
Hypergraph Artificial Benchmark for Community Detection
(h–ABCD)

Bogumił Kamiński∗ Paweł Prałat† François Théberge‡

July 18, 2023

Abstract

The Artificial Benchmark for Community Detection (ABCD) graph is a recently introduced
random graph model with community structure and power-law distribution for both degrees
and community sizes. The model generates graphs with similar properties as the well-known
LFR one, and its main parameter ξ can be tuned to mimic its counterpart in the LFR model,
the mixing parameter µ. In this paper, we introduce hypergraph counterpart of the ABCD
model, h–ABCD, which also produces random hypergraph with distributions of ground-truth
community sizes and degrees following power-law. As in the original ABCD, the new model
h–ABCD can produce hypergraphs with various levels of noise. More importantly, the model
is flexible and can mimic any desired level of homogeneity of hyperedges that fall into one
community. As a result, it can be used as a suitable, synthetic playground for analyzing and
tuning hypergraph community detection algorithms.

1 Introduction

Many networks that are currently modelled as graphs would be more accurately modelled as
hypergraphs. This includes the collaboration network in which nodes correspond to researchers and
hyperedges correspond to papers that consist of nodes associated with researchers that co-authorship a
given paper. After many years of intense research using graph theory in modelling and mining complex
networks [51, 34, 27, 40], hypergraphs start gaining considerable traction [11, 8, 6, 9]. Standard but
important questions in network science are revisited in the context of hypergraphs. This includes
various aspects related to community detection in networks [37, 38, 45, 44, 19, 63, 62, 10, 16, 2]
which we concentrate on in this paper. However, hypergraphs also create brand new questions
which did not have their counterparts for graphs. For example, how hyperedges overlap in empirical
hypergraphs [50]? Or how the existing patterns in a hypergraph affect the formation of new
hyperedges [35]?

Despite the fact that currently there is a vivid discussion around hypergraphs, the theory and
tools are still not sufficiently developed to allow most problems, including clustering, to be tackled

∗Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw, Poland; e-mail:
bogumil.kaminski@sgh.waw.pl

†Department of Mathematics, Toronto Metropolitan University, Toronto, ON, Canada; e-mail:
pralat@torontomu.ca. Part of this work was done while the author was visiting the Simons Institute for
the Theory of Computing.

‡Tutte Institute for Mathematics and Computing, Ottawa, ON, Canada; email: theberge@ieee.org

1

directly within this context. Indeed, researchers and practitioners often create the 2-section graph of
a hypergraph of interest (that is, replace each hyperedge with a clique) and apply classical tools
designed for graphs. After moving to the 2-section graph, one clearly loses some information about
hyperedges of size greater than two and so there is a common belief that one can do better by using
the knowledge of the original hypergraph.

As mentioned earlier, there are some recent attempts to directly deal with hypergraphs in the
context of clustering. In [64], methods from spectral clustering are generalized to hypergraphs; [22]
proposes a framework to infer missing hyperedges and detect overlapping communities, while in [17],
extensions of non-backtracking spectral clustering are proposed in the context of hypergraphs. In
Kumar et al. [45, 44], the authors reduce the problem to graphs but use original hypergraphs to
iteratively adjust weights to encourage some hyperedges to be included in some cluster but discourage
other ones (this process can be viewed as separating signal from noise). Moreover, in [37, 38] a
number of extensions of the classic null model for graphs are proposed that can potentially be used
by hypergraph algorithms.

Unfortunately, there are many ways such extensions can be done depending on how often nodes
in one community share hyperedges with nodes from other communities. This is something that
varies between networks at hand and usually depends on the hyperedge sizes. Let us come back
to the collaboration network we discussed earlier. Hyperedges associated with papers written by
mathematicians might be more homogeneous and smaller in comparison with those written by
medical doctors who tend to work in large and multidisciplinary teams. Moreover, in general,
papers with a large number of co-authors tend to be less homogeneous, and other patterns can be
identified [35]. A good clustering algorithm should be able to automatically decide which extension
should be used. However, in order to be able to design and properly tune such algorithms, one needs
to have a synthetic random hypergraph model that is able to simulate various scenarios.

The hypergraph model, h–ABCD, is our response to this need from both practitioners and
academia. This random graph model, similarly to the original ABCD model, produces hypergraphs
with community structure and power-law distribution for both degrees and community sizes. Indeed,
as with graphs, power-law distribution is a common feature present in many real-world hypergraphs;
for example, [25] shows power-law distributions for several real-world hypergraph decompositions,
and we have checked that in the presented cases the hypergraph degree distributions also follow
power-law distributions.

The paper is structured as follows. In Section 2, we briefly discuss the history of ABCD,
the “parent” of the h–ABCD model introduced in this paper, before summarizing other synthetic
hypergraphs. We focus on models important in the context of community detection and explain the
differences between the existing models and our model. The h–ABCD model is defined in Section 3.
Experiments highlighting important properties of the model are discussed in Section 4. In Section 5,
we conclude the paper with a few future research directions.

2 Existing Models

2.1 ABCD graph Models

There are very few datasets with ground-truth identified and labelled. As a result, there is need
for synthetic random graph models with community structure that resemble real-world networks
in order to benchmark and tune clustering algorithms that are unsupervised by nature. The LFR

2

(Lancichinetti, Fortunato, Radicchi) model [48, 46] generates networks with communities and at the
same time it allows for the heterogeneity in the distributions of both node degrees and of community
sizes. It became a standard and extensively used method for generating artificial networks.

The Artificial Benchmark for Community Detection (ABCD) [39] was recently introduced and
implemented∗, including a fast implementation† that uses multiple threads (ABCDe) [42]. Undi-
rected variant of LFR andABCD produce graphs with comparable properties butABCD/ABCDe
is faster than LFR and can be easily tuned to allow the user to make a smooth transition between
the two extremes: pure (disjoint) communities and random graph with no community structure.
Moreover, it is easier to analyze theoretically—for example, in [36] various theoretical asymptotic
properties of the ABCD model are investigated including the modularity function that, despite
some known issues such as the “resolution limit” reported in [28], is an important graph property
of networks in the context of community detection. Finally, the building blocks in the model are
flexible and may be adjusted to satisfy different needs. For example, the original ABCD model was
recently adjusted to include potential outliers in [41] resulting in ABCD+o model. Adjusting the
model to hypergraphs is much more complex but doable.

2.2 Other Hypergraph Models

The classical configuration model, which was first introduced by Bollobás [13], is a standard model
producing graphs with a given degree sequence. It was generalized to higher order structures many
times [18, 26]. One early example is the folksonomy, a tripartite structure of users, resources, and
tags, that was modelled as hypergraphs generated via configuration-type model in [29]. The variant
of the configuration model in [23, 24] generalizes it even further, namely, to simplicial complexes.
Simplicial complexes are attractive tools when studying topological aspects of discrete data [15],
but subset inclusion is a strong property, not suitable from our application point of view, namely,
community detection. In general, configuration models do not pay attention to labels of nodes and
so cannot produce graphs with community structure. Having said that, they can be used as an
ingredient of models which produce networks with communities. The configuration model was used
in the original ABCD model and we will use its generalization again for h–ABCD.

The Chung-Lu model for graphs (see [20] for details) gives an efficient and simple way to generate
graphs with an expected degree sequence, but without community structure. It can also be easily
generalized for bipartite graphs, as described in [3]; the bipartite representation is often used to
model hypergraphs. In the same paper, a generalization of the BTER (block two-level Erdős-Rényi)
model is proposed, also for bipartite graphs. In the standard BTER model, given degree distribution
is preserved as well as the degree-wise clustering coefficients. With bipartite graphs, there are no
3-cycles, so a new metamorphosis coefficient is introduced, which is based on 4-cycles, and the model
preserves this coefficient in a degree-wise matter.

The stochastic block model (SBM), first introduced in [33], is one of the most important graph
models in community detection and clustering. One benefit of it is that, being a generative model we
can formally study the probability of inferring the ground truth. This is what distinguishes it from the
configuration and Chung-Lu models. There are many variants and various applications of the SBM.
For more details, we direct the reader to [1], one of the many surveys on this model. In particular,
one can generalize the SBM to hypergraphs as it was done in, for example, [30, 43, 14], while

∗https://github.com/bkamins/ABCDGraphGenerator.jl/
†https://github.com/tolcz/ABCDeGraphGenerator.jl/

3

https://github.com/bkamins/ABCDGraphGenerator.jl/
https://github.com/tolcz/ABCDeGraphGenerator.jl/

in [49], a generalization of SBM is proposed for bipartite networks. Most SBM-type models have
ground-truth communities embedded into the model but do not produce graphs with realistic degree
distributions; a variant of SBM is proposed in [56] to approximate power-law degree distribution but
as far as we know, there is no such model for hypergraphs.

In [57], an interesting model is introduced in which hyperedges can be generated via a sampling
method, given the number of communities, node memberships, and affinity parameters between the
communities. The node degrees and hyperedge sizes can either be given explicitly or sampled from
the model. This approach is more complex than the one taken by the family of ABCD models.
The authors of [57] report that generating sparse hypergraphs with 105 nodes takes roughly half an
hour, which is orders of magnitude slower than with h–ABCD.

In [22], the probabilistic Hypergraph-MT model for hypergraphs is presented and is shown
to be useful for inferring missing hyperedges as well as detecting overlapping communities. While
the model as presented does not explicitly provide a benchmark, in the conclusion of the paper,
the authors mention that their model can also be used to sample synthetic data with hypergraph
structure.

Other hypergraphs models include core-periphery structure model [55, 59], preferential attachment
model with power-law degree distribution and high modularity [31], and entropy-based models [58].

Finally, the authors of [32] propose the HyGen model that seems to be similar to the one
introduced by us in this paper. Their algorithm is shown to be fast and scalable using MPI standard
for its distributed generation. (MPI, message passing interface is a standardized means of exchanging
messages between multiple computers running a parallel program across distributed memory.) The
HyGen model uses the idea of building independently community and background hypergraphs
that was also considered in the original ABCD graph generator [42] and is used in our h–ABCD
model. The main difference between the two models is that HyGen assumes that hyperedges
belonging to communities are completely contained in them, that is, all members of a community
hyperedge belong to one community. Our h–ABCD algorithm allows for community hyperedges
to be only partially contained within a community as long as majority of their members belong to
that community. This feature is a significant advantage of h–ABCD over HyGen as most complex
networks have non-strict hyperedges. See Section 3 for more details of community and background
hypergraph generation.

2.3 Distinctive Features of h–ABCD

The goal of this research project is to introduce (and efficiently implement) a scalable synthetic
hypergraph benchmark model with community structure and power-law degree distribution as well
as community sizes. Since none of the existing hypergraph models satisfy all of the desired properties,
we moved back to graph models and tried to adjust one of them to our needs.

h–ABCD model that is proposed in this paper produces networks that have power-law degree
distributions and distributions of community sizes. Alternatively, the user may easily inject the two
distributions as parameters of the model. The user may control the level of noise which covers all
spectrum of possibilities of community strength. The model returns the ground-truth communities
that then may be used to benchmark and tune community detection algorithms. The model, by
design, is fast but it is also efficiently implemented in Julia language. (Julia is a high-level, high-
performance, dynamic programming language that recently gained a lot of interest in scientific
computing applications [12].) As a result, it is by orders of magnitude faster than other models
that we are aware of. Finally, because of its simplicity, its properties as well as various processes

4

(such as spreading of information, anomalies detection, etc.) can be analyzed theoretically. Such
studies, complemented by simulations that are typically easier to perform, often uncover important
mechanisms that are present in real-world complex networks. One such spectacular example is a
study of the preferential attachment model that explains the following phenomena: “rich-get-richer”
mechanisms are responsible for creating power-law distributions that are typically observed in
complex networks [4]. Analysis of theoretical properties of h-ABCD are left as future work.

3 Definition of the Model

3.1 Parameters of the Model

Let us start with introducing parameters of the model. The h–ABCD model is governed by
parameters summarized in Table 1. Note, in particular, that the number of hyperedges, m, is not a
parameter of the model. It is a random variable that depends on the number of nodes n, the degree
distribution of the graph, and the distribution of hyperedge sizes qd. This random variable is well
concentrated around its expectation but it is not a parameter provided as an input. Similarly, the
number of communities, `, is not a parameter of the model but a random variable that depends
on the number of nodes n and the distribution of community sizes. The process of determining of
these values, as well as a detailed explanation of the interpretation of the presented parameters, is
discussed further in this section.

parameter range description
n N number of nodes
γ (2, 3) power-law exponent of degree distribution
δ N minimum degree at least δ
D N maximum degree at most D
β (1, 2) power-law exponent of distribution of community sizes
s N \ [δ] community sizes at least s
S N \ [s− 1] community sizes at most S
ξ (0, 1) level of noise (fraction of non-community hyperedges)
L N size of largest hyperedges
qd [0, 1] fraction of hyperedges that are of size d;

∑L
d=1 qd = 1

wc,d [0, 1] fraction of community hyperedges of size d that have exactly
c within-community nodes;

∑d
c=bd/2c+1wc,d = 1

Table 1: Parameters of the h–ABCD model

The model generates a hypergraph on n nodes. The degree distribution follows power-law
with exponent γ, minimum and maximum value equal to δ and, respectively, D. Community
sizes are between s and S, and also follow power-law distribution, but this time with exponent
β. The suggested range of values for parameters γ and β are chosen according to experimental
values commonly observed in complex networks not only represented as graphs [5, 54] but also as
hypergraphs [25]. Parameter ξ is responsible for the level of noise. If ξ = 0, then each hyperedge is a
community hyperedge meaning that majority of its nodes belong to one community. On the other
extreme, if ξ = 1, then communities do not play any roles and hyperedges are simply “sprinkled”

5

majority wc,d

c
d

1 2 3 4 5
1 1
2 1 1/2
3 1/2 1/2 1/3
4 1/2 1/3
5 1/3

linear wc,d

c
d

1 2 3 4 5
1 1
2 1 2/5
3 3/5 3/7 3/12
4 4/7 4/12
5 5/12

strict wc,d

c
d

1 2 3 4 5
1 1
2 1 0
3 1 0 0
4 1 0
5 1

Table 2: Example values of wc,d for majority, linear, and strict weights for d ∈ [5].

across the entire hypergraph that we will refer to as background hypergraph. Vector (q1, . . . , qL)
determines the distribution of the number of hyperedges of a given size.

Finally, parameters wc,d specify how many nodes from its own community a given community
hyperedge should have. We call a community hyperedge to be of a (c, d) type if it has size d and
exactly c of its nodes belong to one of the communities. Note, in particular, that we require that a
community hyperedge must have more than a half of its nodes from the community. Therefore, wc,d
is defined for d/2 < c ≤ d, where d ∈ [L].

The model is flexible and may accept any family of parameters wc,d satisfying specific needs
of the users, but here is a list of three standard options implemented in the code (see Table 2 for
example calculations):

• majority model: wc,d is uniform for all admissible values of c, that is, for any d/2 < c ≤ d,

wc,d =
1

(d− bd/2c)
=

1

dd/2e
,

• linear model: wc,d is proportional to c for all admissible values of c, that is, for any d/2 < c ≤ d,

wc,d =
2c

(d+ bd/2c+ 1)(d− bd/2c)
=

2c

(d+ bd/2c+ 1)dd/2e
,

• strict model: only “pure” hyperedges are allowed, that is

wd,d = 1 and wc,d = 0 for d/2 < c < d.

In the above formulas and later in the paper, for a given x ∈ R, bxc is used to denote the floor of x
(that is, the largest integer not larger than x) and dxe to denote its ceiling (that is, the smallest
integer not smaller than x).

3.2 Distribution of Hyperedges Sizes

Clearly, modelling complex networks as hypergraphs is still in an early stage but the initial exper-
iments, such as the ones done on 13 real-world hypergraphs (publication coauthors, drug abuse
warning network drugs, emails from an European research institution, national drug code directory
drug, online question tags, and thread participants) suggest that in many networks the largest
hyperedges are typically of a small size, not comparable to the number of nodes of the hypergraph [25].

6

As a result, parameter L in h–ABCD should be set to be some relatively small value that does not
grow with the order of the network.

Having said that, the datasets used in [25] are part of the Benson’s collection‡, which contains
real-world hypergraphs with a wide range of different maximum hyperedge sizes. There are datasets
with large values of L such as the network of Amazon reviews with n = 2,268,231 and L = 9,350 or
the network of stackoverflow answers with n = 15,211,989 and L = 61,315.

In this paper, since we aim for a synthetic model for community detection, we concentrate
on modelling networks with relatively small hyperedges. Indeed, enormous hyperedges are often
regarded as noise in this context and removed during the preprocessing phase. Because of that, our
goal is rather ambitious and we aim to generate hypergraphs with a distribution of hyperedges as
uniform as possible. Insisting on this important property is inherently computationally expensive for
large values of L (see Section 4.6). Dealing with larger values of L needs a slightly different approach
but is doable after scarifying uniformity condition (see Conclusions, Section 5).

3.3 The Big Picture

We summarize the main steps followed to generate the hypergraph h–ABCD below. More details
are provided right after.

1. Sample degrees of nodes.

2. Sample community sizes ensuring that the desired properties hold, in particular, that the sum
of community sizes equals the number of nodes n.

3. Compute the number of hyperedges of size one and then generate them.

4. For each node, compute what fraction of its degree should be assigned to community hyperedges
and what fraction remains to be used for background hyperedges.

5. Assign nodes to communities ensuring that they fit into them (for example, nodes of very
high degree cannot be assigned to small communities, as they would not be able to form
simple hyperedges within such communities). One of such admissible assignments is selected
randomly.

6. Generate community hypergraphs.

7. Generate the background hypergraph.

8. Resolve potential problems with infeasible hyperedges (either being multisets or duplicates) by
executing the rewiring process.

3.4 Definition of the Model—Details

Simple Hypergraphs vs. Multi-hypergraphs

Two variants of the model are considered in this paper, and both of them are implemented and
available at the associated GitHub repository§. The first variant (that is assumed to be used by

‡https://www.cs.cornell.edu/~arb/data/
§https://github.com/bkamins/ABCDHypergraphGenerator.jl

7

https://www.cs.cornell.edu/~arb/data/
https://github.com/bkamins/ABCDHypergraphGenerator.jl

default) produces simple hypergraphs whereas the second one generates multi-hypergraphs. “Simple”
in the context of hypergraphs means that hyperedges are sets of nodes but multi-sets are not allowed.
Indeed, since all edges in a graph are of size two, loops in the context of graphs are multi-sets of
size two in which one node is repeated twice. In particular, there are no multi-sets of size two
which correspond to loops in the graph terminology. Similarly, no hyperedges can be repeated so, in
particular, there are no parallel edges in the language of graphs (two identical hyperedges of size two
in the language of hypergraphs).

Degree Distribution

In the context of hypergraphs, the degree of a node v ∈ V of a hypergraph G = (V,E) is defined to be
the number of hyperedges this node belongs to, regardless of their sizes. (For multi-hypergraphs, the
number of occurrences of a node in a hyperedge as well as the number of repetitions of a hyperedge
are taken into account.) The volume vol(V) of G is defined to be the sum of degrees over all nodes
in the hypergraph. Hence, if there are md hyperedges of size d, then vol(V) =

∑L
d=1 dmd giving

us the counterpart of the handshaking lemma for hypergraphs. Also denote m =
∑L

d=1md to be a
total number of hyperedges in the hypergraph. As noted above, in h–ABCD, in contrast to n (the
number of nodes), m is a random variable, not a parameter of the model.

The degree distribution of nodes of h–ABCD is generated randomly following the (truncated)
power-law distribution P(γ, δ,D) with exponent γ ∈ R+, minimum value δ ∈ N, and maximum value
D ∈ N (δ ≤ D). Formally, if X ∈ P(γ, δ,D), then for any k ∈ {δ, δ + 1, . . . , D} we have that

Pr(X = k) =
k−γ∑D
x=δ x

−γ
. (1)

For typical applications, it is recommended to use γ ∈ (2, 3) [5, 54], some small value of δ such as 5
or 10, and D ≈ nζ for some ζ ∈ (0, 1), where n is the number of nodes.

In order to generate h–ABCD hypergraph on n nodes with a given degree distribution x :=
(x1, . . . , xn), we will use a straightforward generalization of the classical random graph model with a
given degree sequence known as the configuration model (sometimes called the pairing model),
which was first introduced by Bollobás [13]. (See [7, 60, 61] for related models and results.) We
start with a set P of vol(V) =

∑n
i=1 xi points that is partitioned into n buckets labelled with labels

v1, . . . , vn; bucket vi consists of xi points. We will additionally randomly partition the set P into
disjoint sets Ph, h ∈ [m], of various sizes such that P = P1 ∪ . . . ∪ Pm, and construct a multi-
hypergraph P(x) as follows: nodes are the buckets v1, . . . , vn, and a set Ph of points corresponds to
a hyperedge eh ⊆ V (possibly a multi-set) in P(x) that consists of nodes (buckets) that contain some
point in Ph. In our model, the process of generating random partition P = P1 ∪ . . . ∪ Pm is quite
complex and will be done in various phases. At this stage let us only mention that eventually there
will be md sets/hyperedges of size d for a total of m hyperedges. We will provide more details soon.

Distribution of Community Sizes

Community sizes of h–ABCD are generated randomly following the (truncated) power-law distribu-
tion P(β, s, S) with exponent β ∈ R+, minimum value s ∈ N\ [δ], and maximum value S ∈ N (s ≤ S).
It is recommended to use β ∈ (1, 2) [5, 54], some relatively small value of s (in our experiments
in this paper we set s = 50), and S ≈ nτ for some ζ < τ < 1. The assumption that τ > ζ is
recommended to make sure large degree nodes have large enough communities to be assigned to.

8

Similarly, the assumption that s ≥ δ+ 1 is required to guarantee that small communities are not too
small and so that they can accommodate small degree nodes. (These conditions are needed to make
sure that generating a simple hypergraph with the desired properties is feasible.)

The procedure of sampling the community size distribution is as follows. First, it is checked if
for a given parameters s, S, and n it is possible to generate appropriate community sizes. If it is not
possible, then the generation process is stopped and error is returned. Then, the algorithm draws
maxiter samples from the truncated power-law distribution; in the implementation, maxiter=1,000.
Each sample is a vector (c1, . . . , c`) of community sizes such that

∑
j∈[`] cj ≥ n and

∑
j∈[`−1] cj < n.

If for any of these samples the corresponding sum is exactly n, then the process is stopped and the
obtained community size distribution is retained. If none of the maxiter samples yields the sum
equal to n, then from the obtained distributions a vector (c1, . . . , c`) with minimum sum is selected;
note that

∑
j∈[`] cj > n. Clearly, ` > n/S but, more importantly, ` ≤ dn/se. The algorithm checks

if ` > n/s, and in such (highly unlikely) case we truncate the vector to that length; note that then
the sizes add up to less than n. The reason for checking this condition is that it is impossible to
generate a distribution having the sum equal to n, length greater than n/s, and with all entries at
least s. Finally, we start the process of fixing the community sizes until their sizes add up to n. The
updates are made in rounds. In each round all community sizes are shuffled in random order. Then,
sequentially, their sizes are increased or decreased by 1, depending if the total sum of sizes is less
than or greater than n. To satisfy the desired properties, for a given community an update is made
only if it results in a new community size in the range from s to S. The process stops if the sum of
community sizes reaches n. If the sum does not reach n in one round, then we repeat the process
until the desired property is reached.

Distribution of Hyperedge Sizes and Their Compositions

The distribution of hyperedge sizes is captured by a vector (q1, . . . , qL) with
∑L

d=1 qd = 1. The value
of qd ∈ [0, 1] indicates what fraction of the total volume is devoted to form hyperedges of size d.
The model distinguishes two types of hyperedges: community hyperedges and background ones.
Community hyperedges, by design, will have majority of their members to be part of one community.
Because of the majority rule, each community hyperedge is uniquely assigned to one such community.
The distribution of the desired composition of hyperedges is reflected by parameters wc,d with d ∈ [L]

and d/2 < c ≤ d such that for each d ∈ [L],
∑d

c=bd/2c+1wc,d = 1. The value of wc,d ∈ [0, 1] guides
what fraction of community hyperedges of size d have exactly c members from its own community.
We will call such hyperedges to be of type (c, d).

Hyperedges of Size 1

Hyperedges of size 1 play a special role and therefore are generated before hyperedges of larger
sizes. For example, they are “neutral” for community detection algorithms, such as the classical
Louvain algorithm that uses the modularity function, since they are inherently part of communities
their unique node belongs to. Having said that, potential users of the h–ABCD model might be
interested in generating such hyperedges for some other reasons, and so we provide such option.

The number of hyperedges of size 1 is m1 = bq1vol(V)e, where for a given integer a ∈ Z and real

9

number b ∈ [0, 1) the random variable ba+ be is defined as

ba+ be =

{
a with probability 1− b
a+ 1 with probability b.

(2)

(Note that E[ba + be] = a(1 − b) + (a + 1)b = a + b.) In the variant of the model generating
multi-hypergraphs, each hyperedge selects a node with probability proportional to the number of
points in the configuration model associated with this node that are not assigned to any hyperedges
yet. In order to generate simple hypergraphs, only points associated with nodes that are not yet
assigned to any hyperedges are considered. For this to be feasible, a trivial condition has to be
satisfied: m1 ≤ n. If this property does not hold, then we truncate it to m1 = n and, as a result, each
node has exactly one hyperedge of size 1 that it is a part of. Finally, regardless whether we generate
multi-hypergraphs or simple ones, we update the degree distribution (x1, . . . , xn) to reflect the fact
that some nodes are associated with hyperedges of size 1. In other words, in the following subsections
it will be convenient to assume that the degree distribution (x1, . . . , xn) ignores hyperedges of size
one but only with them the degree distribution matches the one requested by the user.

Level of Noise

As mentioned earlier, there are two types of hyperedges of size at least 2: community hyperedges
and background hyperedges. The ratio between the two types is guided by the main parameter of
the model: ξ ∈ [0, 1]. Indeed, the expected fraction of points (ignoring the ones that are already
associated with hyperedges of size 1) that are going to be associated with background hyperedges is
equal to ξ. In order to achieve this desired property, we split the degree xi of each node (equivalently,
the associated points in the configuration model) into community degree yi and background degree
zi (xi = yi + zi). We split the weights randomly as follows: for each node, we independently assign
zi = bξxie and fix yi = xi − zi (or, equivalently, assign yi = b(1− ξ)xie and fix zi = xi − yi).

Recall that the degree of v is equal to the number of hyperedges v belongs to (in case of non-simple
hypergraphs, taking into account both potential repetitions of hyperedges as well as repetitions of
nodes within one hyperedge). On the other hand, neighbours of node v are defined to be the nodes
that are together with v in some hyperedge. (Alternatively, one may consider the so-called 2-section
multi-graph in which each hyperedge of size d is replaced by a complete graph on d nodes from that
hyperedge. Then the neighbours of v in the hypergraph are simply neighbours in the associated
2-section graph.) Since hyperedge sizes could be larger than 2, the number of neighbours of v is
often larger than the degree of v. In the original ABCD model for graphs, parameter ξ guided
the fraction of the degree of a node v that is assigned to non-community edges which coincided
with the fraction of neighbours of v from community that is different than the community of v.
For hypergraphs, in the h–ABCD model introduced in this paper, parameter ξ still guides the
fraction of the degree of v that is assigned to background hyperedges but it does not have a direct
interpretation for the number of neighbours of v that belong to different communities than v. For
hypergraphs, this fraction will be generally larger than ξ. Indeed, even in the extreme case when
ξ = 0 (that is, all hyperedges are community hyperedges), hyperedges of size greater than 2 that are
assigned to some community will have majority of their members from such community but may not
have all of them, depending on the hyperedge type distribution. Unless there are only hyperedges of
type (d, d), we still should expect some nodes forming these hyperedges to be from outside of such
communities. As a result, not all neighbours of node v will belong to the community of v.

10

Assigning Nodes into Communities

At this point, the degree distribution (x1 ≥ x2 ≥ . . . ≥ xn) and the distribution of community sizes
(c1 ≥ c2 ≥ . . . ≥ c`) are already fixed. (In fact, the degree distribution is already split into the
community degree distribution (yi, i ∈ [n]) and the background degree distribution (zi, i ∈ [n]).) In
what follows, as already signalled above, we assume that both the degree sequence (xi) as well as
the sequence of community sizes (cj) are sorted in a non-increasing order.

h–ABCD hypergraph will be formed as the union of `+1 independent hypergraphs: ` community
hypergraphs Gj = (V,Ej) in which Cj ⊆ V with |Cj | = cj plays a special role (j ∈ [`]), and a single
background hypergraph G0 = (V,E0), where V =

⋃
j∈[`]Cj . Recall that a hyperedge belongs to a

community if majority of its nodes belong to it. By design, all hyperedges of Gj , j ∈ [`], (community
hyperedges) will belong to its own community (which does not mean that all members of these
hyperedges belong to Cj ; that is why V (Gj) = V instead of V (Gj) = Cj) but a few additional edges
from the background graph G0 might end up in that community. In order to create enough room
for these hyperedges, node of degree xi needs to be assigned to community Cj of large enough size
cj . The property that needs to be satisfied is as follows: for any i ∈ [n], node vi is allowed to be
assigned to a community of size cj if for any d ∈ [L] \ {1} and any bd/2c+ 1 ≤ c ≤ d,

yi

 c∑
f=bd/2c+1

qdwf,d ·
(
d− f
c− f

)(cj
n

)c−f (
1− cj

n

)d−c
+ zi qd ·

(
d− 1

c− 1

)(cj
n

)c−1 (
1− cj

n

)d−c
≤
(
cj − 1

c− 1

)(
n− cj
d− c

)
. (3)

This condition is especially important for the variant which generates simple hypergraphs but we
insist on it even when multi-hypergraphs are created to avoid creating hyperedges in which nodes
are repeated multiple times. For example, if a hyperedge of size 100 that is of type (100, 100) is
assigned to a community of size 10, then some node will have to be repeated at least 10 times.

The rationale behind the above inequality is as follows. There are yi points associated with
community degree of vi and we expect qdwf,d fraction of them to be devoted to community hyperedges
of type (f, d). Each of these hyperedges has a probability of having precisely c members in community
Cj well approximated by (

d− f
c− f

)(
vol(Cj)
vol(V)

)c−f (
1− vol(Cj)

vol(V)

)d−c
.

(Unfortunately, to verify this, the reader needs to wait for the description of the processes that
generate community and background graphs.) The volume of Cj is not known before the assignment
of nodes into communities is finalized but, assuming that nodes are assigned randomly, it is expected
that vol(Cj) = (cj/n)vol(V). Similarly, ziqd points associated with background degree of vi is
expected to be devoted to background hyperedges of size d. Each of these points has a probability
of having precisely c members in community Cj well approximated by(

d− 1

c− 1

)(
vol(Cj)
vol(V)

)c−1(
1− vol(Cj)

vol(V)

)d−c
.

Hence, the left hand side of (3) corresponds to the expected number of hyperedges of type (c, d) from
both community Cj and the background graphs. This explains (3) since in simple hypergraphs the

11

community of size cj may accommodate at most
(cj−1
c−1
)(n−cj

d−c
)
hyperedges of type (c, d) containing

node vi.
Let us also briefly comment on the complexity aspect of this part of the algorithm, since it is one

of the two computationally expensive parts of the algorithm. Note that (3) can be rewritten in the
form yiAj + ziBj ≤ Cj , where constants Aj , Bj , Cj depend on the distribution of community sizes
but does not depend on the degree distribution. As a result, these constants can be pre-computed for
all triples (j, d, c), where j ∈ [`], d ∈ [L] \ {1}, and bd/2c+ 1 ≤ c ≤ d, before verifying the inequality.
Moreover, for any group of nodes of degree xi with the same split into yi and zi we need to check the
condition (3) only once. These observations significantly reduce the running time of the algorithm.

An assignment of nodes into communities will be called admissible if the above family of
inequalities (3) is satisfied for all nodes. Our goal is to select one admissible assignment at random,
with distribution close to being uniform. Sampling uniformly one of such assignments for graphs
turns out to be relatively easy from both theoretical and practical points of view [39, 36]. Indeed,
in order to assign nodes to communities, the following easy and natural algorithm is used. We
consider nodes, one by one, in non-increasing order of their degrees, that is, we start with v1 (highest
degree node) and finish with vn (lowest degree node). We assign node vi randomly to one of the
communities that have size large enough so that (3) is satisfied, and still have some “available spots.”
We do it with probability proportional to the number of available spots left.

It is easy to see that for graphs the above simple algorithm generates one of the admissible
assignments uniformly at random. The proof uses the fact that if node vi can be assigned to a given
community, then node vi′ for some i′ > i can also be assigned to that community. For hypergraphs,
each node has to satisfy a few inequalities (3) (for various combinations of c and d) and so this
property might not be satisfied. However, this simple algorithm still produces near uniform sampling
that is statistically indistinguishable from uniform, provided that n is large enough.

Note that a randomly selected community (with probability proportional to the number of
available spots left) often satisfies inequalities (3), especially later in the process when nodes of small
degrees are being assigned. Hence, in order to speed up the generation process, we first select 10
random communities and only if none of them satisfies the desired property, we move on to the
exhaustive search that identifies potential destinations before selecting one of them randomly.

Creating Community Graphs

In order to generate the community hypergraphs Gj = (V,Ej) we will use a generalization of the
configuration model. Recall that there are pj =

∑
vi∈Cj

yi points associated with nodes in Cj that
will be part of community hyperedges. Some of such points will belong to community hyperedges of
type (c, d) with c > d/2 members from Cj but some of them will form hyperedges with majority of
their members from some other community.

First, we need to fix the number of hyperedges of a given size. For each community graph Gj ,
we consider all values of d ∈ [L] \ {1} in decreasing order, and fix the number of hyperedges of size d
to be

md =

 qd∑d
f=2 qf

pj − L∑
f=d+1

fmf

 1

d

 . (4)

(We use the convention that 0/0 = 0 or simply skip the values of d for which qd = 0.) This guarantees
that the distribution of hyperedge sizes follows (approximately) the desired distribution, that is,
dmd ≈ qdpj . Note that, due to some possible divisibility issues, there might be some points left

12

at the end of this process (at most d − 1, where d is the smallest value in [L] \ {1} with qd 6= 0,
since we considered values of d in decreasing order). Indeed, in order to avoid potential deficit of
points, we rounded real numbers down in the definition of md above—see equation (4). These points
are simply moved to the background graph, that is, we decrease some random values of yi (and
increase the corresponding values of zi); the selection of such nodes vi from community Cj is made
with probabilities proportional to yi. As a consequence, since pj =

∑
vi∈Cj

yi, the value of pj is also
appropriately updated, if needed, and now pj =

∑L
d=2 d ·md.

Now, we need to fix the initial number of hyperedges of type (c, d). (The final number of them
might be slightly different.) As before, for each community graph Gj and each value of d ∈ [L] \ {1},
we consider all values of c, bd/2c+ 1 ≤ c ≤ d, in decreasing order, and fix the number of hyperedges
of type (c, d) to be

mc,d =

 wc,d∑c
f=bd/2c+1wf,d

md −
d∑

f=c+1

mf,d

 .
Once all mc,d’s are computed, we know that exactly p′j points out of pj points associated with

nodes in Cj will belong to community hyperedges of type (c, d) with majority of their neighbours
from Cj . Clearly,

p′j =
L∑
d=2

d∑
c=bd/2c+1

c ·mc,d ≤
L∑
d=2

d∑
c=bd/2c+1

d ·mc,d =
L∑
d=2

d ·md = pj .

Most of the remaining pj − p′j points will typically be assigned to community hyperedges with
majority of their neighbours from some other community. Those exceptional points that will end up
in community hyperedges with majority of their neighbours from Cj will change their type from
(c, d) to (f, d) for some c < f ≤ d. We will explain how such assignment is done soon.

To make sure each node vi from Cj is part of many community hyperedges with majority of their
members from Cj , we further split yi points associated with the community degree of vi and assign
y′i of them to be part of such community hyperedges. The value of y′i ≤ yi that we aim to be close
to yi · p′j/pj is chosen as follows. To guarantee that each y′i is at least byi · p′j/pjc we initially set
this value for every y′i. Next, we compute by how much the sum of such floors is less than p′j , that
is, we set t := p′j −

∑
vi∈Cj

byi · p′j/pjc. Clearly, 0 ≤ t < |Cj |. Then, we randomly sample, without
replacement, t points (with probability proportional to yi · p′j/pj − byi · p′j/pjc). Such points have
their corresponding values of y′i increased by one that is, y′i = dyi ·p′j/pje. As a result,

∑
vi∈Cj

y′i = p′j
and no value of y′i is more than 1 away from its desired value of yi · p′j/pj .

Let us summarize properties of the auxiliary partition of points that we just created as it is
crucial for the process of creating the h–ABCD hypergraph. There are

∑
i∈[n] xi = vol(V) points in

total; p =
∑

i∈[n] zi of them are put aside to form a set B that will be used to create the background
graph. From pj =

∑
vi∈Cj

yi remaining points associated with nodes in Cj we selected p′j =
∑

vi∈Cj
y′i

points to form a set Cj that will be used to create community hyperedges with majority of members
from Cj . The remaining

∑
i∈[n](yi − y′i) =

∑`
j=1(pj − p′j) points form a set C.

Finally, we are ready to create random community graphs Gj , j ∈ [`]. For each community
hyperedge of type (c, d) that belongs to community Cj , we randomly select c points from Cj (without
replacement). At this point all points from Cj are exhausted. Once we process all community
hyperedges of all community graphs, points from C are randomly assigned to community hyperedges

13

so that their sizes match the desired values, that is, a hyperedge of type (c, d) gets additional
d− c points. As mentioned earlier, note that these points are typically taken from outside of the
community a given hyperedge of type (c, d) belongs to, but it might happen that some hyperedge
becomes of type (f, d) for some value of f , c < f ≤ d.

Creating Background Graph

Background graph is created similarly to community graphs. There are p =
∑

i∈[n] zi points in set
B that will be associated with background hyperedges of G0. As before, we consider all values of
d ∈ [L] \ {1} in decreasing order, and fix md, the number of hyperedges of size d in the background
graph, using formula (4).

We first randomly partition points in B into sets of appropriate sizes that become background
hyperedges. Note that after this process, there could be r ≥ 0 points left, where 0 ≤ r < R =
min{d ∈ [L] \ {1} : qd > 0}. (In particular, when edges are allowed, R = 2 and so there is at most
one point left.). If r = 0, then we are done, and so in what follows we discuss how the case r > 0 is
handled.

First we check whether q1 > 0. If this is the case, then for the multi-hypergraph variant of the
model, we simply create r additional hyperedges of size 1 from the remaining r points. On the other
hand, if simple hypergraph is requested, then we check whether all remaining points are assigned to
unique nodes and none of them corresponds to an already created hyperedge of size 1. If both of
these constraints are satisfied, then one more time we create r hyperedges of size 1 from these points.

If q1 = 0, or q1 > 0 and simple hypergraphs were requested but at least one of the above
constraints were not satisfied, then we increase the background degrees zi of R− r random nodes
making room for one additional hyperedge of size R (that is, we increase mR by 1); the selection of
such nodes vi is made with probabilities proportional to zi.

Finally, let us mention that background hyperedges might produce hyperedges of type (c, d) for
some d/2 < c ≤ d. However, for large graphs with many communities there will typically not be
very many of them. Type (2, 3) has the best chance to get additional “boost”, followed by type (2, 2).

Creating Simple Hypergraphs—Rewiring

In the variant of the model that produces simple hypergraphs, it remains to deal with multi-sets or
hyperedge repetitions that might potentially get created.

We take all hyperedges generated so far and split them into two objects. We put all hyperedges
that are sets into set S. All the remaining hyperedges (that is, hyperedges that are multi-sets or
hyperedges that were duplicated) are put into vector B. Note that in case of having t ≥ 2 duplicates
of a given hyperedge that is a set, one such hyperedge goes to S and t− 1 of them go to B. Next,
we try to fix problematic hyperedges from vector B as follows. In one round, we pick a hyperedge b
from vector B. We compute the indisposition of b as the sum of two terms. The first term is equal
to 1 if b is in S, and 0 otherwise. The second term is equal to the number of duplicates in b. Note
that exactly one element of this sum is positive.

Next, we randomly pick a good hyperedge g from S. Let sb be the size of b and sg be the size of
g. We merge points from b and g and randomly split them into new hyperedges, h1 and h2, of sizes
sb and sg. Now, we calculate the sum of indispositions of h1 and h2 the same way as it was done
for b. If the total indispositions is less than the initial indisposition of b, then we remove b and g
from S and, respectively, B, and put h1 and h2 back into these sets (to S if they have indispositions

14

of zero, and to B otherwise). This process is repeated no more than maxiter · |B| times (that is,
maxiter times per one initial bad hyperedge); in implementation, maxiter = 100. If after that many
iterations there are still some bad edges left in B, then we give up and the generation process is
terminated and appropriate warning is returned.

4 Experiments

In this section we present a series of experiments investigating various properties of the h–ABCD
model. For such experiments, unless otherwise indicated, we used the following parameters: γ = 2.5,
δ = 5, D = nζ with ζ = 0.5 (parameters affecting the degree distribution), β = 1.5, s = 50, S = nτ

with τ = 3/4 (parameters affecting the distribution of community sizes), ξ = 0.2 (the level of noise),
and q2 = q3 = q4 = q5 = 0.25 (the distribution of hyperedge sizes). In the first few experiments,
community edges could have any number of nodes from its own community as long as majority
of them belong to that community. In other words, for a fixed value of d, we consider a uniform
distribution of wc,d. As mentioned at the very beginning of this section, we refer to this distribution
as majority model. However, other models will be investigated later on. In all cases, we generate
simple hypergraphs.

4.1 Degree Distribution

The degree distribution, by design, follows power-law with exponent γ and from that perspective
there is no difference between h–ABCD and the original model for graphs, ABCD. As a result,
we have a good understanding of its asymptotic behaviour [36]. We start with a simple experiment
to see whether theoretical, asymptotic results can be used to predict the empirical behaviour for
relatively small values of n.

In Figure 1, we plot the fractions of nodes with degree larger than or equal to K for all
K ∈ {δ, δ + 1, . . . , D}. Results are presented for small (n = 1, 000) and larger (n = 1, 000, 000)
graphs. For each graph size, 100 independent runs were performed and the shaded areas correspond
to the standard deviation for each value. We compare those simulation results with the values
predicted by theory. We observe a good correspondence even for small graphs, with almost perfect
match for larger graphs. Additionally in Table 3, as a reference, we give mean and standard deviation
of the number of communities for n = 2i, i ∈ {10, . . . , 20}.

4.2 Distribution of Community Sizes

The process of generating community sizes in h–ABCD is the same as in ABCD, and it is designed
to follow (truncated) power-law distribution with exponent β. Asymptotic behaviour is then quite
easy to analyze [36]. However, since there are substantially less communities than nodes, one should
not expect to have equally good behaviour of the distribution of community sizes as for the degree
distribution.

In Figure 2, we plot the fractions of communities with sizes larger than or equal to K for all
K ∈ {s, s+ 1, . . . , S}. As in the previous experiments, results are presented for small (n = 1, 000)
and larger (n = 1, 000, 000) graphs. For each graph size, we performed 100 independent runs and
compared simulation results with the values predicted by theory. The conclusions are similar but, as
expected and mentioned earlier, due to the fact that the number of communities is much smaller

15

6 10 20 30
K

10 2

10 1

100
Fr

ac
tio

n
of

 n
od

es
 w

ith
 d

eg
re

e
>=

 K n = 1,000
simulation
theory

101 102 103

K

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Fr
ac

tio
n

of
 n

od
es

 w
ith

 d
eg

re
e

>=
 K n = 1,000,000

simulation
theory

Figure 1: Comparison of the degree distribution predicted by theoretical, asymptotic results with
results from simulations.

n mean ` std `

1,024 11.03 1.29
2,048 16.81 2.23
4,096 26.61 3.52
8,192 39.41 6.01
16,384 62.12 8.39
32,768 96.60 14.92
65,536 148.49 21.74

131,072 229.72 28.61
262,144 352.59 40.51
524,288 539.00 54.11

1,048,576 844.01 82.39

Table 3: Mean and standard deviation of the number of communities ` as a function of n. Reported
values are computed using 100 independent samples.

than the number of nodes, the standard deviations are substantially larger than those for the degree
distribution presented in Figure 1.

4.3 Distribution of Edge Sizes

The distribution of edge sizes is controlled by vector q. In our experiment, we requested that the
same fraction of the total volume to be associated with edges of sizes between 2 and 5 (q2 = q3 =
q4 = q5 = 0.25). However, because of rounding (see (4)), there is a mild bias towards smaller
hyperedges. For large hypergraphs, the difference should not be visible but for small ones could be.
The goal of the next experiment is to investigate how strong the bias is.

We independently generated 100 graphs for each size n = 2i, i ∈ {10, . . . , 20}. We considered
two different values for the parameter responsible for the level of noise, respectively ξ = 0.2 and
ξ = 0.7. The choice of hyperedge composition (matrix w) does not affect the distribution of edge
sizes so we select the majority model, one of the three standard models of h–ABCD.

16

60 100 200
K

10 2

10 1

100
Fr

ac
tio

n
of

 c
om

m
un

iti
es

 w
ith

 si
ze

 >
=

K n = 1,000

simulation
theory

102 103 104

K

10 6

10 5

10 4

10 3

10 2

10 1

100

Fr
ac

tio
n

of
 c

om
m

un
iti

es
 w

ith
 si

ze
 >

=
K n = 1,000,000

simulation
theory

Figure 2: Comparison of the distribution of community sizes predicted by theoretical, asymptotic
results with results from simulations.

The results of the experiment are shown in Figure 3. As expected, we see a small bias toward
smaller edges for small graphs, and convergence toward a uniform distribution for larger graphs.
However, the difference, even for the smallest graphs on 210 nodes, is quite small. Parameter ξ might
potentially affect the distribution. To see it, consider hyperedges of the largest size d. For a small
value of parameter ξ, almost all communities (if not all) have their volumes much larger than d.
Such communities are expected to assign, on average, (d− 1)/2 less points to the largest hyperedges
than requested. For small graphs, the number of communities is not negligible in comparison to
the total number of edges, and so we expect to see the difference. On the other hand, if ξ is very
close to 1, most of the volume is assigned to the background graph which may affect at most one
edge. Hence, the bias should be small for such cases, even for small graphs (of course, large values
of ξ are not of practical importance). In our experiments, the results for the two values of ξ are
indistinguishable; as expected, ξ affects which nodes are put into hyperedges but not the distribution
of hyperedge sizes.

Additionally in Table 4, as a reference, we give mean and standard deviation of the number of
generated hyperedges m for n = 2i, i ∈ {10, . . . , 20}, majority model and ξ = 0.2 (type of the model
and ξ would not affect the results). Note that the number of hyperedges is well concentrated around
the mean.

4.4 Distribution of Hyperedge Composition

The setup for this experiment is exactly the same as in the previous subsection, but this time we
compare the distribution of hyperedge composition, that is, the number of hyperedges of type (c, d)
for d ∈ {2, 3, 4, 5} and d/2 < c ≤ d. We say that the remaining hyperedges are of type (0, d), that is,
hyperedges of type (0, d) are hyperedges of size d that do not have a majority of nodes in any of the
communities.

Recall that the initial number of hyperedges of type (c, d) is governed by parameter wc,d stored in
matrix w. However, some hyperedges of type (c, d) might “get promoted” and become of type (f, d)
for some c < f ≤ d, if at least one of the additional d− c points are taken from the same community.
Moreover, some of the background hyperedges might become of type (c, d) for some d/2 < c ≤ d.
Finally, in the experiments we produce simple hypergraphs (recall that this is a default option but
the framework also allows for generation of multi-hypergraphs). The requirement of generating

17

211 213 215 217 219

Number of nodes (n)

0.246

0.247

0.248

0.249

0.250

0.251

0.252

0.253

0.254

Ed
ge

 p
ro

po
rti

on

majority, = 0.2
size 2
size 3
size 4
size 5

211 213 215 217 219

Number of nodes (n)
0.246

0.247

0.248

0.249

0.250

0.251

0.252

0.253

0.254
majority, = 0.7

size 2
size 3
size 4
size 5

Figure 3: Distribution of the total volume associated with hyperedge sizes, given parameters
q2 = q3 = q4 = q5 = 0.25. The majority model and two values of the parameter responsible for the
level of noise (ξ = 0.2, 0.7) were used.

simple hypergraphs means that when a multi-hyperedge or parallel hyperedge is generated, then it
has to be rewired as discussed in Section 3. The rewiring process, if needed, performed on an edge
of type (c, d) typically reduces its value of c. This is especially visible for hyperedges of type (d, d)
that are most likely to be multi-hyperedges for large d and small communities. For large graphs,
the discussed discrepancies should not be noticeable but small graphs might have distribution of
hyperedges types slightly different than the desired one, requested via matrix w. The results for
two standard models (majority and strict) and ξ ∈ {0.2, 0.7} are shown in Figure 4 (majority) and
Figure 5 (strict).

There are several interesting observations that can be made from those plots. Let us first start
from the majority model (Figure 4). The requested fraction of hyperedges of size d that are of
type (0, d) is ξ, and those that are of type (c, d) for some d/2 < c ≤ d should have frequency close
to (1− ξ)wc,d = (1− ξ)/dd/2e, regardless of the value of c. Large hypergraphs, as expected, have
distributions that are very close to the requested one. For smaller graphs we see that some of the
background edges got “promoted” and became of type (c, d) for some d/2 < c ≤ d. As a result,
functions associated with types (0, d) for ξ = 0.7 tend to increase with the size of the hypergraph.
On the other hand, for ξ = 0.2 and, say, d = 5 the function associated with type (0, 5) seems to be
initially larger than 0.2 before converging to 0.2. This is because the total number of community
hyperedges of size d = 5 is smaller than requested (as discussed in the previous subsection) and
so background hyperedges consume a larger share of the total number of hyperedges of size d = 5.
We also notice that some types of hyperedges are more likely than others, despite the fact that
their corresponding values of wc,d are equal. For example, with d = 3, we see more hyperedges
of type (2, 3) than of type (3, 3) (larger deviation for ξ = 0.7 than for ξ = 0.2). This is, again,
due to hyperedges from the background graph that are more likely to generate such edges by pure
randomness.

Similar observations can be made for the strict model (Figure 5). As in the previous situation, the
requested fraction of hyperedges of size d that are of type (0, d) is ξ. In fact, the initial distribution
of hyperedges of type (0, d) is exactly the same as last time (before rewiring), as the processes of

18

n mean m std m

1,024 2,969 48.11
2,048 6,325 92.79
4,096 13,369 185.96
8,192 28,056 311.11
16,384 58,408 492.11
32,768 120,715 956.52
65,536 248,123 1386.05
131,072 508,032 2,201.55
262,144 1,035,753 3,631.05
524,288 2,105,073 5,278.08

1,048,576 4,267,800 7,893.15

Table 4: Mean and standard deviation of the number of hyperedges m as a function of n. Reported
values are computed using 100 independent samples.

generating background graphs are the same. However, this time the bias introduced by rewiring is
slightly larger than for the majority rule, as hyperedges of type (d, d) are most likely to be non-simple.
This discrepancy diminishes as size of the graph increases, as then the fraction of hyperedges that
need to be rewired drops. The fraction of hyperedges that are of type (d, d) is requested to be
(1 − ξ)wc,d = 1 − ξ but other types should not be present at all. The distribution of hyperedges
types is very close to the desired ones for large graphs. For small graphs, while most hyperedges are
either of type (d, d) or type (0, d), we see some of them with d/2 < c < d, again, a side effect of the
background graph. Not surprisingly, there are more of type (3, 5) than of type (4, 5).

4.5 Modularity Function and the Need for Matrix w

As mentioned in the introduction, there are many ways members of one community could form
hyperedges. In some real-world networks, most hyperedges are homogeneous (recall an example with
papers written by mathematicians) but in some other networks many hyperedges are heterogeneous
(again, recall an example with papers written by medial doctors). Hence, h–ABCD model has to
be able to simulate various scenarios. The main reason behind experiments in this subsection is to
show that one may use h–ABCD model to generate hypergraphs that are indistinguishable from
their 2-section point of view but, at the same time, have completely different structures when viewed
as hypergraphs.

Before we move to our experiments, we need to introduce a few definitions. The modularity
function for graphs was first introduced by Newman and Girvan in [53] and is currently often used to
measure the presence of community structure in networks. Many popular algorithms for partitioning
nodes of large graphs use it [21, 47, 52] and perform very well. The modularity function favours
partitions of the set of nodes of a graph in which a large proportion of the edges fall entirely within
the parts, but benchmarks it against the expected number of edges one would see in those parts in
the corresponding Chung-Lu random graph model.

Formally, for a graph G = (V,E) and a given partition A = {A1, A2, . . . , Ak} of V , the modularity

19

function is defined as follows:

qG(A) =
∑
Ai∈A

eG(Ai)

|E|
−
∑
Ai∈A

(
volG(Ai)
volG(V)

)2

, (5)

where eG(Ai) = |{{vj , vk} ∈ E : vj , vk ∈ Ai}| is the number of edges in the subgraph of G induced by
set Ai and volG(Ai) =

∑
vj∈Ai

degG(vj). The first term in (5),
∑

Ai∈A eG(Ai)/|E|, is called the edge
contribution and it computes the fraction of edges that fall within one of the parts. The second one,∑

Ai∈A(volG(Ai)/volG(V))2, is called the degree tax and it computes the expected fraction of edges
that do the same in the corresponding random graph (the null model). The modularity measures the
deviation between the two. The maximum modularity q∗(G) is defined as the maximum of qG(A)
over all possible partitions A of V ; that is, q∗(G) = maxA qG(A).

For edges of size greater than 2, several definitions can be used to quantify the edge contribution
for a given partition A of the set of nodes. As a result, the choice of hypergraph modularity function
is not unique; it depends on how strongly one believes that a hyperedge is an indicator that some of
its nodes fall into one community. The fraction of nodes of a given hyperedge that belong to one
community is called its homogeneity and it is assumed that it is more than 50%. As a result, we
are guaranteed that hyperedges contribute to at most one part. Once a concrete variant is fixed,
one needs to benchmark the corresponding edge contribution using the degree tax computed for the
generalization of the Chung-Lu model to hypergraphs proposed in [37].

In [38], various definitions of modularity functions from [37] were put into a common framework,
and are available in the HyperNetX library¶. This general framework is flexible and so can be tuned
and applied to hypergraphs with hyperedges of different homogeneity. For each hyperedge size d, we
will independently deal with contribution to the modularity function coming from hyperedges of
size d with precisely c members from one of the parts, where c > d/2. For d ∈ N and p ∈ [0, 1], let
Bin(d, p) denotes the binomial random variable with parameters d and p. Let

qc,dH (A) =
1

|E|
∑
Ai∈A

(
ed,cH (Ai)− |Ed| · P

(
Bin

(
d,

vol(Ai)
vol(V)

)
= c

))
,

where ed,cH (Ai) is the number of hyperedges of size d that have exactly c members in Ai. The
hypergraph modularity function is controlled by hyper-parameters uc,d ∈ [0, 1] (d ≥ 2, bd/2c+ 1 ≤
c ≤ d). For a fixed set of hyper-parameters, we simply define

qH(A) =
∑
d≥2

d∑
c=bd/2c+1

uc,d q
c,d
H (A). (6)

This definition gives us a lot of flexibility and allows us to value hyperedges of some types (c, d) more
than others, depending on their size and level of homogeneity. The choice of these hyper-parameters
depends on how strongly we believe that a hyperedge is an indicator that nodes belonging to it fall
into one community. In our experiments, we restricted ourselves to three families of parameters uc,d,
corresponding to the three standard models of wc,d used in the h–ABCD model: majority, linear,
and strict.

¶https://github.com/pnnl/HyperNetX

20

https://github.com/pnnl/HyperNetX

h–ABCD Modularity
method ξ strict linear majority 2-section

strict 0.43 0.533546 0.528192 0.525261 0.501700
linear 0.25 0.514351 0.636436 0.685292 0.504892

majority 0.20 0.508085 0.663819 0.727940 0.502773

Table 5: Three hypergraphs with very similar 2-section modularities but different models for the
community hyperedges and different noise values. The differences are evident when looking at the
corresponding hypergraph modularities.

Let us now come back to experiments. We generated hypergraphs on n = 10, 000 nodes
and with 50 different choices for the parameter ξ responsible for the level of noise, namely, ξ ∈
{0.01, 0.02, . . . , 0.50}. For each value of ξ, three different models for matrix w were tested: majority
and strict, that we already experimented with, but also linear—see the beginning of Section 3 for
details. Results are reported in Figure 6.

Before we start discussing particular figures, let us mention that, in general, for the same level
of noise, generating strict hyperedges yields higher modularity, while the majority model yields
the smallest; the linear lies in-between the two models. The reason is clear. All models generate
the same number of community hyperedges but their levels of homogeneity depends on matrix
w. Now, the 2-section (graph) modularity replaces each hyperedge with a complete graph and
then applies standard graph modularity to the resulted graph. As a result, it favours hyperedges
that are more homogeneous since such hyperedges generate more edges within communities in the
corresponding 2-section graph and so they contribute more to the modularity. Similarly, each of the
three hypergraph modularities value hyperedges that are more homogeneous at least as much as
less homogeneous ones, that is, the corresponding parameters uc,d are non-decreasing. In fact, all of
them but the majority modularity are strictly increasing. As a consequence, for these modularity
functions (see Figure 6 top-right and bottom-right), the values for the strict model are larger than
for the ones for the linear model which in turn are larger than the values for the majority model.
Finally, note that for the majority modularity (see Figure 6, bottom-left), the composition of the
community edges does not matter; regardless of which model is used, all community hyperedges
contribute equally to the modularity function and so the modularity functions are the same. Another
observation is that generating community hyperedges with majority or linear methods yield more
similar hypergraphs, while the strict model is visibly distinct.

For each plot in Figure 6, we added a dashed line at the modularity value 0.5. This is to show
that with the exception of the majority modularity, different values of the noise parameter ξ are
required for different models to obtain the same modularity. It is clear and expected but it is
important when the h–ABCD model is used to benchmark the performance of clustering algorithms
so that “apples and oranges” are not compared against each other. For example, one can easily
generate hypergraphs with similar 2-section modularities using different models for the community
hyperedges (strict, majority, linear) and different noise parameters. Such hypergraphs would seem
very similar when looking at their two-section graphs, but are really quite different hypergraphs. We
show some specific numbers illustrating this phenomena in Table 5.

21

4.6 Time Complexity of the Algorithm

The framework to generate “ABCD-type” models is very flexible; the original ABCD model was
already parallelized (ABCDe) and generalized to include outliers (ABCD+o). In this paper, we
adjust it to hypergraphs (h–ABCD). Another important feature of these models is that they are also,
by design, very fast. This is in contrast to the main problem with high order structures—there are(
n
d

)
potential hyperedges of size d which is strikingly larger than the number of potential edges,

(
n
2

)
.

As a result, hypergraph synthetic graph models are inherently slow but there are some exceptions.
For example, the experiments presented in [57] show that their “model is highly efficient, as it
allows to sample sparse hypergraphs of dimensions up to 105 nodes in less than one hour”. Our
model generates graphs of order ten times larger in less than 10 seconds. Similarly, [32] reports that
HyGen takes approximately four minutes to generate a hypergraph with 4.8 million vertices, 1.6
million hyperedges, and 800 clusters using 1,024 processes on a leadership class computing platform.
h–ABCD is able to generate hypergraphs of similar size under one minute on a single core of a
desktop computer. This shows a drastic advantage of the used framework, even in comparison to
other scalable approaches.

The two most computationally expensive parts of the algorithm are: (1) assignment of nodes to
communities, and (2) hyperedge generation (the remaining are sampling node degrees and sampling
community sizes and their time only depends on n).

The cost of assignment of nodes to communities is O(n + λ`L2), where λ ≤ n is the number
of unique (yi, zi) combinations that appear in the inequality (3). Note that in power-law graphs
there are many nodes of the same degree and so that although λ grows with n it is in practice much
smaller than it. Similarly, ` grows with n, but is of order of magnitude smaller than it; see [36] for
asymptotic analysis of distribution of degree and community sizes.

The cost of hyperedge generation is O(vol(V) + `L2), where `L2 is the cost of preprocessing
which has to be done for each community for each (c, d) combination. Again using the results from
[36] we know that vol(V) = O(n), and thus we can expect that actual hyperedge generation should
be the most expensive part of the algorithm for large values of n, provided that L is a fixed constant.

The performance benchmarks results are presented in Table 6 to show the scalability of h-ABCD
in practice for the case of small values of L. In particular, the timings reflect not only asymptotic
complexity of the algorithm but also impact on timing of implementation details like: CPU cache
locality and memory allocation management cots, as we want to be sure that they do not significantly
impact it.

In these experiments, the level of noise was set to ξ = 0.2, uniform distribution of hyperedge
sizes was used (that is, qd = 1/(L− 1) for any d ∈ [L] \ {1}) together with the majority model. Total
time we report, apart from assignment to communities and hyperedge generation includes time to
generate node degrees and community sizes (these two times depend only on n).

The results of the experiments confirm that hyperedge generation is the most significant component
of the hypergraph generation process for the case when L is small compared to n. As expected, the
number of nodes n has a major impact on total runtime of the algorithm, but also increasing L
influences it as is predicted by the asymptotic formulas. In general, the proposed algorithm allows
to generate hypergraphs having one million nodes in several seconds in the considered cases.

Additionally, in Table 7 we check if the time complexity of the algorithm indeed is proportional
to L2. For this test we fix n = 106 and check values of L up to 320, keeping the distribution of
hyperedge sizes uniform, that is, qd = 1/(L− 1) for d > 1. For this test we set the larger minimum

22

n L Assignment to communities Hyperedge generation Total time*

500,000 5 0.12 1.67 2.09
500,000 10 0.18 1.71 2.19
500,000 20 0.48 1.77 2.55

1,000,000 5 0.28 3.50 4.18
1,000,000 10 0.40 3.64 4.44
1,000,000 20 1.09 3.73 5.22

2,000,000 5 0.70 9.77 11.48
2,000,000 10 0.87 9.88 11.74
2,000,000 20 1.97 13.81 15.76
* Total time also includes time to generate node degrees and community sizes (these two times
depend only on n).

Table 6: Generation time (in seconds) of h-ABCD hypergraph for different values of n and L.

L Assignment to communities Hyperedge generation Total time*

20 0.34 3.39 2.76
40 1.07 2.18 3.28
80 8.46 3.43 11.92
160 46.73 5.62 52.37
320 252.78 13.19 266.01
* Total time also includes time to generate node degrees and community sizes.

Table 7: Generation time (in seconds) of h-ABCD hypergraph for different values of L, with
n = 106 and minimum community size fixed to 10,000.

community size to s = 10, 000. The reason for this change is that communities must be large enough
so that hyperedges can fit into the community graphs. The tests show that, indeed, the assignment
to communities component becomes the most time consuming as L grows and the relationship is
quadratic as predicted by theoretical considerations.

5 Conclusions

In this paper we introduced h–ABCD, one of the very first synthetic random hypergraph models
with community structure. This model produces “LFR-type” hypergraphs but its building blocks are
inherited from the ABCD model. Because of that, one can easily generate synthetic hypergraphs
with the degree distribution as well as the distribution of community sizes following power-law. The
generation process is fast and the ground truth partition of nodes can be easily used to benchmark
hypergraph community detection algorithms. The benchmark is available on GitHub.

Modelling and mining complex networks as hypergraphs is an exciting and brand new research
direction. There are many open problems left to be investigated. We plan to work on the following
questions next.

• We plan to design and implement hypergraph clustering algorithm. One approach that is worth

23

considering is to optimize the hypergraph modularity function introduced in [37]; see [38] for
encouraging initial results. In any case, h–ABCD model will be instrumental in validating
and benchmarking various ideas during this process.

• We plan to analyze typical, asymptotic properties of h–ABCD model, especially the behaviour
of the hypergraph modularity function. Similar study is already done for the original ABCD
model in [36] but not all questions are answered.

• Generating hypergraphs is more challenging and time consuming than generating graphs. h–
ABCD model can generate hypergraphs having 1 million nodes and the maximum hyperedge
size 5 on an average laptop in several seconds. It means that the time complexity is similar to
the original ABCD graph generator for comparable graph sizes, but significantly faster than
the LFR graph generator and much faster than other hypergraph competitors. Since there are
still no scalable algorithms for hypergraphs that can handle huge networks, there is no need
for parallel and scalable implementations of h–ABCD yet, but the situation might change in
the near future. We plan to implement a multi-threaded version of the model as it was done
for the original ABCDe model in [42].

• The framework used to generate ABCD model is flexible. It was modified to include outliers
(ABCD+o) and in this paper we modified it to generate hypergraphs (h–ABCD). Since
detecting overlapping communities is an important problem and there are few synthetic
benchmarks for this task, it would be good to modify the framework one more time and add
option for overlapping communities to our “tool-box”.

• h–ABCD model allows for any value of L, the maximum size of hyperedges, but it is designed
with relatively small values of L in mind such as L = 10 or L = 20. Such hypergraphs are
typically of interest in the context of community detection algorithms. However, if one wants
to create hypergraphs with much larger values of L, then the algorithm will slow down. Indeed,
“collisions” when generating large hyperedges will occur with larger probability. In order to
handle such large hyperedges, the algorithm needs to be slightly adjusted. The drawback, and
the reason why we do not do it currently, is that the distribution of hyperedges would deviate
from uniform distribution.

Acknowledgements

PP and BK have been supported by the Polish National Agency for Academic Exchange under the
Strategic Partnerships programme, grant number BPI/PST/2021/1/00069/U/00001.

References

[1] Emmanuel Abbe. Community detection and stochastic block models: recent developments. The
Journal of Machine Learning Research, 18(1):6446–6531, 2017.

[2] Kwangjun Ahn, Kangwook Lee, and Changho Suh. Hypergraph spectral clustering in the
weighted stochastic block model. IEEE Journal of Selected Topics in Signal Processing, 12(5):959–
974, 2018.

24

[3] Sinan G. Aksoy, Tamara G. Kolda, and Ali Pinar. Measuring and modeling bipartite graphs
with community structure. Journal of Complex Networks, 5(4):581–603, 03 2017. doi:10.1093/
comnet/cnx001.

[4] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

[5] Albert-László Barabási. Network science. Cambridge University Press, 2016. URL: http:
//barabasi.com/networksciencebook/.

[6] Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania,
Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: structure and
dynamics. Physics Reports, 874:1–92, 2020.

[7] Edward A Bender and E Rodney Canfield. The asymptotic number of labeled graphs with
given degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296–307, 1978.

[8] Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon Kleinberg. Simplicial
closure and higher-order link prediction. Proceedings of the National Academy of Sciences,
115(48):E11221–E11230, 2018.

[9] Austin R Benson, David F Gleich, and Desmond J Higham. Higher-order network analysis
takes off, fueled by classical ideas and new data. arXiv preprint arXiv:2103.05031, 2021.

[10] Austin R Benson, David F Gleich, and Jure Leskovec. Tensor spectral clustering for partitioning
higher-order network structures. In Proceedings of the 2015 SIAM International Conference on
Data Mining, pages 118–126. SIAM, 2015.

[11] Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization of complex
networks. Science, 353(6295):163–166, 2016.

[12] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

[13] Béla Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular
graphs. European Journal of Combinatorics, 1(4):311–316, 1980.

[14] Luca Brusa and Catherine Matias. Model-based clustering in simple hypergraphs through a
stochastic blockmodel. arXiv preprint arXiv:2210.05983, 2022.

[15] Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2):255–
308, 2009.

[16] I Chien, Chung-Yi Lin, and I-Hsiang Wang. Community detection in hypergraphs: Optimal
statistical limit and efficient algorithms. In International Conference on Artificial Intelligence
and Statistics, pages 871–879. PMLR, 2018.

[17] Philip Chodrow, Nicole Eikmeier, and Jamie Haddock. Nonbacktracking spectral clustering of
nonuniform hypergraphs. arXiv preprint arXiv:2204.13586, 2022.

25

https://doi.org/10.1093/comnet/cnx001
https://doi.org/10.1093/comnet/cnx001
http://barabasi.com/networksciencebook/
http://barabasi.com/networksciencebook/

[18] Philip S Chodrow. Configuration models of random hypergraphs. Journal of Complex Networks,
8(3):cnaa018, 2020.

[19] Philip S Chodrow, Nate Veldt, and Austin R Benson. Generative hypergraph clustering: From
blockmodels to modularity. Science Advances, 7(28):eabh1303, 2021.

[20] Fan Chung Graham and Linyuan Lu. Complex graphs and networks. Number 107. American
Mathematical Soc., 2006.

[21] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure in very
large networks. Physical review E, 70(6):066111, 2004.

[22] Martina Contisciani, Federico Battiston, and Caterina De Bacco. Inference of hyperedges and
overlapping communities in hypergraphs. Nature Communications, 13(1):7229, 2022.

[23] Owen T Courtney and Ginestra Bianconi. Generalized network structures: The configuration
model and the canonical ensemble of simplicial complexes. Physical Review E, 93(6):062311,
2016.

[24] Owen T Courtney and Ginestra Bianconi. Weighted growing simplicial complexes. Physical
Review E, 95(6):062301, 2017.

[25] Manh Tuan Do, Se-eun Yoon, Bryan Hooi, and Kijung Shin. Structural patterns and generative
models of real-world hypergraphs. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 176–186, 2020.

[26] Martin Dyer, Catherine Greenhill, Pieter Kleer, James Ross, and Leen Stougie. Sampling
hypergraphs with given degrees. Discrete Mathematics, 344(11):112566, 2021.

[27] David Easley and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a highly
connected world. Cambridge university press, 2010.

[28] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection. Proceedings
of the national academy of sciences, 104(1):36–41, 2007.

[29] Gourab Ghoshal, Vinko Zlatić, Guido Caldarelli, and Mark EJ Newman. Random hypergraphs
and their applications. Physical Review E, 79(6):066118, 2009.

[30] Debarghya Ghoshdastidar and Ambedkar Dukkipati. Consistency of spectral hypergraph
partitioning under planted partition model. The Annals of Statistics, 45(1):289–315, 2017.

[31] Frédéric Giroire, Nicolas Nisse, Thibaud Trolliet, and Malgorzata Sulkowska. Preferential
attachment hypergraph with high modularity. [Research Report] Université Cote d’Azur,
hal-03154836, 2021.

[32] S M Shamimul Hasan, Neena Imam, and Ramakrishnan Kannan. A scalable parallel hypergraph
generator (hygen). 8 2020. URL: https://www.osti.gov/biblio/1651312.

[33] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

26

https://www.osti.gov/biblio/1651312

[34] Matthew O Jackson. Social and economic networks. Princeton university press, 2010.

[35] Jonas L Juul, Austin R Benson, and Jon Kleinberg. Hypergraph patterns and collaboration
structure. arXiv preprint arXiv:2210.02163, 2022.

[36] Bogumił Kamiński, Bartosz Pankratz, Paweł Prałat, and François Théberge. Modularity of
the abcd random graph model with community structure. Journal of Complex Networks,
10(6):cnac050, 2022.

[37] Bogumił Kamiński, Valérie Poulin, Paweł Prałat, Przemysław Szufel, and François Théberge.
Clustering via hypergraph modularity. PloS one, 14(11):e0224307, 2019.

[38] Bogumił Kamiński, Paweł Prałat, and François Théberge. Community detection algorithm
using hypergraph modularity. In International Conference on Complex Networks and Their
Applications, pages 152–163. Springer, 2020.

[39] Bogumił Kamiński, Paweł Prałat, and François Théberge. Artificial benchmark for community
detection (abcd)—fast random graph model with community structure. Network Science, pages
1–26, 2021.

[40] Bogumił Kamiński, Paweł Prałat, and François Théberge. Mining complex networks. 2021.

[41] Bogumił Kamiński, Paweł Prałat, and François Théberge. Outliers in the abcd random graph
model with community structure (abcd+o). In Proceedings of the 11th International Conference
on Complex Networks and their Applications, 2022 (in press).

[42] Bogumił Kamiński, Tomasz Olczak, Bartosz Pankratz, Paweł Prałat, and François Théberge.
Properties and performance of the abcde random graph model with community structure. Big
Data Research, 30:100348, 2022. URL: https://www.sciencedirect.com/science/article/
pii/S2214579622000429, doi:https://doi.org/10.1016/j.bdr.2022.100348.

[43] Chiheon Kim, Afonso S Bandeira, and Michel X Goemans. Stochastic block model for
hypergraphs: Statistical limits and a semidefinite programming approach. arXiv preprint
arXiv:1807.02884, 2018.

[44] Tarun Kumar, Sankaran Vaidyanathan, Harini Ananthapadmanabhan, Srinivasan Parthasarathy,
and Balaraman Ravindran. Hypergraph clustering by iteratively reweighted modularity maxi-
mization. Applied Network Science, 5(52), 2020.

[45] Tarun Kumar, Sankaran Vaidyanathan, Harini Ananthapadmanabhan, Srinivasan Parthasarathy,
and Balaraman Ravindran. A new measure of modularity in hypergraphs: Theoretical insights
and implications for effective clustering. In Hocine Cherifi, Sabrina Gaito, José Fernendo Mendes,
Esteban Moro, and Luis Mateus Rocha, editors, Complex Networks and Their Applications
VIII, pages 286–297, Cham, 2020. Springer International Publishing.

[46] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities. Physical Review E,
80(1):016118, 2009.

[47] Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximization in community
detection. Physical review E, 84(6):066122, 2011.

27

https://www.sciencedirect.com/science/article/pii/S2214579622000429
https://www.sciencedirect.com/science/article/pii/S2214579622000429
https://doi.org/https://doi.org/10.1016/j.bdr.2022.100348

[48] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing
community detection algorithms. Physical review E, 78(4):046110, 2008.

[49] Daniel B. Larremore, Aaron Clauset, and Abigail Z. Jacobs. Efficiently inferring community
structure in bipartite networks. Phys. Rev. E, 90:012805, Jul 2014. doi:10.1103/PhysRevE.
90.012805.

[50] Geon Lee, Minyoung Choe, and Kijung Shin. How do hyperedges overlap in real-world
hypergraphs?-patterns, measures, and generators. In Proceedings of the Web Conference 2021,
pages 3396–3407, 2021.

[51] Mark Newman. Networks. Oxford university press, 2018.

[52] Mark EJ Newman. Fast algorithm for detecting community structure in networks. Physical
review E, 69(6):066133, 2004.

[53] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in
networks. Physical review E, 69(2):026113, 2004.

[54] Günce Keziban Orman and Vincent Labatut. A comparison of community detection algorithms
on artificial networks. In Discovery Science: 12th International Conference, DS 2009, Porto,
Portugal, October 3-5, 2009 12, pages 242–256. Springer, 2009.

[55] Marios Papachristou and Jon Kleinberg. Core-periphery models for hypergraphs. KDD ’22,
page 1337–1347. Association for Computing Machinery, 2022. doi:10.1145/3534678.3539272.

[56] Maoying Qiao, Jun Yu, Wei Bian, Qiang Li, and Dacheng Tao. Adapting stochastic block
models to power-law degree distributions. IEEE transactions on cybernetics, 49(2):626–637,
2018.

[57] Nicolò Ruggeri, Federico Battiston, and Caterina De Bacco. A principled, flexible and efficient
framework for hypergraph benchmarking. arXiv preprint arXiv:2212.08593, 2022.

[58] Fabio Saracco, Giovanni Petri, Renaud Lambiotte, and Tiziano Squartini. Entropy-based
random models for hypergraphs, 2022. doi:10.48550/ARXIV.2207.12123.

[59] Francesco Tudisco and Desmond J Higham. Core-periphery detection in hypergraphs. SIAM
Journal on Mathematics of Data Science, 5(1):1–21, 2023.

[60] Nicholas C Wormald. Generating random regular graphs. Journal of algorithms, 5(2):247–280,
1984.

[61] Nicholas C Wormald et al. Models of random regular graphs. London Mathematical Society
Lecture Note Series, pages 239–298, 1999.

[62] Hao Yin, Austin R Benson, and Jure Leskovec. Higher-order clustering in networks. Physical
Review E, 97(5):052306, 2018.

[63] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. Local higher-order graph
clustering. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 555–564, 2017.

28

https://doi.org/10.1103/PhysRevE.90.012805
https://doi.org/10.1103/PhysRevE.90.012805
https://doi.org/10.1145/3534678.3539272
https://doi.org/10.48550/ARXIV.2207.12123

[64] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clus-
tering, classification, and embedding. Advances in neural information processing systems, 19,
2006.

29

211 213 215 217 2190.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ed
ge

 p
ro

po
rti

on

majority, = 0.2, d=2

(0,2)
(2,2)

211 213 215 217 2190.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

majority, = 0.2, d=3
(0,3)
(2,3)
(3,3)

211 213 215 217 219

Number of nodes (n)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ed
ge

 p
ro

po
rti

on

majority, = 0.2, d=4
(0,4)
(3,4)
(4,4)

211 213 215 217 219

Number of nodes (n)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

majority, = 0.2, d=5
(0,5)
(3,5)
(4,5)
(5,5)

211 213 215 217 2190.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ed
ge

 p
ro

po
rti

on

majority, = 0.7, d=2

(0,2)
(2,2)

211 213 215 217 2190.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

majority, = 0.7, d=3

(0,3)
(2,3)
(3,3)

211 213 215 217 219

Number of nodes (n)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ed
ge

 p
ro

po
rti

on

majority, = 0.7, d=4

(0,4)
(3,4)
(4,4)

211 213 215 217 219

Number of nodes (n)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

majority, = 0.7, d=5

(0,5)
(3,5)
(4,5)
(5,5)

Figure 4: Distribution of type (c, d) hyperedges for d ∈ {2, 3, 4, 5}: majority model with ξ = 0.2 (top
4 figures) and ξ = 0.7 (bottom 4 figures).

30

211 213 215 217 2190.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ed
ge

 p
ro

po
rti

on

strict, = 0.2, d=2

(0,2)
(2,2)

211 213 215 217 2190.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

strict, = 0.2, d=3

(0,3)
(2,3)
(3,3)

211 213 215 217 219

Number of nodes (n)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ed
ge

 p
ro

po
rti

on

strict, = 0.2, d=4

(0,4)
(3,4)
(4,4)

211 213 215 217 219

Number of nodes (n)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

strict, = 0.2, d=5

(0,5)
(3,5)
(4,5)
(5,5)

211 213 215 217 2190.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ed
ge

 p
ro

po
rti

on

strict, = 0.7, d=2

(0,2)
(2,2)

211 213 215 217 2190.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

strict, = 0.7, d=3

(0,3)
(2,3)
(3,3)

211 213 215 217 219

Number of nodes (n)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ed
ge

 p
ro

po
rti

on

strict, = 0.7, d=4

(0,4)
(3,4)
(4,4)

211 213 215 217 219

Number of nodes (n)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

strict, = 0.7, d=5

(0,5)
(3,5)
(4,5)
(5,5)

Figure 5: Distribution of type (c, d) hyperedges for d ∈ {2, 3, 4, 5}: strict model with ξ = 0.2 (top 4
figures) and ξ = 0.7 (bottom 4 figures).

31

0.0 0.1 0.2 0.3 0.4 0.50.3

0.4

0.5

0.6

0.7

0.8

0.9

2-
se

ct
io

n
m

od
ul

ar
ity

Community edges
strict
majority
linear

0.0 0.1 0.2 0.3 0.4 0.50.3

0.4

0.5

0.6

0.7

0.8

0.9

st
ric

t H
-m

od
ul

ar
ity

Community edges
strict
majority
linear

0.0 0.1 0.2 0.3 0.4 0.50.3

0.4

0.5

0.6

0.7

0.8

0.9

m
aj

or
ity

 H
-m

od
ul

ar
ity

Community edges
strict
majority
linear

0.0 0.1 0.2 0.3 0.4 0.50.3

0.4

0.5

0.6

0.7

0.8

0.9

lin
ea

r H
-m

od
ul

ar
ity

Community edges
strict
majority
linear

Figure 6: Four modularity functions of h–ABCD hypergraphs with varying noise parameter ξ. The
community hyperedges were generated according to three different models: strict, majority, and
linear.

32

	Introduction
	Existing Models
	ABCD graph Models
	Other Hypergraph Models
	Distinctive Features of h–ABCD

	Definition of the Model
	Parameters of the Model
	Distribution of Hyperedges Sizes
	The Big Picture
	Definition of the Model—Details

	Experiments
	Degree Distribution
	Distribution of Community Sizes
	Distribution of Edge Sizes
	Distribution of Hyperedge Composition
	Modularity Function and the Need for Matrix w
	Time Complexity of the Algorithm

	Conclusions

