂(v) ≤ X(v). If the two processes are coupled, then properties
(a)–(c) hold again. As before, if the auxiliary process converges to all nodes having opinion 1, then
so does the original process. In particular, as mentioned above, the assumption that δ ∈ (0, 1/10] in
Theorems 1.1 and 1.2 can be relaxed to δ ∈ (0, 1/2).

3 Sparse Random Graphs

In this section, we consider sparse random graphs, that is, we will assume that p = o(1). Let
ω = ω(n) be a function that tends to infinity as n → ∞, arbitrarily slowly. In particular, each time
we refer to ω, we will assume that ω ≪ pn and ω ≪ (1/p)1/2 so that 1/p ≫ 1/(pω) ≫ 1/(pω2) ≫ 1.

We will consider a few phases. During the first phase (Subsection 3.1), most of the nodes that
are chosen have not yet announced their opinions (Ct−1(vt) =⊥) and none of their neighbours have
announced (N t−1

1 (vt) = N t−1
0 (vt) = 0). Hence, the announcement of vt will typically coincide with

its private belief. During the second phase (Subsection 3.2), it is still the case that most selected
nodes are selected for the first time but this time they might have neighbours that announced their
opinions. As a result, the argument is more involved but the conclusion is that at the end of the
second phase more nodes have correct opinion than not.

The analysis of the first two phases can be applied for all sparse graphs, even below the threshold
for connectivity. The analysis of the final steps of the process is slightly more involved. We first
present an easy argument for not very sparse graphs (Subsection 3.3), that is, when the asymptotic
expected degree degree satisfies pn ≫ log n. Very sparse graphs for which pn = Θ(log n) (but, of
course, above the connectivity threshold) are considered in Subsection 3.4.

Overview. A key phenomena in asynchronous dynamics is that the process involves both infor-
mation diffusion and conventional social learning. Intuitively, the process initially produces some
independent beliefs/opinions pop up sporadically throughout the network. These opinions then
diffuse in the network during the process as more nodes are selected to announce/update their
opinion by learning from their neighbours. With this in mind, our analysis considers multiple phases
of the process. We provide a brief description of the different phases below.

• Phase 1. In the first few time steps, most nodes that are selected to announce have not been
selected earlier and, more importantly, do not have neighbours who have been selected before.
So almost all of the opinions in the network at the end of phase one are just the independent
private beliefs of the selected nodes. Since the private signals are biased towards being correct,
a strict majority of the opinions are correct at the end of the first phase. In particular, we
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show that at time T1 = δ/2p, the number of nodes with opinion 1 is at least (1/2 + 3δ/5)T1

and opinion 0 is represented at most (1/2− 3δ/5)T1 times. Moreover, T1(1− o(1)) nodes have
made some announcement in this phase, that is, very few nodes were selected more than once.

• Phase 2. In the second phase, again most nodes that are selected to announce have not been
selected earlier. In particular, we show that at any time t during the second phase (i.e., after
time T1 but before time T2 = n/ω), the number of nodes that were selected twice before time t
is o(t). Moreover, since a super majority of the opinions at the end of the previous phase were
correct, we prove that nodes that are selected to announce for the first time are more likely to
learn the correct opinion even if we pretend that the few nodes that are selected again were to
change their opinion to 0.

• Phase 3 (a). For not very sparse graphs, we are able to show all nodes which were not
selected in the first two phases have more neighbours with opinion 1 than not. Again, very few
nodes who were selected before are selected again before time T3 = n/

√
ω, so even if all of

them announce 0 all nodes who make their first announcement between time T2 and time T3

announce the correct opinion. Finally, even if all the nodes that were selected before time T2

are to have opinion 0 and all nodes that were selected for the first time between time T2 and
time T3 have opinion 1, we show that a.a.s. all announcements after time T3 are always correct.

• Phase 3 (b). For very sparse graphs, the proof of the last phase is more involved as there
might be nodes whose degree is too small to guarantee that a majority of their neighbours
have opinion 1, even though there is a super majority of opinion 1 in the network. However,
we may bound the number of nodes with small degrees and show that no large degree node
has more than one small degree neighbour. With this in hand, we show that after every batch
of O(n log n) many time steps the number of large degree nodes with opinion 0 shrinks by at
least (log logn)1/4 factor. Hence, after o(log n) many such batches all large nodes have opinion
1. Finally, we show that no two small degree nodes are adjacent to each other, and hence all
the small degree nodes will also switch to opinion 1 by copying the opinions of their large
degree neighbours.

We highlight a few simple techniques that help us in the analysis. Firstly, separating the
randomness of the graph, the node selection process and the opinion formation. For example, we
wait to reveal/expose the edges adjacent to a node only when she is selected to announce for the
first time. This simple, well-known technique, known as the principle of deferred decisions, is very
powerful and often used in analysis of randomized algorithms. The idea behind the principle is
that the entire set of random choices are not made in advance, but rather fixed only as they are
revealed to the algorithm. Second, considering an auxiliary dynamics that is coupled with the actual
dynamics in order to ignore problematic but rare events such as the repeated nodes in the first two
phases. Finally, finding independent sequences of random variables that stochastically dominate the
opinion dynamics sequence in order to compute probability bounds more easily.

3.1 Phase 1: T1 = δ/(2p)

In the analysis of the process, it will be convenient to ignore opinions of a small fraction of nodes, and
consider the following auxiliary dynamics. We will use Dt(v) ∈ {⊥, ?, 0, 1} to denote the auxiliary
announcement of v ∈ V at time t. For any i ∈ {⊥, ?, 0, 1}, let Zt

i be the number of nodes that have

9



auxiliary opinion i at time t, that is, Zt
i = |{v ∈ V : Dt(v) = i}|. We will explain how the values of

Dt(v) are determined soon but the auxiliary dynamics will be coupled with the original one and, in
particular, we will make sure that the following property holds.

Property 3.1. If Dt(v) = i for some i ∈ {⊥, 0, 1} and time t, then Ct(v) = Dt(v). On the other
hand, if Dt(v) =?, then Ct(v) ∈ {0, 1}. As a result, for i ∈ {0, 1} and any time t during the first
phase, we have

Zt
i ≤ Y t

i ≤ Zt
i + Zt

?. (5)

The first phase takes T1 = δ/(2p) = Θ(1/p) ≫ ω2 ≫ 1 rounds. In order to keep the analysis easy,
we postpone exposing edges of G(n, p) for as long as possible, and keep the following useful property.

Property 3.2. At any time t, only edges of G(n, p) with both endpoints in the set {v : Dt(v) ̸=⊥}
are exposed.

The auxiliary dynamics, coupled with the original one, that we aim to understand is defined as
follows. Consider a node vt chosen at time t. For all other nodes v ̸= vt we have Dt(v) = Dt−1(v).
For vt we have,

Dt(vt) =


? if Dt−1(vt) ̸=⊥,

? if ∃ node v such that v ∈ N(vt) and Dt−1(v) ̸=⊥,

X(vt) otherwise.

That is, if vt had announced her opinion at least once before time t (Dt−1(vt), Ct−1(vt) ̸=⊥),
then we fix Dt(vt) =?. On the other had, if vt has not announced her opinion yet (that is,
Dt−1(vt) = Ct−1(vt) =⊥), then we expose edges of G(n, p) between vt and the set {v : Dt−1(v) ̸=⊥}.
If no edge between vt and the set {v : Dt−1(v) ̸=⊥} is present, then no neighbour of vt has an
announced opinion and so Dt(vt) = Ct(vt) = X(vt) is fixed to the private belief of vt. Otherwise
(that is, at least one edge is present), then we simply fix Dt(vt) =?. Let us note that, an alternative
approach would be to investigate the value of Ct(vt) and then fix Dt(vt) = Ct(vt). However, we
expect at most pt ≤ pT1 = δ/2 edges between vt and {v : Dt−1(v) ̸=⊥}, and so there will not be
many nodes vt of this type. As a result, we may simply ignore the announcements of such nodes,
thus simplifying our analysis.

Moreover, a useful implication of this approach is that in order to estimate the values of Zt
⊥

and Zt
? in this process, we do not need to uncover nodes’ private believes (X(v)’s). Hence, we may

postpone exposing private beliefs of nodes with Dt(v) ̸∈ {⊥, ?} to the very end of this phase, and
only then expose this information to determine how many nodes satisfy DT1(v) = 1 and how many
of them satisfy DT1(v) = 0. Finally, it is easy to see that Property 3.1 is satisfied at time T1 and
Property 3.2 is satisfied in any point of the process.

Here is the main result of this subsection.

Proposition 3.3. Suppose that p = p(n) ≪ 1 and p ≫ 1/n. Set T1 = δ/(2p). Let ω = ω(n) ≪
min{pn, (1/p)1/2} be any function that tends to infinity as n → ∞. Then, a.a.s. the following holds:

ZT1
? ≤ δT1

4
(1 +O(1/ω)) (6)

ZT1
1 ≥ (1/2 + 3δ/5) T1 (7)

ZT1
? + ZT1

1 + ZT1
0 = T1 (1−O(1/ω)) . (8)
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As a result, by Property 3.1,

Y T1
1 ≥ (1/2 + 3δ/5) T1

Y T1
0 ≤ (1/2− 3δ/5) T1

Y T1
1 + Y T1

0 = T1 (1−O(1/ω)) .

Proof. Let us start with investigating ZT1
? . Recall that in our auxiliary dynamics, there are two

ways node vt could change its state to Dt(vt) =? at time t. Let It be the indicator random variable
that this happens because Dt−1(vt) ̸=⊥, and let I =

∑T1
t=1 It. Similarly, let Jt be the indicator

random variable that Dt−1(vt) =⊥ but there is an edge between vt and the set {v : Dt−1(v) ̸=⊥}.
Let J =

∑T1
t=1 Jt.

Note that, at most t−1 distinct nodes have made an announcement before round t. In particular,
at most one node can change its state from Dt−1(v) =⊥ to Dt(v) ̸=⊥, deterministically, at any
round t of the process. So, the number of nodes with Dt−1(v) ̸=⊥ is n− Zt−1

⊥ ≤ t− 1. We get that

Pr(It = 1) =
n− Zt−1

⊥
n

≤ t− 1

n
,

and so I can be stochastically upper bound by Î =
∑T1

t=1 Ît where (Ît)1≤t≤T1 are independent
variables and for every t ∈ [T1] we have Ît ∈ Bernoulli((t− 1)/n). Note that, since pn ≫ ω,

E[Î] =
T1∑
t=1

t− 1

n
=

(T1 − 1)T1

2n
∼ δT1

4pn
≪ T1

ω
. (9)

It follows from Chernoff’s bound (1) (and the comment right after it) applied with t = T1/ω =
Θ(1/(pω)) ≫ ω ≫ 1 that

Pr(Î ≥ E[Î] + t) ≤ exp

(
− t2

(2/3 + o(1))t

)
= exp (−Θ(t)) = o(1).

So a.a.s. I ≤ Î = O(T1/ω). Similarly, since pt ≤ pT1 = δ/2 < 1/4,

Pr(Jt = 1) =
Zt−1
⊥
n

(
1− (1− p)n−Zt−1

⊥

)
≤ 1− (1− p)t = 1−

(
1− pt+ p2

(
t

2

)
− . . .

)
≤ pt.

As before, we stochastically upper bound J by Ĵ =
∑T1

t=1 Ĵt, where Ĵt ∈ Bernoulli(pt). We get that

E[Ĵ ] =
T1∑
t=1

pt =
p(T1 + 1)T1

2
=

pT 2
1

2
(1 +O(1/T1)) =

δT1

4
(1 +O(1/ω)) ,

and Chernoff’s bound (1) (applied with t = E[Ĵ ]/ω) implies that

Pr(Ĵ ≥ E[Ĵ ] + t) ≤ exp

(
− E[Ĵ ]
(2 + o(1))ω2

)
= exp

(
−Θ(T1/ω

2)
)
= exp

(
−Θ(1/(pω2))

)
= o(1).

Hence, a.a.s. J ≤ Ĵ ≤ δT1
4 (1 +O(1/ω)) and so a.a.s. ZT1

? ≤ I + J ≤ δT1
4 (1 +O(1/ω)). This

proves (6).
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It remains to investigate ZT1
0 and ZT1

1 . Let us summarize the situation at time T1. The number
of rounds when nodes were not chosen for the first time is at most I = O(T1/ω) a.a.s. Hence, a.a.s.
the number of nodes that were chosen at least once is equal to T1 − O(T1/ω). This proves (8).
Moreover, it implies that a.a.s. the number of nodes with DT1(v) ̸∈ {⊥, ?} is equal to

ZT1
1 + ZT1

0 = T1 −O(T1/ω)− ZT1
? ≥ (1− δ/4)T1 (1 +O(1/ω)) .

More importantly, as mentioned above, in the analysis so far we did not use their opinions which are
consistent with their private beliefs. We conveniently deferred this information up to now. After
exposing this information, we get that ZT1

1 is stochastically lower bounded by the random variable
Ẑ1 ∈ Bin((1 − δ/4)T1 − cT1/ω, 1/2 + δ), where c > 0 is a large enough constant. After applying
Chernoff’s bound (2) (with t = T1/ω) we get that

ZT1
1 ≥ Ẑ1 = (1/2 + δ)(1− δ/4)T1(1 +O(1/ω))

≥ (1/2 + δ − δ/4)T1(1 +O(1/ω))

≥ (1/2 + 3δ/5)T1

with probability at least

1− exp(−Θ(T1/ω
2)) = 1− exp(−Θ(1/(pω2))) = 1− o(1).

This proves (7).
The conclusion for Y T1

1 follows immediately from Property 3.1, and the bound for Y T1
0 is a trivial

implication of the fact that Y T1
1 + Y T1

0 ≤ T1. The proof of the proposition is finished.

3.2 Phase 2: T2 = T2(n) such that ω/p ≤ T2 ≤ n/ω

By Proposition 3.3, since we aim for a statement that holds a.a.s., we may assume that at the
beginning of Phase 2,

Y T1
1 ≥ (1/2 + 3δ/5) T1

Y T1
0 ≤ (1/2− 3δ/5) T1

Y T1
1 + Y T1

0 = T1 (1 +O(1/ω)) . (10)

As in the previous phase, it will be convenient to ignore opinions of some problematic nodes and
assign auxiliary announcements Dt(v) =? to such nodes. We will continue using Zt

i to denote the
number of nodes that have auxiliary opinion i at time t. We fix DT1(v) = CT1(v) for all v so, initially,
auxiliary announcements coincide with the truth announcements. However, this time we assign
Dt(vt) =? only if Dt−1(vt) ̸=⊥ (that is, the node chosen at time t has made an announcement in the
past); otherwise, the auxiliary announcement Dt(vt) is determined immediately pretending that all
neighbours v of vt with Dt−1(v) =? announced 0. More formally, for each node v and i ∈ {0, 1,⊥, ?}
let N̂ t

i (v) denote the number of neighbours v′ of v with auxiliary opinion Dt(v′) = i at time t. Then
we have,

Dt(vt) =


? if Dt−1(vt) ̸=⊥,

1 if N̂ t−1
1 (vt) > N̂ t−1

0 (vt) + N̂ t−1
? (vt),

0 if N̂ t−1
1 (vt) < N̂ t−1

0 (vt) + N̂ t−1
? (vt),

X(vt) if N̂ t−1
1 (vt) = N̂ t−1

0 (vt) + N̂ t−1
? (vt).

As a consequence, Dt(v) and Ct(v) are coupled so that the following property is satisfied.
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Property 3.4. If Dt(v) = i for some i ∈ {⊥, 1} and time t, then Ct(v) = Dt(v). On the other
hand, if Dt(v) = i for some i ∈ {0, ?}, then Ct(v) ∈ {0, 1}. As a result, for any time t during the
second phase, we have Y t

1 ≥ Zt
1.

As before, it is easy to see that Property 3.2 is also satisfied during this phase. Here is the main
result of this subsection.

Proposition 3.5. Suppose that p = p(n) ≪ 1 and p ≫ 1/n. Let ω = ω(n) ≪ min{pn, (1/p)1/2} be
any function that tends to infinity as n → ∞. Set T2 = T2(n) such that ω/p ≤ T2 ≤ n/ω. Then,
a.a.s. the following holds:

ZT2
? = O(T2/ω)

ZT2
1 ≥ (1/2 + δ/2) T2

ZT2
? + ZT2

1 + ZT2
0 = T2 (1−O(1/ω)) .

As a result, by Property 3.4,

Y T2
1 ≥ (1/2 + δ/2) T2

Y T2
0 ≤ (1/2− δ/2) T2

Y T2
1 + Y T2

0 = T2 (1−O(1/ω)) .

Before we move to the proof of this proposition, let us make some simple but useful observations.
First, note that only a negligible fraction of the nodes have an opinion that we do not control.

Lemma 3.6. Suppose that p = p(n) ≪ 1 and p ≫ 1/n. Let ω = ω(n) ≪ min{pn, (1/p)1/2} be any
function that tends to infinity as n → ∞. Set T2 = T2(n) such that ω/p ≤ T2 ≤ n/ω. Then, a.a.s.,
for any t such that T1 ≤ t ≤ T2, Zt

? ≤ 2t/ω.

Proof. In fact, we will prove something stronger. Let Xt be the number of nodes that were selected
at least two times up to time t (which could happen before time T1). We will prove that a.a.s. for
any 1 ≤ t ≤ n/ω, Xt ≤ 2t/ω.

Case 1: 1 ≤ t ≤ n2/5. As argued in the proof of Proposition 3.3 (see (9)), one can bound the
expected value of Xn2/5 as follows:

E[Xn2/5 ] ≤
∑

t≤n2/5

t− 1

n
∼ n4/5

2n
= o(1).

Since Xt is non-decreasing, it follows immediately from Markov’s inequality that a.a.s. Xt ≤ Xn2/5 ≤
E[Xn2/5 ]n1/5 < 1 for all t such that 1 ≤ t ≤ n2/5.

Case 2: n2/5 ≤ t ≤ n3/5. As before, we observe that E[Xn3/5 ] = O(n6/5/n) = O(n1/5) and so using
Markov’s inequality again we get that a.a.s. Xt ≤ Xn3/5 ≤ E[Xn3/5 ] log n = O(n1/5 log n) ≤ 2t/ω for
all t such that n1/3 ≤ t ≤ n2/3.

Case 3: n3/5 ≤ t ≤ n/ω. Fix any t in this range. This time we stochastically upper bound
Xt by X ′

t ∈ Bin(t, t/n) with E[X ′
t] = t2/n ≥ n1/5 ≫ log n. Chernoff’s bound (1) implies that

Xt ≤ X ′
t ≤ 2E[X ′

t] = 2t2/n ≤ 2t/ω with probability 1 − O(n−2). The desired result holds by the
union bound over all t in this range.
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Let us fix k ∈ N and consider random variable Xk ∈ Bin(k, 1/2+δ/2). We will need to understand
the following sequence of constants (the connection to our problem will become clear soon):

qk := P(Xk > k/2) + P(Xk = k/2) · (1/2 + δ). (11)

Clearly, q0 = 1/2 + δ and q1 = 1/2 + δ/2. For any other value of k ≥ 2, qk ≥ 1/2 + 51δ/100 as we
show in the next technical lemma. The proof of this fact can be found in the appendix.

Lemma 3.7. Fix k ∈ N such that k ≥ 2, and δ ∈ (0, 1/10]. Then,

qk ≥ 1

2
+

51

100
δ.

Now, we are ready to go back to analyzing the behaviour of the process during the second phase.

Proof of Proposition 3.5. Our goal is to show that a.a.s. the following inequalities hold for any t
such that T1 ≤ t ≤ T2:

Zt
1

Zt
0 + Zt

?

≥ 1/2 + δ/2

1/2− δ/2
(12)

Zt
? ≤ 2t/ω. (13)

Formally, we define the stopping time S to be the minimum value of t ≥ T1 such that either (12)
fails, (13) fails or t = T2. (A stopping time is any random variable S with values in {T1, T1+1, . . . , T2}
such that, for any time t̂, it is determined whether S = t̂ from knowledge of the process up to and
including time t̂.)

Property (13) is trivially satisfied at the beginning of the second phase as ZT1
? = 0. (Recall that

we used Property 3.1 to replace all auxiliary opinions ?s by 0s so at the beginning of the second
phase there are only opinions 1 and 0 present—see (10).) By Proposition 3.3, since we aim for a
statement that holds a.a.s., we may assume that (12) is satisfied at the beginning of the second
phase. In fact,

ZT1
1

ZT1
0 + ZT1

?

=
Y T1
1

Y T1
0 + 0

≥ 1/2 + 101δ/200

1/2− 101δ/200
≥ 1/2 + δ/2

1/2− δ/2
.

It will be convenient to define Zt = Zt
1 +Zt

0 +Zt
?; that is, Zt is the number of nodes that announced

their opinions by time t. If (13) is satisfied, then only a negligible fraction of nodes were selected
more than once and we get that Zt = t(1−O(1/ω)) ∼ t.

Let us first show that if (12) and (13) are satisfied at time t and the node selected at time t+ 1
was not selected before (that is, Dt(vt+1) = Ct(vt+1) =⊥), then the probability that vt+1 announces
an auxiliary opinion 1 is at least 1/2 + 101/200δ.

We first expose edges from vt+1 to the set {v : Dt(v) ̸=⊥} (see Property 3.2) and let us define pk
to be the probability that vt+1 has precisely k neighbours in that set. In particular, we have

p1 = Ztp(1− p)Z
t−1 = λ(1− p)λ/p−1

≤ λe−λ/(1− p)

≤ 1/e+ o(1) < 1/2, (14)

where λ = pZt = pt(1−O(1/ω)) and the second inequality follows because xe−x ≤ e−1 and p = o(1).
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Now, condition on vt having exactly k neighbours that already announced their opinion. Note
that we did not expose the neighbours yet (only the number of them) so neighbours form a random
set of cardinality k from the set {v : Dt−1(v) ̸=⊥}. Let rk to be the probability that vt announces
auxiliary opinion 1 in this conditional probability space. It happens if more than k/2 neighbours of
vt have Dt−1(v) = 1. Moreover, if exactly k/2 neighbours have this property, then vt announces
opinion 1 with probability 1/2 + δ, which is the probability that its private belief is 1. Since (12)
holds, rk can be lower bounded by qk which we defined in (11). It follows that the probability that
vt announces 1 is asymptotic to∑

k≥0

rk · pk ≥
∑
k≥0

qk · pk = q1p1 +
∑

k≥0,k ̸=1

qk · pk

≥
(
1

2
+

δ

2

)
p1 +

(
1

2
+

51

100
δ

)
(1− p1)

=

(
1

2
+

51

100
δ

)
− p1

(
1

100
δ

)
≥ 1

2
+

101

200
δ, (15)

where the second inequality follows from Lemma 3.7 and q0 = (1/2 + δ) ≥ (1/2 + 51δ/100), and the
last one from (14).

Let s be the number of rounds t in the second phase in which vt was not selected before, i.e.,
Dt−1(vt) =⊥, and let t1, t2, . . . , ts denote such rounds. Clearly, s ≤ T2 − T1 = T2(1−O(1/ω)) but,
in fact, a.a.s. we have s = T2(1−O(1/ω)) by Lemma 3.6. Indeed, it follows from Lemma 3.6 that
a.a.s. the number of rounds in which vt was selected before is at most 2T2/ω. For i ∈ [s], let Li

be the indicator random variable for the event that vti announced an auxiliary opinion 1, that is,
Li = Zti

1 − Zti−1
1 . If both (12) and (13) hold at time ti − 1, then P(Li = 1) ≥ 1/2 + 101δ/200 but,

of course, we cannot condition on these two properties to hold. Instead, we will use a small trick
and consider an auxiliary sequence of random variables after the stopping time S when one of the
properties fails.

Fix p̂ = 1/2 + 101δ/200 and let M1, . . . ,Ms be a sequence of independent Bernoulli variables
with parameter p̂. For each i ∈ [s], we define L′

i = Li if both (12) and (13) hold at times t < ti
and otherwise L′

i = Mi. That is, the process “stops” at our stopping time S which, in our context,
means that it simply follows part of the sequence (Mi)

s
i=1 (namely, (Mi)

s
i=S+1) from that point on,

ignoring the behaviour of the original process. Thus, defining L′
≤j =

∑j
i=1 L

′
i and M≤j =

∑j
i=1Mi,

(15) implies that one can couple L′
≤j and M≤j such that L′

≤j ≥ M≤j for all j ∈ [s].
Note that E[M≤j ] = p̂j = (1/2+101δ/200)j for any j ∈ [s]. If follows from Chernoff’s bound (4),

P
(
∃1≤j≤s E[M≤j ]−M≤j ≥

δ

400
(T1 + j)

)
≤
∑
a≥1

P
(

max
(2a−1−1)T1<j≤(2a−1)T1

(
E[M≤j ]−M≤j

)
≥ 2a−1 δ

400
T1

)
≤
∑
a≥1

exp (−Θ(2aT1)) = exp (−Θ(T1)) = o(1),
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since T1 = Θ(1/p) → ∞. In other words, a.a.s. for any j ∈ [s],

L′
≤j ≥ M≤j ≥

(
1

2
+

101

200
δ

)
j − δ

400
(T1 + j).

Since L≤j = L′
≤j for any j ∈ [s] such that tj < S, and Zt

1 can decrease by at most one in a single
round, a.a.s.

ZS
1 ≥ ZS−1

1 − 1

≥ ZT1
1 + L≤S−T1−O(S/ω) −O(S/ω)

≥
(
1

2
+

101

200
δ

)
T1 +

(
1

2
+

101

200
δ

)
(S − T1 −O(S/ω))− δ

400
(S −O(S/ω))−O(S/ω)

≥
(
1

2
+

201

400
δ

)
S −O(S/ω)

≥
(
1

2
+

δ

2

)
S,

implying that (12) holds at time S. Indeed, there were ZT1
1 nodes with auxiliary opinion 1 at the

beginning of the second phase. By Lemma 3.6, S − T1 −O(S/ω) nodes were selected for the first
time before the stopping time and L≤S−T1−O(S/ω) of them announced 1 at that time. Finally, at
most O(S/ω) nodes that already announced their opinion were selected again. It implies that a.a.s.
the process does not “stop” because of (12) failing. By Lemma 3.6, a.a.s. it also does not stop because
of (13). Hence, a.a.s. S = T2 and the proof of the proposition is finished.

3.3 Not Very Sparse Random Graphs

In this subsection, we provide a relatively easy argument that works for random graphs with
pn ≫ log n. In particular, we show that a.a.s. after round T2 but before round T3 = n/

√
ω all

nodes that are selected for the first time announce 1. Moreover, after round T3 every node selected
announces 1 a.a.s.

Proof of Theorem 1.1. Let ω = ω(n) ≪ min{(pn/ log n)1/2, pn, (1/p)1/2} be any function that tends
to infinity as n → ∞. In particular, pn ≥ ω2 log n. Fix T2 = T2(n) = n/ω. It follows from
Proposition 3.5 that a.a.s. at the end of the second phase, there are Y T2

1 ≥ (1/2 + δ/2)T2 nodes
that announced opinion 1, and so Y T2

0 ≤ (1/2 − δ/2)T2 nodes announced opinion 0; moreover,
Y T2
1 + Y T2

0 = T2(1 +O(1/ω)).
Let Vi = {v : Ct(v) = i} be the set of nodes with opinion i ∈ {0, 1} at time T2. Note that, by

Property 3.2, we may assume that only edges within V0 ∪ V1 are exposed at that stage of the process.
We will first show that a.a.s. all nodes v /∈ V0 ∪ V1 have substantially more neighbours in V1 than in
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V0. Indeed, this is a simple consequence of the Chernoff bounds (1) and (2): for any v /∈ V0 ∪ V1:

P
(
|N(v) ∩ V1| ≤ |N(v) ∩ V0|+ δT2p/2

)
≤ Pr

(
|N(v) ∩ V1| ≤ (1/2− δ/4)T2p+ δT2p/2 or |N(v) ∩ V0| ≥ (1/2− δ/4)T2p

)
≤ P

(
|N(v) ∩ V1| ≤ (1/2 + δ/4)T2p

)
+ P

(
|N(v) ∩ V0| ≥ (1/2− δ/4)T2p

)
= P

(
Bin(|V1|, p) ≤ (1/2 + δ/4)T2p

)
+ P

(
Bin(|V0|, p) ≥ (1/2− δ/4)T2p

)
≤ 2 exp

(
−Θ(T2p)

)
= 2 exp

(
−Ω

(
n

ω
· ω

2 log n

n

))
= O(1/n2),

where the first inequality follows simply by observing that |N(v)∩V1| > c+δT2p/2 and |N(v)∩V0| < c
implies |N(v) ∩ V1| > |N(v) ∩ V0| + δT2p/2. The final inequality follows since E[Bin(|V1|, p)] ≥
(1/2+ δ/2)T2p and E[Bin(|V0|, p)] ≤ (1/2− δ/2)T2p. The desired property holds by the union bound
over all nodes v /∈ V0 ∪ V1.

Fix T3 = T3(n) = n/
√
ω. The third phase will last till time T3. Let V ′

1 ⊆ V1 be the set of nodes
from V1 that were selected during the third phase. Note that each node from V1 is selected during
the third phase with probability at most (T3 − T2)/n ≤ 1/

√
ω. Hence, E[|V ′

1 |] ≤ |V1|/
√
ω and so

a.a.s. |V ′
1 | ≤ |V1|/ω1/3 by Markov’s inequality. A simple but important observation is that V ′

1 is
determined exclusively by the selection process (coupon collector process); in particular, it does
not depend on the random graph nor the opinion dynamics. Hence, we can use Chefnoff’s bound
again to show that a.a.s. all nodes v /∈ V0 ∪ V1 have very few neighbours in V ′

1 . Indeed, note that
for any v /∈ V0 ∪ V1, the number of neighbours of n in V ′

1 can be stochastically upper bounded
by Bin(|V1|/ω1/3, p) with expectation |V1|p/ω1/3 = Θ(np/ω4/3) = Ω(n2/3 log n) ≫ log n. Hence,
|N(v) ∩ V ′

1 | = O(|V1|p/ω1/3) = O(T2p/ω
1/3) = o(T2p) with probability 1 − O(1/n2), and so a.a.s.

all nodes v /∈ V0 ∪ V1 satisfy this property.
Combining the two properties together, we get that a.a.s. for all nodes v /∈ V0 ∪ V1 we have

|N(v) ∩ (V1 \ V ′
1)| > |N(v) ∩ (V0 ∪ V ′

1)|. (16)

Let W1 be the set of nodes outside of V0 ∪ V1 that were selected during the third phase (possibly
multiple times). If property (16) is satisfied, then (deterministically) all nodes in W1 announce 1 in
this phase. Indeed, even if all nodes from V ′

1 changed their opinion to 0 in the meantime, nodes in
V1 still have majority of their neighbours with opinion 1.

Let us summarize the situation at the beginning of the fourth (and the last) phase. Recall that
W1 consists of nodes that were selected for the first time during the third phase. Let W0 = V0 ∪ V1

be the set of nodes that were selected before the third phase (that is, during the first or the second
phase). A.a.s. nodes in W1 have opinion 1 and |W1| = (T3 − T2) +O(T 2

3 /n) ∼ T3. We may assume
that nodes in W0 have opinion 0 and a.a.s. |W0| = T2(1 + O(1/ω)) ∼ T2 = o(T3). Again, it is
important to notice that W1 and W0 are determined exclusively by the selection process. (V1 and V0

do not posses this property and that was the main reason we needed to consider the third phase.)
We may then use Chernoff’s bound again, on the number of neighbours in W1 and W0 of any given
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node, to show that a.a.s. all nodes (not only outside of W1 ∪W0!) have more neighbours in W1 than
in W0. It means that every node that is selected during this last phase announces opinion 1.

Since a.a.s. every node is selected at least once during the next n(log n + ω′/2) rounds, the
process is over after at most that many rounds with everyone converging to opinion 1. Hence,
a.a.s. the entire process takes at most T3 + n(log n + ω′/2) ≤ n(log n + ω′) rounds. In fact, the
expected number of nodes that were selected before the last phase but were not selected in the first
T ′
4 = n(log n− logω/4) rounds of the last phase is equal to

T3

(
1− 1

n

)T ′
4

≤ n√
ω
exp(− log n+

1

4
logω) = ω−1/4 = o(1),

and so a.a.s. all nodes selected before the last phase are selected again during the first T ′
4 rounds of

the last phase. On the other hand, a.a.s. there are still some nodes not selected at all after T3 + T ′
4

rounds. Indeed, this follows immediately from the well studied coupon collector concentration bound
for T̂ : P(T̂ < n log n− cn) < e−c. The conclusion is that a.a.s. all nodes are selected at least once
between round T3 and T̂ , and the proof is finished.

3.4 Very Sparse Random Graphs

In this subsection, we investigate random graphs that are close to the threshold for connectivity but
are still connected, that is, we assume that pn ≤ ω log n and pn ≥ log n+ω for some ω = ω(n) → ∞
as n → ∞.

First, we will show that at time T3 = T3(n) = 2n log n, every node announced its opinion at least
once, and at most nω/ log n = o(n) nodes have opinion 0.

Proposition 3.8. Let ω = ω(n) = o(log n) be any function that tends to infinity (sufficiently slowly)
as n → ∞. Suppose that p = p(n) ≤ ω log n/n and p ≥ (log n + ω)/n. Set T3 = T3(n) = 2n log n
and s = s(n) = nω/ log n. Then, a.a.s. all nodes announced their opinion at time T3, and at most s
of them have opinion 0.

Proof. Fix T2 = T2(n) = n/ω. It follows from Proposition 3.5 that a.a.s. Y T2
1 ≥ (1/2 + δ/2)T2,

Y T2
0 ≤ (1/2 − δ/2)T2, and trivially Y T2

1 + Y T2
0 ≤ T2. Let Vi (i ∈ {0, 1}) be the set of nodes with

opinion i at time T2. Since we aim for a statement that holds a.a.s., we may assume that the above
inequalities are satisfied at time T2 and continue the process from there. In fact, as explained in
Subsection 2.3, we may assume that |V1| = Y T2

1 = (1/2 + δ/2)T2 and |V0| = Y T2
0 = (1/2− δ/2)T2.

Note that during the next T3 − T2 ∼ 2n log n rounds, a.a.s. all nodes announce their opinion at
least once. Indeed, the coupon collector problem is well understood and it is known that a.a.s. it
happens after (1 + o(1))n log n rounds. We consider the nodes that announce opinion 0 at some
point during this phase. In particular, let v1 be the first node that announced opinion 0 during this
phase, let v2 ̸= v1 be the second such node, etc. For a contradiction, suppose that at time T3 there
are more than s nodes with opinion 0. It means that the sequence we just constructed consists of
more than s nodes; let S = {v1, . . . , vs} be the set of the first s nodes in this sequence. Note that all
neighbours of vi in V1 \ {v1, . . . , vi−1} ⊇ V1 \ S had opinion 1 when vi announced opinion 0. On the
other hand, no neighbour of vi outside of V0 ∪ {v1, . . . , vi−1} ⊆ V0 ∪ S had opinion 0 at that point.
It follows that for any vi ∈ S,

|N(vi) ∩ (V1 \ S)|≤|N(vi) ∩ (V0 ∪ S)|. (17)
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In fact, we will relax this property and conclude that for any vi ∈ S, at least one of the following
three properties holds:

Property (a): |N(vi) ∩ (V1 \ S)| ≤ (1/2 + δ/4)T2p (18)
Property (b): |N(vi) ∩ (V0 \ S)| ≥ (1/2− δ/4)T2p (19)
Property (c): |N(vi) ∩ S| ≥ (δ/2)T2p. (20)

(Indeed, if none of properties (18)–(20) holds, then (17) does not hold.) We partition the set S into
S = Sa ∪ Sb ∪ Sc: nodes in Sx satisfy Property (x). We will show that a.a.s. in G(n, p) there are no
sets V0, V1, S, and partition S = Sa ∪ Sb ∪ Sc such that Properties (a)–(c) hold. This will finish the
proof of the theorem.

Let us fix V1 ⊆ V with |V1| = (1/2 + δ/2)T2, V0 ⊆ V \ V1 with |V0| = (1/2− δ/2)T2, S ⊆ V with
|S| = s = nω/ log n, and partition S = Sa ∪ Sb ∪ Sc. (Note that these are arbitrary sets and we
completely ignore the opinion dynamics process here). For any node vi ∈ Sa, |N(vi) ∩ (V1 \ S)| is
a binomial random variable with expectation |V1 \ S|p ∼ (1/2 + δ/2)T2p. (Note that s = o(T2).)
It follows from Chernoff’s bound (2) that vi ∈ Sa satisfies Property (a) with probability at most
exp(−Θ(T2p)). Similarly, Chernoff’s bound (1) implies that vi ∈ Sb satisfies Property (b) with
probability at most exp(−Θ(T2p)). More importantly, the events associated with different nodes vi ∈
Sa ∪ Sb are independent. Unfortunately, this is not the case for events associated with nodes vi ∈ Sc.
To deal with them, we need to consider all of them together. There are

(|Sc|
2

)
+ |Sc|(s− |Sc|) ≤ |Sc|s

pairs of nodes from S such that at least one of them is in Sc. In order for nodes in Sc to satisfy
Property (c), at least (|Sc|/2)(δ/2)T2p of such pairs must generate an edge in G(n, p). Since the
expected number of edges is at most |Sc|sp = o(|Sc|T2p), by Chernoff’s bound (1) we get that it
happens with probability at most exp(−Θ(|Sc|T2p)).

Note that by the union bound the probability that there exist sets V0, V1, S, and partition
S = Sa ∪ Sb ∪ Sc such that Properties (a)–(c) hold can be upper bounded by(

n

|V1|

)(
n− |V1|
|V0|

)(
n

s

)
(2s)2 exp

(
−Θ
(
(|Sa|+ |Sb|+ |Sc|)T2p

))
≤
(
n

T2

)2(n
s

)
22s exp (−Θ(sT2p))

≤
(

en

n/ω

)2n/ω (en
s

)s
22s exp (−Θ(sT2p))

≤ exp

(
O
(
2n logω

ω
+ s log log n+ s

)
− Ω

(
nω

log n
· n
ω
· log n

n

))
≤ exp

(
O
(
2n logω

ω

)
− Ω (n)

)
= o(1),

which finishes the proof of the proposition.

We will call a node v to be of small degree, if its degree is at most k = 5 log n/(log logn)1/2.
Nodes of degree larger than k will be called of large degree. Before we continue investigating the
process, we need to show a well-known fact that small degree nodes are not too close to each other.

Lemma 3.9. Let ω = ω(n) = o(log log n) be any function that tends to infinity (sufficiently slowly)
as n → ∞. Suppose that p = p(n) ≤ ω log n/n and p ≥ (log n+ ω)/n. Then, the following property
holds a.a.s. in G(n, p): any two small degree nodes are at distance at least 3 from each other.
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Proof. Since np > log n and k = o(log n),
(
n
i

)
pi is an increasing sequence for 0 ≤ i ≤ k and so

P(deg(v) ≤ k) ≤
k∑

i=0

(
n

i

)
pi(1− p)n−i ≤ (k + 1)

(
n

k

)
pk(1− p)n−k.

Using the fact that
(
n
k

)
≤ (en/k)k for any integers 1 ≤ k ≤ n and the fact that 1− x ≤ exp(−x) for

any real number x, we obtain the following upper bound on the probability that a node v has small
degree:

P(deg(v) ≤ k) ≤ (k + 1)

(
n

k

)
pk(1− p)n−k

≤ (k + 1)

(
en

k
· ω log n

n

)k

exp
(
− p(n− k)

)
≤ (k + 1)

(
eω log n

k

)k

exp
(
− pn+ pk

)
.

Recall that k = 5 log n/(log log n)1/2 and ω = o(log log n), so eω log n/k ≤ ω(log logn)1/2 ≤
(log logn)3/2. Using this and the fact that pn ≥ log n+ω and pk ≤ kω log n/n = o(log3 n/n) = o(1),
we get that

P(deg(v) ≤ k) ≤ (k + 1)
(
(log log n)3/2

)k
exp

(
− log n− ω + o(1)

)
≤ exp

(
log log n+

5 log n

(log log n)1/2
· 3
2

log log log n− log n

)
≤ exp

(
o(1) log n− log n

)
= n−1+o(1).

Hence, we expect no(1) small degree nodes and so a.a.s. we have only no(1) of them. More importantly,
using similar computations one can show that the expected number of small degree nodes that are
adjacent to each other is equal to(

n

2

)
· p ·

(
n−1+o(1)

)2
= n−1+o(1) = o(1).

Similarly, the expected number of pairs of small degree nodes that are at distance two from each
other is equal to (

n

2

)
· n · p2 ·

(
n−1+o(1)

)2
= n−1+o(1) = o(1).

Hence, a.a.s. any two nodes of small degree are at distance at least three from each other, and the
proof of the lemma is finished.

Our next observation is that the number of large degree nodes that have opinion 0 is decreasing.

Proposition 3.10. Let ω = ω(n) = o(log log n) be any function that tends to infinity (sufficiently
slowly) as n → ∞. Suppose that p = p(n) ≤ ω log n/n and p ≥ (log n+ ω)/n. Then, the following
property holds a.a.s. for all phases.
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Suppose that at the beginning of a phase, ŝ = (nω/ log n) · (log logn)−(i−1)/4 large degree nodes
have opinion 0 for some i ∈ N. Then, after 2n log n rounds all nodes announced their opinion at
least once more, and at most u = ŝ/(log log n)1/4 = (nω/ log n) · (log logn)−i/4 large degree nodes
have opinion 0.

Proof. First, note that the expected number of nodes that were not selected in 2n log n rounds is

n

(
1− 1

n

)2n logn

≤ n exp(−2 log n) = 1/n,

so with probability 1−O(1/ log n) all of them are selected at least once in any phase consisting of
2n log n rounds. Since we will iteratively apply the argument for O(log n/ log log log n) = o(log n)
phases, all of them have the desired property a.a.s.

Since we aim for a statement that holds a.a.s., we may assume that the graph satisfies property
stated in Lemma 3.9. For a contradiction, suppose that some phase fails, that is, at the beginning
of this phase ŝ large degree nodes have opinion 0, and at the end of this phase more than u =
ŝ/(log log n)1/4 large degree nodes have opinion 0. As in the proof of Proposition 3.8, we consider a
sequence of distinct nodes, v1, v2, . . ., in which large degree nodes announce opinion 0: v1 announced
opinion 0 first, then v2 ̸= v1, etc. Let U = {v1, . . . , vu} be the set of the first u nodes in this sequence
and let S be the set of large degree nodes that have opinion 0 at the beginning of this phase. Recall
that each large degree node has degree at least k = 5(log n)(log logn)−1/2 and at most one neighbour
of small degree (Lemma 3.9). Small degree nodes may (or may not) have opinion 0 but no large
degree node outside of S ∪ U has opinion 0 at the time node vi announced opinion 0. We conclude
that for all i ∈ [u], vi has at least k/2− 1 ≥ 2(log n)(log log n)−1/2 neighbours in S ∪ U .

We say that set U satisfies Property (a) if the following holds:

Property (a): at least u/2 nodes in U have at least (log n)(log logn)−1/2 neighbours in U .

If U does not satisfy Property (a), then less than u/2 of nodes in U have at least (log n)(log log n)−1/2

neighbours in U , which implies that set U (together with S) satisfies the following property:

Property (b): at least u/2 nodes in U have at least (log n)(log log n)−1/2 neighbours in S \ U .

We will deal with each property independently and show that it is not present in G(n, p) with the
desired probability.

If Property (a) is satisfied for some set U of size u, then U induces at least u(log n)(log logn)−1/2/4
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edges. Hence, the probability that some set of size u has this property is at most(
n

u

)( (
u
2

)
u(log n)(log logn)−1/2/4

)
pu(logn)(log logn)

−1/2/4

≤
(
n

u

)(
eu2/2

u(log n)(log log n)−1/2/4
· ω log n

n

)u(logn)(log logn)−1/2/4

≤
(
n

u

)(
2eωu(log log n)1/2

n

)u(logn)(log logn)−1/2/4

≤
(
n

u

)(
2eωŝ(log log n)1/4

n

)u(logn)(log logn)−1/2/4

≤ nu

(
2eω2(log log n)1/4

log n

)u(logn)(log logn)−1/2/4

≤ exp

(
u log n− u(log n)

4(log log n)1/2
· (1 + o(1)) log log n

)
= O(1/ log n).

If Property (b) is satisfied for some set U of size u and some set S of size ŝ, then there exists a
subset U ′ ⊆ U of size u/2 such that each vi ∈ U ′ has at least (log n)(log log n)−1/2 neighbours in
S \ U . The probability that a given vi ∈ U ′ has this property is at most(

ŝ

(log n)(log log n)−1/2

)
p(logn)(log logn)

−1/2

≤
(

eŝ

(log n)(log logn)−1/2
· ω log n

n

)(logn)(log logn)−1/2

≤

(
eω2(log log n)1/2

(log n)

)(logn)(log logn)−1/2

≤ exp
(
−(log n)(log logn)−1/2 · (1 + o(1)) log log n

)
= exp

(
−(1 + o(1))(log n)(log logn)1/2

)
.

Moreover, the events associated with different vi ∈ U ′ are independent. Hence, by the union bound,
the probability that there exist a pair of sets U, S, and a partition U = U ′ ∪ (U \ U ′) can be upper
bounded by(

n

ŝ

)(
n

u

)
2u exp

(
−(1 + o(1))(log n)(log log n)1/2

)
≤ exp

(
ŝ log n+ u log n+ u− (1 + o(1))(log n)(log log n)1/2 · (u/2)

)
= exp

(
(1 + o(1))ŝ log n− (1 + o(1))(log n)(log log n)1/4 · (ŝ/2)

)
= O(1/ log n).
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This finishes the proof of the theorem as the argument has to be (iteratively) applied only for
O(log n/ log log log n) = o(log n) phases.

Finally, we are ready to show that all nodes eventually converge to opinion 1.

Proof of Theorem 1.2. The proof is an easy consequence of Propositions 3.8, 3.10, and Lemma 3.9.
Indeed, a.a.s. at time T3 = T3(n) = 2n log n, all but at most s = s(n) = nω/ log n nodes have
opinion 1 (Proposition 3.8). Most of them are of large degree but some of them may be of small
degree. By Proposition 3.10, the number of large degree nodes that have opinion 0 decreases: a.a.s.
at time 2n log n · O(log n/ log log n) = O(n(log n)2/(log logn)) no large degree node has opinion 0.
There could possibly be still some nodes of small degree that have opinion 0 but everyone converges
to opinion 1 after an additional O(n log n) rounds. Indeed, every node is selected at least once
during that time period a.a.s. Large degree nodes have many neighbours but at most one neighbours
of small degree (Lemma 3.9). So they will not change their opinion and stay with opinion 1. On
the other hand, by the same lemma, no small degree node has a neighbour of small degree. Hence,
such nodes will switch to opinion 1 once they are selected again. This finishes the proof of the
theorem.

4 Dense Random Graphs

In this section, we prove that for dense graphs (that is, when p ∈ (0, 1] is a constant) it is not true
that all nodes converge to the correct opinion a.a.s. On the contrary, there maybe an information
cascade where all the nodes converge to the wrong opinion with constant probability.

Proof of Theorem 1.3. Fix any p ∈ (0, 1). We will consider the case p = 1 (easy case) at the end of
the proof.

Trivially, the first node announces its private belief, that is, it announces opinion 1 with probability
1/2 + δ; otherwise, it announces 0. Since nodes are selected by the process (“coupon collector”)
independently of the graph, we may postpone exposing edges of the random graph till the first
time a node is selected. Each time this happens, we expose edges from vt to all nodes that already
announced their opinion. If every single time at least one edge is present, then all nodes are going to
announce the opinion of the very first node. It follows that

p1 ≥ (1/2 + δ)

n∏
i=1

(
1− (1− p)i

)
.

It is easy to see that for any x ∈ [0, 1− p],

f(x) = 1− x ≥ exp

(
− log(1/p)

1− p
x

)
= g(x).

(Note that f(0) = g(0), f(1− p) = g(1− p), and g(x) is convex.) Hence,

p1 ≥ (1/2 + δ) exp
(
− log(1/p)

1− p

n∑
i=1

(1− p)i
)

≥ (1/2 + δ) exp
(
− log(1/p)

∞∑
i=0

(1− p)i
)

= (1/2 + δ) exp
(
− log(1/p)(1/p)

)
= (1/2 + δ)p1/p.
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The same argument works for p0 with the only difference that the probability of the first node
announcing 1 (1/2 + δ) needs to be replaced with the probability of announcing 0 (1/2− δ).

Finally, note that if p = 1, then the graph is (deterministically) the complete graph and (again,
deterministically) all nodes are going to adopt the opinion of the very first node. Thus, we immediately
get p1 = 1/2 + δ and p0 = 1/2 − δ (which matches the general formula that works for p ∈ (0, 1]).
This finishes the proof of the theorem.
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A Missing Proofs

Proof of Lemma 3.7. Let us first consider any odd value of k ≥ 3. We get that

qk =
∑

i≥(k+1)/2

(
k

i

)
(1/2 + δ/2)i(1/2− δ/2)k−i

≥ 1/2 + δ/2

1/2− δ/2
·
(

k

(k + 1)/2

)
(1/2− δ/2)(k+1)/2(1/2 + δ/2)(k−1)/2

+

(
1/2 + δ/2

1/2− δ/2

)3 ∑
i≥(k+3)/2

(
k

i

)
(1/2− δ/2)i(1/2 + δ/2)k−i

=
1/2 + δ/2

1/2− δ/2
·A+

(
1/2 + δ/2

1/2− δ/2

)3

·B,

where

A =

(
k

(k + 1)/2

)
(1/2− δ/2)(k+1)/2(1/2 + δ/2)(k−1)/2

B =
∑

i≥(k+3)/2

(
k

i

)
(1/2− δ/2)i(1/2 + δ/2)k−i.
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Note that A+B = 1− qk ≤ 1/2. More importantly, if qk ≥ 1/2+51δ/100, then the desired property
holds and there is nothing to prove. Hence, we may assume that 1− qk ≥ 1/2− 51δ/100 ≥ 449/1000.
It follows that

A =

(
k

(k + 1)/2

)(
(1/2− δ/2)(1/2 + δ/2)

)(k−1)/2
(1/2− δ/2)

=

(
k

(k + 1)/2

)(
(1/4− δ2/4)

)(k−1)/2
(1/2− δ/2)

≤
(

k

(k + 1)/2

)
(1/2)k ≤ 3

8
≤ 375

449
(A+B) ≤ 9

10
(A+B).

As a consequence,

qk ≥ 1/2 + δ/2

1/2− δ/2
·A+

(
1/2 + δ/2

1/2− δ/2

)3

·B

≥

(
1/2 + δ/2

1/2− δ/2
· 9

10
+

(
1/2 + δ/2

1/2− δ/2

)3

· 1

10

)
(A+B),

where the last inequality follows from the fact that the coefficient in front of A is smaller than the
one in front of B, so a linear combination of the coefficient’s are minimized when A is the largest it
can possibly be (which is 9/10(A+B)). Moreover, since A+B = 1− qk we have,

qk
1− qk

≥ 1 + δ

1− δ
· 9

10
+

(
1 + δ

1− δ

)3

· 1

10

= (1 + δ)(1 + δ +O(δ2)) · 9

10
+ (1 + 3δ +O(δ2))(1 + 3δ +O(δ2)) · 1

10

= (1 + 2δ +O(δ2)) · 9

10
+ (1 + 6δ +O(δ2)) · 1

10

= (1 + 2δ +O(δ2)) · 9

10
+ (1 + 6δ +O(δ2)) · 1

10

= 1 +
12

5
δ +O(δ2) =

1 + 6δ/5

1− 6δ/5
+O(δ2) =

1/2 + 3δ/5

1/2− 3δ/5
+O(δ2).

Clearly,
qk

1− qk
≥ 1/2 + 51δ/100

1/2− 51δ/100

for sufficiently small δ but one can show it holds for δ ∈ (0, 1/10]. This implies qk ≥ 1/2 + 51δ/100
for odd values of k ≥ 3.
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Let us now consider any even value of k ≥ 2. This time we get that

qk =
∑

i≥k/2+1

(
k

i

)
(1/2 + δ/2)i(1/2− δ/2)k−i +

(
k
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where
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B =

(
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)
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and A+B = 1− qk. Since(
1 + δ

1− δ

)2

=
1 + 2δ + δ2

1− 2δ + δ2
≥ 1 + 19δ/10

1− 19δ/10
=

1/2 + 19δ/20
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and, trivially,
1/2 + δ

1/2− δ
≥ 1/2 + 51δ/100

1/2− 51δ/100
,

we get that

qk ≥ 1/2 + 51δ/100

1/2− 51δ/100
(1− qk),

which implies qk ≥ 1/2 + 51δ/100 for even values of k too.
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