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Abstract

We consider a natural variant of the Erdős-Rényi random graph process in which k

vertices are special and are never put into the same connected component. The model

is natural and interesting on its own, but is actually inspired by the multiway cut

problem that itself is connected to a number of important problems in graph theory.

We will show that a phase transition for appearance of the giant component occurs

when the number of special vertices is roughly n1/3, where n is the number of vertices.

1 Introduction

The study of the random graph process was initiated by Erdős and Rényi in their celebrated

paper from 1959 [7]. The process starts with an empty graph on n vertices and adds all(
n
2

)
edges in a random order. The model is now well understood, though there are still

some challenging questions waiting to be answered (see the following monographs on the

topic: [5,10,14]). On the other hand, relatively little is known about variants of this process.

In particular, a natural variant of the model is the constrained random graph process in

which, after the edge to be inserted is chosen at random, we check whether the graph at

this stage of the process together with this edge satisfies some properties; if so, we accept

it, otherwise we reject it and never consider it again.

The first result on the constrained random graph process is due to Ruciński and

Wormald, who answered a question of Erdős regarding the process in which we maintain a

bound on the maximum degree [18]. Erdős, Suen, and Winkler considered both the odd-

cycle-free process [8] and the triangle-free process that was later analyzed by Bohman [2]

(see also [3, 9]). Other special cases that were considered include the properties of being

cycle-free [1], H-free [4, 17], and planarity [12].

In this paper, we consider another natural constrained random graph process, the k-

process, in which k vertices are special and never put into the same connected component.

The main question we address is the following: how large is a largest component at the end

of this process? This problem was motivated by considering a natural greedy algorithm for

the multiway cut problem that is a special case of the combinatorial data fusion problem.

The paper is structured as follows. In Section 2 we introduce necessary definitions

(including a formal definition of the k-process) and state main results. Connections to

the combinatorial data fusion problem are discussed in Section 3. The original random

graph process mentioned above is formally introduced in Section 4 where we also make

a connection between the two models (the random graph process and the k-process) and
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list all properties of the original one that we need to understand our model. In Section 5,

we develop some concentration tools that will be used in the proofs. The process shows

two different behaviours: k � n1/3 is considered in Section 6; Section 7 is devoted to

k � n1/3(log n)4/3(log log n)1/3. Final conclusions are in Section 8.

2 Definitions and main results

In this section, we introduce the k-process we are interested in, the asymptotic notation

used throughout the paper, and state the main results.

2.1 k-process

Let 1 ≤ k ≤ n be any two integers (k = k(n) may be and usually is a function of n).

The k-process starts with Pk(n, 0), the empty graph on n vertices, where k of the vertices

are special. For integer m ≥ 1, create Pk(n,m) from Pk(n,m − 1) as follows. Choose a

random pair of vertices not yet considered (in particular, they are not connected by an

edge); connect these two vertices unless doing so would put two of the special vertices in

the same component (in which case we say that a collision occurs). Keep repeating these

steps, if needed, until one edge is added. In particular, Pk(n,m) has m edges. The process

stops at time M = M(n, k) when Pk(n,M) has precisely k connected components, each of

which is a complete graph. (Of course, M is a random variable counting the number of

edges at the end of the process.) Alternatively, one can stop the process much earlier, at

time M̂ = M̂(n, k) when Pk(n, M̂) has k connected components for the first time, as M

and Pk(n,M) are already determined at this point.

The main question raised in this paper is the following one. What can be said about the

distribution of sizes of the connected components of Pk(n,M)? Another natural question

is: what can be said about M(n, k) as a function of k? What about M̂(n, k)?

2.2 Asymptotics

As typical in random graph theory, we shall consider only asymptotic properties of Pk(n,m)

(and G(n,m), Ĝk(n,m) defined below) as n → ∞, where m = m(n) depends on n. We

emphasize that the notations o(·) and O(·) refer to functions of n, not necessarily positive,

whose growth is bounded. We use the notations f � g for f = o(g) and f � g for g = o(f).

We also write f(n) ∼ g(n) if f(n)/g(n)→ 1 as n→∞ (that is, when f(n) = (1+o(1))g(n)).

We say that an event in a probability space holds asymptotically almost surely (a.a.s.) if

its probability tends to one as n goes to infinity.

2.3 Results

In this subsection, we summarize the main results proved in this paper. It turns out that

the k-process changes its behaviour around k = n1/3. If k � n1/3, a single large component

is formed before collisions start affecting the process. In particular, when the first special

vertex joins a largest component, its size is much larger than the total size of all other

special components. As a result, this component will continue growing and at the end of

the process it will have size n(1−o(1)). On the other hand, if k � n1/3, collisions will start

affecting the process much earlier, namely, when each component has size smaller than the

total size of all special components. As a result, no component is able to dominate all the

others and the largest component in the end has size o(n). For technical reasons (see the
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final section for a longer discussion), our proofs require slightly larger values of k, namely,

k � n1/3(log n)4/3(log log n)1/3. Below we state these results precisely.

For a given graph G (deterministic or random) with r = r(G) connected components,

let C1(G), . . . , Cr(G)(G) be the connected components in order of decreasing size with ties

arbitrarily broken, and let Li(G) be the size of Ci(G) (i = 1, 2, . . . , r). Then the following

holds.

Theorem 2.1. Let ω = ω(n) be any function tending to infinity as n → ∞ (sufficiently

slowly). Then a.a.s. the following holds:

(a) If k � n1/3, then

L1(Pk(n,M)) = n−O(k3ω log(n1/3/k)) ∼ n.

As a result,

M(n, k) ∼
(
n− k + 1

2

)
∼ n2

2
.

(b) If k � n1/3(log n)4/3(log log n)1/3 and k � n/ log n, then

L1(Pk(n,M)) = O

((
n log(k/n1/3) log4 n

k3

)1/2

n

)
= o(n).

As a result,

M(n, k) = O

((
n log(k/n1/3) log4 n

k3

)1/2

n2

)
= o(n2).

(c) If n/(ω log n) ≤ k ≤ n, then L1(Pk(n,M)) = O(ω3/2 log4 n) = o(n). As a result,

M(n, k) = O(nω3/2 log4 n) = o(n2).

Part (a) is proved in Section 6; part (b) is proved in Section 7; part (c) follows imme-

diately from part (b) and Observation 4.2 (see Subsection 7.3 for more details).

Note that, trivially and deterministically, we get that M(n, k) ≤
(
n−k+1

2

)
; the upper

bound holds for the extremal graph on n vertices, k components, and maximum number

of edges (union of a complete graph on n − k + 1 vertices and k − 1 isolated vertices).

Understanding whether M(n, k) is close to this trivial bound has important implications

for the applications we consider below.

3 Motivation

We feel that the k-process is natural and inherently interesting in its own right. That said,

we will now outline its relationship to the multiway cut problem and the combinatorial

data fusion problems as it was these problems that first led us to consider this process.

Before we formally state the combinatorial data fusion problem, let us start with an

important special case. The multiway cut problem [19, Chapter 4] is a standard NP-hard

problem in graph theory. We state it as follows. Let G be a nonnegatively weighted

undirected graph with vertex set V and edge set E. Let S ⊆ V . Find the set R of edges of

least total weight such that no two vertices in S are in the same connected component of

the graph GR obtained by removing the edges in R from G.

There is a natural greedy algorithm that can be used to construct an approximate

solution to this problem:
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Algorithm 3.1. (Edge-first greedy algorithm)

1. Begin with an empty graph G0 with the same vertices as G.

2. Order the edges of G as e1, e2, . . . , em by decreasing weight, breaking ties uniformly

at random.

3. For each i with 1 ≤ i ≤ m, construct Gi as follows. If adding ei to Gi−1 does not

create a connected component containing more than one element of S, then Gi is

Gi−1 with ei added; otherwise Gi = Gi−1.

4. Return Rgreedy = E(G) \ E(Gm).

Clearly this algorithm runs in polynomial time; thus we cannot expect it to find the

optimal solution. In fact, it does not approximate the best solution within any constant

factor.

Example 3.2. Let G = Kn2 , and index the vertices as vi,j for 1 ≤ i, j ≤ n. Let S =

{v1,j : 1 ≤ j ≤ n}, and let the weight of the edge joining vi,j to vk,` be 1 + ε if j = `

and 1 otherwise. Note that the total weight is equal to
(
n2

2

)
+
(
n
2

)
nε ∼ n4/2. The greedy

algorithm adds all edges of weight 1 + ε and then stops, thus producing a graph Gm of

total weight n
(
n
2

)
(1 + ε) ∼ n3(1 + ε)/2 = o(n4). (The order in which edges are added

to the graph depends on the ordering of the edges chosen in step 2 of the algorithm, but

the final result does not.) Hence, a solution Rgreedy returned by the algorithm has weight

that is asymptotically equal to n4/2, the weight of the whole graph. On the other hand,

let R be the set of all edges incident to at least one vertex of S \ {v1,1}. Since |R| =(
n−1
2

)
+ (n − 1)(n2 − (n − 1)) + (n − 1)2ε ∼ n3, this solution is better by a multiplicative

factor of n/2 than the solution found by the greedy algorithm.

Nevertheless, understanding the performance of the greedy algorithm may give some

insight into the general problem. As a starting point we consider how it performs on the

complete graph with random edge-weights.

Let G = Kn, let S be any set of k vertices, and let the edges have i.i.d. random weights.

If any edges have the same weight then when running Algorithm 3.1 we break ties uniformly

at random. Since the weights are i.i.d., the order that the edges are processed is a uniform

permutation. The weights have no other affect on the choice of which edges are selected

and so it is not hard to see that the choice of edges in this algorithm is equivalent to the

k-process defined in Section 2.1.

The main theorem (Theorem 2.1) shows that a.a.s. for k � n1/3 we obtain an output

where all but one of the components are very small, while for k � n1/3(log n)4/3(log log n)1/3

we do not. One simple case of i.i.d. variables is where every edge is given weight 1. In that

case, the optimal solution has k − 1 components of size one and one of size n − k + 1; so

for k � n1/3 the greedy solution is close to optimal and for larger k it is far from optimal.

The multiway cut problem is a special case of the combinatorial data fusion problem

which was introduced by Darling et al. [6], and can be used to describe many situations

that are important in applications.

The Combinatorial Data Fusion Problem: Let G be a nonnegatively weighted undi-

rected graph with vertex set V and edge set E. Fix a set S ⊆ 2V of sets of vertices, called

the forbidden sets. A set T ⊆ E of edges of G is a solution to the combinatorial data fusion

problem associated to (G,S) if, after removing the edges of T , no set of vertices in S is

wholly contained in a single connected component. As before, our goal is to find a set T of

least total weight.
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The combinatorial data fusion problem generalizes a number of standard graph-theoretic

problems. For example, suppose that S consists of all 2-element subsets of a given subset

U ⊆ V . Then we have the multiway cut problem described above. More generally, if S

only contains sets of order 2, then we have the multicut problem [19, Problem 18.1]. In a

rather different direction, let G be a star. Without loss of generality we may assume that

no element of S contains the central vertex: if there is such a set with 2 elements, then

they are joined by an edge, so we delete the edge and the non-central vertex on it and

proceed. If there is such a set with > 2 elements, it is disconnected if and only if the subset

obtained by removing the central vertex is disconnected. In this case, disconnecting a set

of vertices is the same as removing the edge incident on one of them. Thus we have the

minimum hitting set problem, which is another standard NP-complete problem [11, SP8,

p. 222]: given a collection of subsets S of a finite set U , a hitting set is a subset of U that

meets every element of S. The problem is to determine whether there is a hitting set of

size less than k.

Considering the more general setting of the combinatorial data fusion problem leads to

a broad class of random graph processes:

The CDF-process: Begin with n vertices and specify a collection of forbidden subsets of

those vertices. Add random edges one at a time by repeatedly choosing a pair of vertices

uniformly from all non-edges whose addition to the graph would not form a component

containing a forbidden set of vertices.

The same questions arise: how many edges will be added until the process is complete?

What will the components look like? We have not studied this more general process at all,

beyond the special case of the k-process.

4 The random graph process and its properties

In this section, we introduce the random graph process G(n,m) which will be very useful

in the analysis of Pk(n,M). In particular, a good understanding of the process of forming

a giant component in G(n,m) is needed. We summarize our knowledge on this topic in the

last two subsections.

4.1 Random graph models

We fix n vertices. G(n,m) is the random graph selected uniformly from all graphs on those

vertices and with exactly m edges. Equivalently, we can select G(n,m) by the following

process:

Random graph process: e1, . . . , e(n
2)

is a sequence of pairs of vertices selected uniformly

without repetition. G(n,m) is the graph formed by edges e1, . . . , em.

We can couple this process to a process that is essentially identical to Pk(n,m), differing

only in what m counts:

Ĝk(n,m)-process: S is a set of k special vertices from amongst our n vertices. As before,

e1, . . . , e(n
2)

is a sequence of pairs of vertices selected uniformly without repetition. Ĝk(n,m)

is the graph formed by starting with the empty graph on n vertices and considering edges

e1, . . . , em one-at-a-time; each time, we add ei unless it joins two components that each

contain a special vertex.

So the number of edges in Ĝk(n,m) is not m, rather it is m minus the number of edges

that were skipped. However, note that Ĝk(n,m =
(
n
2

)
) is identical to Pk(n,M) (recall that
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M = M(n, k) is defined to be the number of edges in Pk once no more edges can be added;

that is, after all
(
n
2

)
edges are considered). So it suffices to prove the properties stated

in Theorem 2.1 (namely, the sizes of largest components) for Ĝk(n,m =
(
n
2

)
) instead of

Pk(n,M).

Remark 4.1. It will be useful to note that the sequence of edges e1, . . . , em is independent

of the set of special vertices. By symmetry, we can assume that the special vertices are

chosen uniformly from amongst the n vertices, and so we can first choose e1, . . . , em and

then choose the k vertices uniformly.

As mentioned above, Ĝk(n,m) is coupled to the random graph process G(n,m) by using

the same sequence e1, . . . , em. This coupling will be valuable as it will allow us to apply

some deep and technical results regarding the giant component of G(n,m). However, there

are also some implications that are easy and straightforward, but useful at the same time.

For example, one can couple Ĝk(n,m) and Ĝk+1(n,m) by making sure that each special

vertex in Ĝk(n,m) is also special in Ĝk+1(n,m). Then, it is clear that a collision in Ĝk(n,m)

is also a collision in Ĝk+1(n,m). Moreover, at every step the set of components of Ĝk(n,m)

differs from the set of components of Ĝk+1(n,m) only in that possibly two of the special

components in the latter process are joined into one component in the former. This yields

the following monotonicity result:

Observation 4.2. For any 1 ≤ k1 ≤ k2 ≤ n, and for any m:

(a) the largest special component in Ĝk1(n,m) is at least as big as the largest component

in Ĝk2(n,m); and

(b) M̂(n, k1) > M̂(n, k2), where M̂(n, k) is defined to be the number of edges in Ĝk(n,m =(
n
2

)
).

Here is another implication. Note that if G(n,m) is connected, then Ĝk(n,m) has k

components. Since G(n,m) is a.a.s. connected for m = n log n/2 + nω (where ω = ω(n)

is any function tending to infinity as n → ∞), a.a.s. M̂(n, k) ≤ n log n/2 + nω for any

2 ≤ k ≤ n. Since, G(n,m) is a.a.s. disconnected for m = n log n/2 − nω, this bound

is sharp for k = 1: M̂(n, 1) ∼ n log n/2. In fact, it is straightforward to prove that

M̂(n, k) ∼ n log n/2 for k � n1/3. Indeed, a.a.s. many (precisely (1 + o(1))e2ω) non-special

vertices in Ĝk(n,m) are still isolated at time m = n log n/2 − nω; hence, a.a.s. there are

more than k components in Ĝk(n,m). It follows that a.a.s. M̂(n, k) is at least m minus the

number of collisions up to this point of the process. More importantly, by Theorem 2.1(a),

a.a.s. the giant component in Pk(n, M̂) has size n(1− o(1)), and so a.a.s. all collisions that

occurred in Ĝk(n,m) must involve vertices from a small set of size o(n). Finally, one can

show that a.a.s. removing any set of size o(n) from G(n,m) decreases the number of edges

by o(n log n). As this is a trivial bound for the number of collisions in Ĝk(n,m), we get that

a.a.s. M̂(n, k) ∼ n log n/2, provided that k � n1/3. We do not provide a formal proof here

as it seems that understanding the behaviour of M̂(n, k) for k � n1/3 requires more work

and a better understanding of the process. M̂(n, k) continues to decrease as k increases

(see Observation 4.2) and, trivially, M̂(n, n) = 0. But the behaviour of this is unknown.

We will also make use of the classical G(n, p) model: we begin with n vertices and

then decide to include each of the
(
n
2

)
possible edges independently with probability p. A

standard and very useful fact is that we can typically translate a.a.s. properties between

G(n,m) and G(n, p) when m ≈ p
(
n
2

)
. For example, in this paper we will use the following,

which comes from (1.6) in [14]. Since the proof is short, we provide it for completeness.
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Lemma 4.3. Let m = m(n) be any function such that n/4 ≤ m ≤ n, let γ = γ(n) be any

function such that
√
n � γ ≤ m, and take p = p(n) = (m − γ)/

(
n
2

)
. Then one can couple

the two processes such that a.a.s. G(n, p) ⊆ G(n,m).

Proof. Note that G(n, p) can be generated in two steps. First, we expose the total number

of edges M , without exposing any edges. M is the binomial random variable Bin(
(
n
2

)
, p)

with E[M ] = p
(
n
2

)
= m − γ. It follows from the well-known Chernoff’s bound (see also

Lemma 5.1 that generalizes this bound) that

Pr (M ≥ m) = Pr (M ≥ E[M ] + γ) ≤ exp

(
− γ2

2(m− γ + γ/3)

)
≤ exp

(
− γ2

2m

)
= o(1),

as γ2 � n ≥ m. Since we aim for a statement that holds a.a.s., we may assume that

M < m.

Clearly, once the number of edges is fixed, then G(n, p) = G(n,M). Indeed, in this con-

ditional probability space, every graph on n vertices and M edges has the same probability

of being generated. We get that a.a.s. G(n, p) = G(n,M) ⊆ G(n,m), and the proof of the

lemma is finished.

4.2 Largest component in G(n,m)

We will need the following well-known result on the component sizes of G(n,m) when m is

close to the critical point n/2. These bounds follow immediately from Theorems 5 and 6,

and Corollary 1 of [15].

Lemma 4.4. A.a.s. the random graph process is such that:

(a) For every integer m where m = bn2 (1− λn−1/3)c for some 0� λ� n1/3, the largest

component in G(n,m) has size Θ(n2/3λ−2 log λ).

(b) For every integer m where m = bn2 (1 + λn−1/3)c for some 0� λ� n1/3

(i) the largest component in G(n,m) has size (2 + o(1))λn2/3;

(ii) the second largest component in G(n,m) has size Θ(n2/3λ−2 log λ);

(iii) the excess (the difference between the number of edges and vertices) of the largest

component in G(n,m) is (2/3 + o(1))λ3 = o(λn2/3) (in particular, the number

of edges in the largest component is asymptotic to the number of vertices).

The range of m covered in part (a) is referred to as the subcritical range; the range

covered in part (b) is the supercritical range. We also know that one of the components

becomes substantially larger than its competitors during the so-called critical phase when

m = bn2 (1 + Θ(n−1/3))c. Indeed, during the critical phase, both the largest component

and the second largest component have cardinalities of order n2/3. The ratio of their

corresponding sizes, however, increases as λ increases. The largest component keeps growing

but the size of the second largest component is decreasing (note that these components are

absorbed from time to time by the largest component). This behaviour continues during

the supercritical range and the largest component eventually becomes the giant component.

that is, a component that contains a positive fraction of all vertices. (See Theorem 7 in [15].)

At that point, the second largest component has only logarithmic size. (See, for example,

Theorem 5.4 in [14].) We will often abuse slightly the terminology and (prematurely)

call the largest component the giant if we are guaranteed that this component eventually

becomes giant a.a.s.
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4.3 Susceptibility

The susceptibility χ(G) of a graph G (deterministic or random) is defined as the ex-

pected size of the component containing a random vertex. If the list of component sizes is

s1, s2, . . . , sr, then

χ(G) =

r∑
i=1

si
n
si = n−1

r∑
i=1

s2i .

Without loss of generality, we may assume that s1 ≥ s2 ≥ . . . ≥ sr.
For the supercritical case, one can show that the giant component will dominate all

other terms in the sum and so a.a.s. χ(G(n,m)) ∼ s21/n ∼ 4λ2n1/3 (see Appendix A

in [13]). Similarly, for the critical phase, there are several components of order n2/3 but

a.a.s. χ(G(n,m)) = Θ(s21/n) = Θ(n1/3) (see Appendix B in [13]). The biggest challenge is

to analyze the subcritical phase and this is the main focus of [13], where the following is

proved (see Theorem 1.1).

Lemma 4.5. If n/2−m� n2/3, then a.a.s.

χ(G(n,m)) ∼ n/2

n/2−m
.

5 Concentration tools

Let us start this section with the following result which is a generalization of a well-known

Chernoff bound.

Lemma 5.1. Let C = (c1, c2, . . . , cr) be a sequence of natural numbers with c = maxi ci.

Let Sj =
∑j
i=1 ciZi, where Zi, i ∈ [r] are independent Bernoulli(p) random variables. Let

µj = E[Sj ] = p
∑j
i=1 ci, and let µ = µr = E[Sr]. Then for t ≥ 0 we have that

P
(

max
1≤j≤r

(Sj − µj) ≥ t
)
≤ exp

(
− t2

2c(µ+ t/3)

)
and

P
(

max
1≤j≤r

(µj − Sj) ≥ t
)
≤ exp

(
− t2

2cµ

)
.

In particular, for ε ≤ 3/2 we have that

P
(

max
1≤j≤r

|Sj − µj | ≥ εµ
)
≤ 2 exp

(
−ε

2µ

3c

)
.

To prove this lemma, one can easily adjust the proof of the classic Chernoff bound.

Alternatively, the same bounds come from [16]. In that paper, the counterpart of Lemma 5.1

is stated for Sr − µ (see Theorem 2.3); however, the author comments that Sr − µ can be

replaced with max1≤j≤r(Sj − µj) (which is a slightly stronger version than we need here)

as follows. A standard martingale bound shows that eg. for any h > 0:

P
(

max
1≤j≤r

(Sj − µj) ≥ t
)
≤ e−htE

[
eh(Sr−µr)

]
.

Then plugging this into the appropriate place in the proof of Theorem 2.3 yields the desired

bounds.
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5.1 A rich-get-richer process

Understanding the following process will be crucial in our analysis. Let x and y be any

natural numbers (typically x = x(n), y = y(n), and other values defined here are functions

of n and tend to infinity as n → ∞). Let C = (c1, c2, . . . , cr) be a sequence of natural

numbers and let c = maxi ci. Finally, for any 0 ≤ q ≤ r, let tq = x+ y +
∑q
i=1 ci. Clearly,

tq is an increasing sequence with t0 = x+ y.

We define the (C, x, y)-process as follows. The process starts with X(t0) = x and

Y (t0) = y. For any 1 ≤ q ≤ r, with probability pq where

pq :=
X(tq−1)

X(tq−1) + Y (tq−1)
, (1)

the two random variables are updated as follows:

X(tq) = X(tq−1) + cq

Y (tq) = Y (tq−1);

otherwise,

X(tq) = X(tq−1)

Y (tq) = Y (tq−1) + cq.

Note that for any 0 ≤ q ≤ r we have X(tq) + Y (tq) = tq.

In expectation, the ratio pq does not change throughout the process. Indeed,

E[pq+1 | pq] = pq
X(tq−1) + cq

X(tq−1) + Y (tq−1) + cq
+ (1− pq)

X(tq−1)

X(tq−1) + Y (tq−1) + cq

=
pqcq +X(tq−1)

X(tq−1) + Y (tq−1) + cq

=
pq(cq +X(tq−1) + Y (tq−1))

X(tq−1) + Y (tq−1) + cq
by (1)

= pq.

The following lemma shows that this ratio is concentrated around p1 = x/(x+ y).

Lemma 5.2. Consider the (C, x, y)-process for some sequence C and natural numbers x, y

such that
∑r
i=1 ci <

1
2 (x+ y). Then, for any w ≥ 1,

P
(
X(tr)

tr
>

x

x+ y

(
1 +

1

w

))
≤ P

(
X(tr) >

x

x+ y
tr +

x

w

)
≤ exp

(
− x

12cw2

)
.

Proof. Note that if X(tq−1) ≤ x
x+y tq−1 + x

w then

pq =
X(tq−1)

X(tq−1) + Y (tq−1)

≤ x(tq−1/t0 + 1/w)

tq−1
=
x

t0

(
1 +

t0/tq−1
w

)
≤ x

t0

(
1 +

1

w

)
=: p. (2)

We define Z1, . . . , Zr to be independent Bernoulli(p) variables. Let X ′(t0) = X(t0) = x.

For each 1 ≤ q ≤ r we define X ′(tq) = X(tq) if X(tq′) ≤ x
x+y tq′ + x

w for every q′ < q and

otherwise X ′(tq) = X ′(tq−1) + cqZq. Thus, defining Sq =
∑q
i=1 ciZi, (2) implies that we

can couple the process with Sq so that X ′(tq) ≤ x+ Sq for all 0 ≤ q ≤ r.
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So we can apply Lemma 5.1 to bound the probability that X ′ ever deviates much from

its mean. Noting that µr = p(tr − t0) ≤ pt0/2 = (x/2)(1 + 1/w) ≤ x since w ≥ 1, and

setting t = x/(2w) ≤ x/2 we get that

P
(

max
1≤q≤r

(Sq − µq) >
x

2w

)
≤ exp

(
− t2

2c(µr + t/3)

)
≤ exp

(
− (x/(2w))2

2c(x+ (x/2)/3)

)
= exp

(
− x

12cw2

)
. (3)

This implies the lemma since if Q is the smallest q ≤ r for which X(tq) >
x
x+y tq + x

w then

X ′(tq) = X(tq) for all q ≤ Q by definition and so

SQ ≥ X ′(tQ)− x > x

t0
(tQ − t0) +

x

w
= p(tQ − t0) +

x

w
· 2t0 − tQ

t0
≥ p(tQ − t0) +

x

2w
,

since tQ ≤ tr ≤ 3
2 t0.

We finish this subsection with the following result.

Lemma 5.3. Suppose that x ≤ x′ for some x′ such that c� x′ � y. Then, at the end of

the (C, x, y)-process described above, with probability at least 1− exp(−x′/(20c)),

X(tr) = O(x′tr/y).

Before we move to the proof of the lemma, note that we can assume that x = x′.

Clearly, running (C, x′, y) rather than (C, x, y) only decreases the probability that X ≤ Z

for any given Z; in particular, it decreases the probability that X(tr) = O(x′tr/y). So if

the lemma holds for x′ then it holds for x.

Proof. Lemma 5.2 requires that
∑r
i=1 ci ≤ (x+y)/2. In order to apply this lemma, we split

the process into phases. To simplify the notation, set r0 = 0. For the first phase we take the

longest sub-sequence C1 = (c1, c2, . . . , cr1) such that
∑r1
i=1 ci ≤ (x+y)/2. Next, we pick the

longest subsequence C2 = (cr1+1, cr1+2, . . . , cr2) such that
∑r2
i=r1+1 ci ≤

1
2 (x+y+

∑r1
i=1 ci),

and so on, for each j picking the longest subsequence Cj = (crj−1+1, crj−1+2, . . . , crj ) such

that
rj∑

i=rj−1+1

ci ≤
1

2

(
x+ y +

rj−1∑
i=1

ci

)
. (4)

The last phase, phase `, deals with the sequence C` = (cr`−1+1, cr`−1+2, . . . , cr` = cr).

Now the (C, x, y)-process can be treated as a series of ` processes, each on the sequence

Cj and with initial values taken from the end of the previous sequence; i.e. phase j is the

(Cj , X(trj−1
), Y (trj−1

))-process, where X(t0) := x, Y (t0) := y.

Recall that for every q, X(tq) + Y (tq) = x + y +
∑q
i=1 ci. So (4) implies that we can

apply Lemma 5.2 to each phase. For any j ∈ N, let wj = 1.1j , and for any j ∈ N∪ {0}, let

Ej =

j∏
i=1

(
1 +

1

wi

)
= Θ (1) ,

since

1 ≤
j∏
i=1

(
1 +

1

wi

)
≤ exp

( ∞∑
i=1

1/wi

)
= e10.

(In particular, E0 = 1.) We will prove that with probability at least 1− exp(−x/(20c)), at

the end of every phase j we have:

X(trj ) ≤ x

x+ y
Ejtrj . (5)
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If (5) holds at the end of phase j − 1 (or if j = 1; note that (5) trivially holds for j = 0),

then the probability that (5) holds at the end of phase j is at least the probability that it

holds if we adjust the initial values to

xj :=
x

x+ y
Ej−1trj−1

; yj := trj−1
− xj .

So we get a lower bound on the probability of (5) by applying Lemma 5.2 to the (Cj , xj , yj)-
process.

We require two bounds. For the first one, recall that by definition tq = x+ y+
∑q
i=1 ci.

Hence, tr0 = t0 = x + y and, since we choose the longest Cj satisfying (4) and each

ci ≤ c� x+ y ≤ trj−1
, for each 1 ≤ j < ` we have

trj = trj−1 +

rj∑
i=rj−1+1

ci > 1.5trj−1 − c = (1.5− o(1))trj−1 > 1.4trj−1 > 1.4j(x+ y).

Therefore,

xj > x(1.4)j−1Ej−1 ≥ x(1.4)j−1 for any 1 ≤ j ≤ `

and, since c� x,
x

17c

(
(1.1)j − 1

)
> j.

Note that, since xj + yj = trj−1 ,

xj
xj + yj

(
1 +

1

wj

)
trj =

x

x+ y
Ej−1trj−1 ×

1

trj−1

×
(

1 +
1

wj

)
trj =

x

x+ y
Ejtrj .

So Lemma 5.2 (applied with x = xj , y = yj , and tr = trj ; c remains the same for all

applications of the lemma) yields that the probability that (5) fails to hold at the end of

phase j is at most

exp

(
− xj

12cw2
j

)
≤ exp

(
− x1.4j−1

12c1.12j

)
≤ exp

(
−x1.1j

17c

)
≤ 2−j exp(−x/(17c)).

Hence, since
∑
j≥0 2−j exp(−x/(17c)) ≤ 2 exp(−x/(17c)) ≤ exp(−x/(20c)) → 0, with the

desired probability (5) holds at the end of every phase. Since the last phase ends at r` = r

and E` = Θ(1), this implies

X(tr) = X(tr`) ≤
x

x+ y
E`tr` = Θ

(
xtr
x+ y

)
= O

(
xtr
y

)
,

as x� y.

6 The giant has enough time to be born: k � n1/3

Suppose that k � n1/3. As mentioned earlier, we will prove that for this range of the

parameter k, the giant component is formed before collisions start affecting the process. In

particular, when the first special vertex joins the giant its size is much larger than the total

size of all other special components—see Lemma 6.2. As a result, the giant will continue

growing and at the end of the process it will have size n− o(n)—see Theorem 2.1(a).
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6.1 Early phase

Let ω = ω(n) be any function that grows with n sufficiently slowly to satisfy various bounds

that follow. In particular, it will grow more slowly than n1/3/k; we may then assume that

ω2 ≤ n1/3/k.

It will be also convenient to assume that k = k(n) tends to infinity faster than ω so let

us assume for now that k ≥ ω2; we will discuss how to translate the results to other values

of k (including the case when k is a constant) at the end of this section. Define:

λ1 = λ1(n) = n1/3/(kω)� n1/3/k

m1 = (n/2)(1 + λ1n
−1/3).

So m1 ∼ n/2 and G(n,m1) is in the supercritical phase (note that ω tends to infinity slowly

enough so that λ1 tends to infinity).

Recall that for a given graph G with r connected components, Li(G) is the size of an

i-th largest component (i = 1, 2, . . . , r). Similarly, let L̂i(G) be the size of an i-th largest

special component (i = 1, 2, . . . , k).

Let us start with the following observation.

Lemma 6.1. Suppose that ω2 ≤ k ≤ n1/3/ω2 for some ω = ω(n)→∞ as n→∞. Let λ1
and m1 be defined as above. Then a.a.s. the following properties hold.

(a) L1(Ĝk(n,m1)) ∼ 2n/(kω) = o(n);

(b) L2(Ĝk(n,m1)) = Θ(k2ω2 log(n1/3/k));

(c) L̂1(Ĝk(n,m1)) = O(k2ω2 log(n1/3/k)).

Proof. The proof follows easily from Lemma 4.4 applied to G(n,m1). We get that a.a.s.

the largest component of G(n,m1) has size asymptotic to 2λ1n
2/3 = 2n/(kω) = o(n).

Moreover, a.a.s. the size of the second largest component is of order n2/3λ−21 log λ1 =

Θ(k2ω2 log(n1/3/k)). Since we aim for a statement that holds a.a.s. we may assume that

G(n,m1) has these properties. Now, using the coupling between G(n,m1) and Ĝk(n,m1),

we select k special vertices at random to translate these observations to Ĝk(n,m1), as

described in Remark 4.1 in Section 4. The expected number of special vertices that belong

to the largest component is asymptotic to k · 2n
kω ·

1
n = o(1), so a.a.s. no special vertex

appears in that component. Finally, note that if at most one special vertex appears in a

given component of G(n,m1), then that component remains unaffected in Ĝk(n,m1). On

the other hand, if ` ≥ 2 special vertices appear in a component, then it is split into `

components by deleting some of its edges. This implies (a) and (c). The same argument

shows that a.a.s. no special vertex belongs to the second largest component which implies

(b). The proof of the lemma is finished.

So we can assume that Ĝk(n,m1) satisfies the properties of Lemma 6.1. In particular,

the largest component of Ĝk(n,m1) contains no special vertices and so it is identical to the

largest component of G(n,m1) under the coupling described in Section 4. Since Ĝk(n,
(
n
2

)
)

has exactly k components, each with one special vertex, there will be a step of the k-process

when the largest component is joined to a component containing a special vertex; we define

this step as:

m2 is the first step following m1

in which the largest component of G(n,m2) contains a special vertex.
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It is worth noting that a.a.s. m2 ∼ n/2. One can show easily, using Remark 4.1, that

a.a.s. the largest component of G(n,m = (n/2)(1 + λ2n
−1/3)) contains at least one special

vertex if

λ2 = λ2(n) = n1/3ω/k � n1/3/k.

Indeed, by Lemma 4.4, a.a.s. the largest component has size (2 + o(1))λ2 = (2 + o(1))nω/k

and so, conditioning on this event, the probability that it contains no special vertex is equal

to (
n−(2+o(1))nω/k

k

)(
n
k

) ≤
(
n− (2 + o(1))nω/k

n

)k
=

(
1− (2 + o(1))ω

k

)k
≤ exp

(
− (2 + o(1))ω

)
= o(1).

Therefore, a.a.s. m2 ≤ (n/2)(1 + λ2n
−1/3). Hence, a.a.s. m2 ∼ n/2 (since it is assumed

that k ≥ ω2).

Lemma 6.2. Suppose that ω2 ≤ k ≤ n1/3/ω2 for some ω = ω(n)→∞ as n→∞. Let m2

be defined as above. Then, a.a.s. the following properties hold

(a) L̂1(Ĝk(n,m2)) = L1(Ĝk(n,m2)) ≥ n/(kω);

(b)
∑k
i=2 L̂i(Ĝk(n,m2)) ≤ k2ω3 log(n1/3/k).

Moreover, for every m ≥ m2:

(c) the size of any non-special component in Ĝk(n,m) is at most k2ω3 log(n1/3/k).

Proof. It follows from Lemma 6.1(a) that the giant component of Ĝk(n,m1) has size at

least n/(kω). It keeps growing from that point on and so the same lower bound holds at

time m2. Property (a) holds. Moreover, using Lemma 4.4 and the discussion right after the

lemma, not only at time m1 (as indicated by Lemma 6.1(b)) but also if one continues the

random graph process from time m1 on, a.a.s. the size of the second largest component of

G(n,m) is always at most Θ(k2ω2 log(n1/3/k)) < k2ω3 log(n1/3/k). Since any non-special

component in Ĝk(n,m) is a component in G(n,m), this proves property (c).

Now, in order to show that property (b) holds, we must study the subgraph induced by

the vertices not in the largest component. We define:

GL(n,m) is the graph obtained by deleting the largest component from G(n,m).

This is of particular interest when m is in the supercritical range. We define:

n′ = the number of vertices in GL(n,m2);

m′ = the number of edges in GL(n,m2);

k′ = the number of special vertices in GL(n,m2).

By Lemma 4.4, after setting m2 = n/2 + λ2n
2/3/2, we have a.a.s.

n′ = n− (2 + o(1))λ2n
2/3

= n− (4 + o(1))(m2 − n/2);

m′ = m2 − (2 + o(1))λ2n
2/3

= n/2− (3/2 + o(1))λ2n
2/3

= n′/2− (1/2 + o(1))λ2n
2/3

= n′/2− (1 + o(1))(m2 − n/2); (6)
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and the component of G(n,m2− 1) that is added to the largest component of G(n,m2− 1)

in step m2 contains exactly k − k′ ≥ 1 special vertices.

Conveniently, the distribution of GL(n,m2) and of its k′ special vertices is nearly uni-

form, despite the conditioning implied by the definition of m2. Formally, we need the

following claim.

Claim: Expose the values of m2, k
′, and the largest component of G(n,m2); denote that

largest component by Θ∗. (Note that this determines the vertex set of GL(n,m2) and m′.)

Conditional on that exposure:

(i) Every graph on the n′ vertices of GL(n,m2) that has m′ edges and no component at

least as large as Θ∗ is equally likely to be GL(n,m2).

(ii) Every set of k′ vertices in GL(n,m2) is equally likely to be the special vertices.

Proof of the claim: Consider (i) any set S of k special vertices where exactly k′ are

outside of Θ∗, and (ii) any random graph process e1, . . . , em2
in which m2 is the first step

following m1 where the largest component contains a member of S and Θ∗ is that largest

component. Let L be the graph formed by removing Θ∗.

Let L′ be any graph on the same vertex set as L with m′ edges and with no component

larger than Θ∗. Replace the edges of L in the process with the edges of L′, in any order; let

G′i be the graph formed by the first i edges of the resulting sequence. Replace the k′ special

vertices in L by any set of k′ vertices in V (L), and do not change the k−k′ special vertices

in Θ∗; denote the resulting set of k special vertices as S′. It is straightforward to check that

(1) the largest component of G′m2−1 contains no vertex of S′, and (2) the largest component

of G′m2
is Θ∗ and hence contains a vertex of S′. So m2, k

′ and the largest component at

step m2 are the same in both processes. Furthermore, each sequence of edges is equally

likely to be selected. This implies the claim.

By part (ii) of our claim, and arguing as in Remark 4.1, we can first expose the graph

GL(n,m2) and then choose the k′ special vertices from that graph by selecting a set of

size k′ uniformly at random from all sets of that size. We will do it in the following way.

We independently select k′ vertices uniformly at random, one by one, allowing potential

repetitions. Let E be the event that all selected vertices are unique. For each of those

vertices, the expected size of the component containing it is χ(GL(n,m2)). Hence, the

expected total size of the components containing those vertices is at most k′χ(GL(n,m2))

(note that some of them may end up in the same component). By part (i), we can treat

GL(n,m2) as G(n′,m′) which, by Lemma 4.5 and (6) a.a.s. has susceptibility:

χ(GL(n,m2)) ∼ n′/2

n′/2−m′
∼ n/2

n′/2−m′
∼ kω.

So the expected total size of the components of GL(n,m2) containing selected vertices is

at most k′ × (1 + o(1))kω ≤ (1 + o(1))k2ω. Let Q be the event that the total size is at

most k2ω2. It follows from Markov’s inequality that P (Q) = 1 − o(1). Finally, note that

the probability of no repetition during the selection process is equal to

P (E) =

k′−1∏
i=1

(
1− i

n

)
=

k′−1∏
i=1

exp

(
− i
n

+O(i2/n2)

)
= exp

(
−O(k′2/n)

)
= 1− o(1),

since k′ ≤ k � n1/3. Hence, a.a.s. the selected vertices form a set of size k′ taken uniformly

at random from all sets of that size. Since

P (Q|E) =
P (Q ∩ E)

P (E)
≥ 1− P (Qc)− P (Ec)

1− P (Ec)
=

1− o(1)

1− o(1)
= 1− o(1),
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we conclude that a.a.s. the total size of the components of GL(n,m2) containing special

vertices is at most k2ω2.

This bounds the total size of all special components, other than the largest, in G(n,m2).

But we actually need to bound the total size in Ĝk(n,m2). If k′ = k − 1, i.e. if only one

special vertex joins the largest component in step m2, then these two totals are the same.

Otherwise, let Φ be the component of G(n,m2 − 1) that contains k − k′ special vertices

and is merged with the largest component in step m2. In Ĝk(n,m2 − 1), Φ is partitioned

into exactly k − k′ components. One of them is joined to the largest component in step

m2; the others have total size at most |Φ| which, by Lemma 4.4(b) and since m2 > m1,

is at most Θ(n2/3λ−21 log λ1) = Θ(ω2k2 log(n1/3/kω)). L̂2(Ĝk(n,m2)), . . . , L̂k(Ĝk(n,m2))

consists of those k− k′− 1 components, along with the k′ special components contained in

the components of GL(n,m2) that contain special vertices. The total size of the latter set

was bounded above, and so

k∑
i=2

L̂i(Ĝk(n,m2)) ≤ k2ω2 + Θ(ω2k2 log(n1/3/kω)) < ω3k2 log(n1/3/k),

thus proving part (b).

6.2 Modelling Ĝk(n,m) with a (C, x, y)-process

We continue assuming that ω2 ≤ k ≤ n1/3/ω2 for some ω = ω(n) → ∞ as n → ∞.

Beginning at time m = m2, we do not consider G(n,m) and instead focus directly on

Ĝk(n,m). Recall that a component is called special if it contains a special vertex, and so

we always have exactly k special components.

Let j1, . . . , j` > m2 denote the steps in the Gk-process during which we choose an

edge joining a special component to a non-special component. Of course, we accept that

edge. Let Θi be the non-special component joining a special component at time ji, and set

ci = |Θi|.

Observation 6.3. After m = m2, the sizes of the special components only change during

steps j1, . . . , j`.

Now expose the components Θ1, . . . ,Θ` but not the edges selected at times j1, . . . , j`.

Observation 6.4. Conditional on any choice for Θ1, . . . ,Θ`, at each step ji, the probability

that Θi is joined to a particular special component is proportional to the size of that special

component.

So we can model the growth of the largest component with a (C, x, y) process. Let

y = L1(Ĝk(n,m2)) = L̂1(Ĝk(n,m2)); x =

k∑
i=2

L̂i(Ĝk(n,m2));

i.e. y is the size of the largest special component and x is the total size of all other special

components at step m2. Then setting C = (c1, . . . , c`) we see that our two observations

yield:

Observation 6.5. The size of the largest special component at steps j1, . . . , j` follows

random variable Y in the (C, x, y) process.

Note that in this process, we have t` = n. By Lemma 6.2, we have:

y ≥ n/(kω);

x ≤ k2ω3 log(n1/3/k) ≤ x′ := k2ω4 log(n1/3/k); and

ci ≤ c := k2ω3 log(n1/3/k) for every i.
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From that, it is easily verified that c � x′ � y. Indeed, clearly c/x′ = 1/ω = o(1) and

since k ≤ n1/3/ω2, we have x′/y ≤ k3ω5 log(n1/3/k)/n ≤ 2 logω/ω = o(1). Therefore, we

can apply Lemma 5.3 to show that at the end of the process, a.a.s. the total size of all but

the largest special component is

X(n) = O(x′n/y) = O(k3ω5 log(n1/3/k)) = o(n).

This proves Theorem 2.1(a), provided that ω2 ≤ k ≤ n1/3/ω2. To extend the result

to smaller values of k, we apply Observation 4.2. Fix any k < k′ := ω2. Our bound

above yields that a.a.s. the largest special component at the end of the k′-process has size

1−O(k′3ω4 log(n1/3/k′)) = 1−O(kω10 log(n1/3/k)). Observation 4.2 implies that the same

bound holds for all 2 ≤ k < k′, thus proving Theorem 2.1(a). (Note that in the statement

of the theorem, we replaced ω10 by ω which is allowed as in the statement ω is any function

tending to infinity, regardless how slowly it does so.)

7 No component has a chance to become giant:

k � n1/3(log n)4/3(log log n)1/3

Suppose now that k � n1/3. As mentioned earlier, for this range of parameter k, collisions

will start affecting the process much earlier, namely, when each component has size smaller

than the total size of all special components—see Lemma 7.1. Intuitively, this results in

no one component dominating the process, and so no component will be able to grow to

linear size—see Theorem 2.1 (b). In order to prove that this happens we require a stronger

bound on k, namely:

k � n1/3(log n)4/3(log log n)1/3. (7)

For technical reasons, we also require the following upper bound

k � n/ log n. (8)

Thus we have the range of k for Theorem 2.1(b).

7.1 Early phase

For this section, we define:

λ3 =

(
k

n1/3
log(k/n1/3)

)1/2

m3 = (n/2)(1− λ3n−1/3).

Note that, since n1/3 � k � n/ log n, we have λ3 → ∞ and m3 = (n/2)(1− o(1)). So we

are in the subcritical phase.

Lemma 7.1. Suppose that k � n1/3 and k � n/ log n. Let λ3 and m3 be defined as above.

Then a.a.s. the following properties hold

(a) L̂1(Ĝk(n,m3)) ≤ L1(Ĝk(n,m3)) = Θ(n/k)� n2/3;

(b)
∑k
i=1 L̂i(Ĝk(n,m3)) ≥ 1

4

(
nk

log(k/n1/3)

)1/2
� n2/3.

Moreover, for any m ≥ m3:

(c) the size of any non-special component in Ĝk(n,m3) is at most n log n/k.
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Since the proof of this lemma is long, we split it into a few parts.

Proof of Lemma 7.1(a). From Lemma 4.4 we get that a.a.s. the size of the largest compo-

nent in G(n,m3) is equal to

x = Θ(n2/3λ−23 log λ3) = Θ(n/k).

The size of the largest component in Ĝk(n,m3) is at most the size of the largest component

in G(n,m3), so property (a) holds a.a.s.

Before we move on to the proof of property (b), let us note that Lemma 4.5 implies

that a.a.s. the susceptibility of G(n,m3) is

χ ∼ n/2

n/2− (n/2− λ3n2/3/2)
=
n1/3

λ3
=

(
n

k log(k/n1/3)

)1/2

.

Hence, one might expect the total size of all special components to be close to

kχ ∼
(

nk

log(k/n1/3)

)1/2

.

As explained in the proof of Lemma 6.2(b), this is only an upper bound for the expected

total size so more work would be needed to get a lower bound. More importantly, there

is a problem with showing a concentration around the expectation. Indeed, if we were

only concerned with k �
√
n log n, the concentration of this total size would follow easily

from the Hoeffding-Azuma inequality for martingales. Since we need a more sophisticated

argument for k near n1/3, we provide another proof covering the whole range of k, namely,

n1/3 � k � n/ log n.

Proof of Lemma 7.1(b). It will be simpler to work with the binomial random graph G(n, p)

and then translate the results back to G(n,m3). Let γ = γ(n) =
√
n log n�

√
n, and let

p =
m3 − γ(

n
2

) =
1− λ3n−1/3 − 2γ/n

n− 1
=

1− (1 + o(1))
(
k log(k/n1/3)/n

)1/2
n− 1

.

We start with n isolated vertices, k of them are special and form set K. We will find a

lower bound for the sum of the sizes of all components in G(n, p) containing special vertices.

Lemma 4.3 will then imply that the same bound holds in G(n,m3) and so also in Ĝk(n,m3)

(as this random variable is exactly the same in both models).

Consider the breadth-first-search process starting from K. Put all vertices of K into

a queue Q (first-in first-out list); in any order. Call all vertices of K saturated, and then

do the following as long as Q is not empty: remove w from Q, expose all edges from w to

non-saturated vertices, put all new neighbours of w into Q and call them saturated. Note

that all saturated vertices lie in special components.

Let t be the random step at which this process halts; i.e. reaches Q = ∅. For all i ≤ t

we let Si denote the number of saturated vertices at step i of the process. Set

s =
1

4

(
nk

log(k/n1/3)

)1/2

=
1

4
kχ.

It suffices to prove that a.a.s. we will reach a step i for which Si ≥ s. Note that at any step

i ≤ t, |Si| ≥ i. So it suffices to prove that a.a.s. we do not have:

t < s and Si ≤ s ∀i ≤ t. (9)
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Let Zi denote the random variable counting the number of vertices added into Q at the ith

step of the process. Since we remove one vertex from Q at each step, the size of Q at the

end of step i is

k − i+

i∑
j=1

Zj .

Note that Zi has binomial distribution Bin(n−Si, p). Indeed, if we let X1, . . . be a sequence

of independent Bernoulli(p) variables, then we can couple so that for all i ≤ t we have

i∑
j=1

Zj =

∑i
`=1 n−S`∑
j′=1

Xj′ .

So the probability that (9) holds is at most the probability that

∃i < s such that

i(n−s)∑
j′=1

Xj′ ≤ i− k. (10)

However, since

E

i(n−s)∑
j′=1

Xj′

 = i(n− s)p

= i

(
1− 1

4

(
k

n log(k/n1/3)

)1/2
)(

1− (1 + o(1))

(
k log(k/n1/3)

n

)1/2
)

= i

(
1− (1 + o(1))

(
k log(k/n1/3)

n

)1/2
)
,

(10) would imply that

E

i(n−s)∑
j′=1

Xj′

− i(n−s)∑
j′=1

Xj′ > k − (1 + o(1))i

(
k log(k/n1/3)

n

)1/2

> k − (1 + o(1))s

(
k log(k/n1/3)

n

)1/2

=

(
3

4
− o(1)

)
k >

1

2
k.

We note that E
[∑s(n−s)

j′=1 Xj′

]
< s <

√
nk and apply Lemma 5.1 with c = 1 to obtain that

the probability of (10) is at most

exp

(
− (k/2)2

2
√
nk

)
= exp

(
− (k3/n)1/2

8

)
= o(1),

since k � n1/3. This proves part (b).

Proof of Lemma 7.1(c). Set c = n log n/k. Note first that any non-special component in

Ĝk(n,m) is a component in G(n,m). We will run the G(n,m) process and say that round m

is dangerous if an edge added during this round connects two components of corresponding

sizes c1 and c2, such that c1 ≤ c, c2 ≤ c, but c1 + c2 > c. We say that a dangerous round

is deadly if the component formed contains no special vertex. We need to show that a.a.s.

there are no deadly rounds. Clearly, the number of dangerous rounds is at most n/c. To

bound the probability that the ith dangerous round is deadly, we run the G(n,m) process

until the ith dangerous round; note that the process up to this point is independent of
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the choice of special vertices, so we can choose them after the ith dangerous round. The

probability that none of the k vertices are in the component of size at least c formed in this

round is at most (
n−c
k

)(
n
k

) =
(n− c)k

(n)k
≤
(

1− c

n

)k
≤ exp

(
−ck
n

)
=

1

n
.

So the expected number of deadly rounds is at most n
c ·

1
n = o(1) and so a.a.s. no dangerous

round is deadly which finishes the proof of this property.

7.2 Late phase

We still assume that k � n/ log n so that Lemma 7.1 can be applied. We continue the

Ĝk(n,m) process from time m3 on. We model it with a (C, x, y)-process as in Subsection 6.2.

Again, we define c1, . . . , c` to be the sizes of the non-special components that are joined to

special components after step m3. By Lemma 7.1(c), every ci ≤ c := n log n/k.

Let v be any of the k special vertices. We will let X count the size of the component

containing v, and we let Y count the total size of the other k − 1 special components. By

Lemma 7.1(b,c), initially (i.e., at step m3) we have

X ≤ x = Θ(n/k) ≤ x′ := 30n(log n)2/k; Y ≥ y := Θ((nk/ log(k/n1/3))1/2).

(Note that we used a loose upper bound for X to make some room for an argument

below that gives the desired upper bound for the failure probability.) Using the fact that

k � n1/3(log n)4/3(log log n)1/3 we get c� x′ � y. So Lemma 5.3 implies that at the end

of the process, with probability at least 1− exp(−x/(20c)) = 1− o(n−1), we have

X = O(xt`/y) = O(xn/y) = O

(
n(log n)2/k

(nk/ log(k/n1/3))1/2
n

)
= O

((
n(log n)4 log(k/n1/3)

k3

)1/2

n

)
= o(n).

Multiplying by the k choices for v, with probability at least 1−o(1), at the end of the process

every special component has size o(n). This completes the proof of Theorem 2.1(b).

7.3 Extending the argument for large values of k

Until now, we have assumed that k � n/ log n. To extend to higher values of k, we apply

Observation 4.2. For any ω → ∞ with n, set k′ = n/(ω log n). Our bound above yields

that a.a.s. the largest special component at the end of the process has size O(ω3/2 log4 n).

Observation 4.2 says that the same bound holds for all k ≥ k′, thus proving Theorem 2.1(c).

8 Concluding Remarks

Note that in Theorem 2.1(b) we needed to assume that k � n1/3(log n)4/3(log log n)1/3.

This seems to be an artifact of the proof technique we use (the union bound over all special

components) rather than the lower bound that is needed. It is natural to conjecture that

a.a.s. L1(Pk(n,M)) = o(n) even for k � n1/3. Indeed, if k = n1/3ω for any ω = ω(n)→∞,

one can show (for example, using the argument as in the proof of Lemma 7.1(b)) that in

Ĝk(n, n/2), a.a.s. the total size of all special components is of order n2/3
√
ω. From the

observations in Section 4.2 we know that a.a.s. the giant component has size at most

n2/3ω1/4 (in fact, of order n2/3; as usual, we make some room for the argument to work),
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and the largest component that appears after time n/2 is of order n2/3. By Lemma 5.3,

we get that a.a.s. the largest special component at time m = n/2 grows only to size o(n).

This supports the conjecture but it is not clear how to avoid using the union bound and so

it remains an open problem.
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