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ABSTRACT

The invention and implementation of smart connected cars will change the way how the transportation

networks in cities around the world operate. This technological shift will not happen instantaneously

— for many years both human driven and smart connected vehicles will co-exist. In this paper, using

a multi-agent simulation framework, we model a complex urban transportation system that involves

heterogeneous participants. Vehicles are assigned into two groups, the first one consists of smart cars

and the second one involves regular ones. Vehicles in the former group are capable of re-routing in

response to changes in the observed traffic while regular ones rely on historical information only. The

goal of the paper is to analyze the effect of changing smart cars penetration on system characteristics,

in particular, the total travelling time. The smart car routing algorithm proposed in this paper reduced

travelling time up to 30%. Analysis has shown that the behaviour of the system and optimal configuration

of underlying algorithms change dynamically with smart vehicles penetration level.

Keywords: vehicular networks, multi-agent simulation, smart cars routing.

1 Introduction

Due to an increasing number of traffic participants, especially in urban areas, the current transportation

infrastructure becomes insufficient. Big cities suffer great economic losses and resident dissatisfaction

from congestion and reliability issues (Inrix 2018). As a result, Traffic Management Systems (TMS)

effectively increasing road network efficiency are in high demand. With the advancing technology, the

available solutions become more comprehensive and provide a faster, dynamic feedback. Although the

vehicular technologies are in a period of an intense development, innovations require many years to

become common in the automotive market. According to Lazard and Roland Berger, the penetration

of highly automated vehicles in 2035 will reach between 5% and 26% accordingly in pessimistic and

optimistic scenarios (Lazard and Roland Berger 2018). Since the transition from manual to automated
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vehicles will span many years, computer simulations provide valuable tool for testing the performance

and the behaviour of novel systems in various conditions (Desai et al. 2013; Görmer, Ehmke, et al. 2011).

With the increasing smart cars penetration, beneficial effects of the underlying management system are

expected to increase as well. However, this important issue is rarely addressed by researchers who tend

to assume a full system coverage (Fiosins et al. 2011; Padgham et al. 2014). Smart vehicles penetration

rate has already been applied to study particular transportation characteristics e.g. traffic flow stability for

mixture of connected and autonomous vehicles (Talebpour and Mahmassani 2016) or reaching travelling

time optimum in artificial Pigou’s and Braess’ networks while using social network data (Hasan et al.

2016). Nevertheless, implementation of penetration rate in real-world urban setting simulation is still not

covered in detail in the literature.

The contribution of this paper is to examine impact of changing smart cars penetration on various

transportation system characteristics, in particular, the total travelling time. Experiments are conducted

using a multi-agent congestion detection and routing simulation SmartTransitionSim.jl developed

for this research project. The code is available with Open Source licence on GitHub1.

The transportation process in traffic models is commonly programmed either on individual partic-

ipant level e.g. vehicles, pedestrians (microscopic), as groups of similar individuals (mesoscopic) or

on system-wide level (macroscopic). Advanced frameworks combine concepts of multiple layers and

model interactions between them (Burghout, Koutsopoulos, and Andrasson 2005; Sanderson, Busquets,

and Pitt 2012). The agent-based modelling is well suited for microscopic simulations of traffic patters

since virtual agents naturally and intuitively represent traffic participants (Bazzan and Klügl 2013; Adler

and Blue 2002). Moreover, the multi-agent models are becoming more popular also due to increasing

availability of dedicated simulation software e.g. SUMO, MATSim, SMARTS frameworks. However,

accurate and detailed simulation of individual’s behaviour often requires high computing power and may

render big scale simulations not feasible (Görmer and Müller 2012). Researchers address performance

problems by developing efficient algorithms using high-performance languages and incorporating modern

computing techniques (e.g. distributed and cloud computing) in their implementations (Ramamohanarao

et al. 2016). In the introduced framework, we adopted purely microscopic approach and focused heavily

on performance optimization (more details can be found in Section 2.3).

The concept of agent based modelling connects well with the current TMS research trend based on two-

way communication between an external infrastructure and vehicles (V2I) and between multiple vehicles

(V2V). A theoretical design assumes implementation of the system within Vehicular Ad Hoc Network

(VANET) consisted of three main components: in-vehicle On-Board Units (OBU) embedded with sensors,

processing units and wireless interfaces, Road Side Units (RSU) creating communication infrastructure

and Traffic Management Center providing centralized processing power and storage (Villas et al. 2012).

1https://github.com/KrainskiL/SmartTransitionSim.jl
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Based on components used in a system design, solutions can be classified into infrastructure-free and

infrastructure-based. The infrastructure-free systems are decentralized and rely on V2V communication

to share information about traffic in close vicinity to vehicle. In contrast, centralized infrastructure-based

systems focus on utilizing RSUs and an optional Traffic Management Center (TMC) to provide vehicles

with wide area traffic data through V2I communication. De Souza also provide second breakdown level

based on delivered service (Souza et al. 2017):

1. Infrastructure-free: (a) cooperative congestion detection, (b) congestion avoidance, (c) accident

detection and warning;

2. Infrastructure-based: (a) traffic light management, (b) route suggestion, (c) congestion detection,

(d) re-routing and speed adjustment.

The conceptual VANET design may be adopted in real world applications using modern commu-

nication and computing technologies. Researchers and engineers are preparing technical background

for vehicular networks by developing dedicated standards (e.g. IEEE 802.11, IEEE 1609.2) and testing

various communication technologies like LTE or DSRC in an transportation environment (Peng, Shen,

and Li 2019). The most recent research focuses on 5G compliant technologies which have become

a competitive alternative due to the high capacity, ubiquitous coverage and high reliability. The Next

Generation Mobile Alliance propose strict requirements for the 5G-based technology, in particular, 100%

coverage, 99.99% network availability and up to 1 ms round-trip delay, which are sufficient for wide range

of VANET-based applications (NGMN 2015; Molina-Masegosa and Gozalvez 2017). In recent report,

Crainic et al. pinpoint other key technologies (e.g. cloud computing, smart grids) required for successful

development of intelligent transportation infrastructure and smart cities projects in general (Crainic et al.

2019)

Despite solid technical foundations, the majority of TMS projects are on proof-of-concept or experi-

mental level (Centre for Connected and Autonomous Vehicles 2018; U.S. Department of Transportation

2017). However, initial tests have shown promising results. For example, both dynamic truck platoon-

ing system and vehicles routing Eco-Signal Operations provide fuel consumption decrease up to 10%

(McAuliffe et al. 2018; Yelchuru et al. 2014). Additionally, already running in a dynamic fashion, traffic

light management system called Midtown in Motion reduce overall travel time during rush hours by 10%

(New York Department of Transportation 2012).

Psychological and social aspects of transportation are usually neglected in Traffic Management Systems

design which focus on simple and quantitative measures of performance. From the perspective of the

society, TMS should take into consideration overall welfare and happiness. As highlighted at the beginning

of this section, spending too much time travelling in congested and uncomfortable conditions, reduces

well-being of the participating commuters (Choi, Coughlin, and D’Ambrosio 2013). Importance of
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personal transportation drive researchers to study determinants of traffic participants decisions and travel

satisfaction. Often quantitative notion of the value (the cost) of time is used in research (TransFund New

Zealand 1998; U.S. Department of Transportation 2011). Standard factors breakdown assume that travel

the time unit cost vary according to a type of trips, traveler preferences and travel conditions (K. A. Small,

Winston, and Yan 2005). The majority of reports classify trips as work/business or non-work/personal,

but depending on the methodology used more detailed structures may be used (Essen et al. 2004). For

inferring quantitative conclusions about traveler preferences, often questionnaire based approach is used

(Hensher 1994; Athira et al. 2016). Research have shown that the cost of time rises significantly if the total

travelling time surpasses 90 minutes per day (Mokhtarian and Salomon 2001). That conclusion aligns with

Marchetti’s Constant rule, which states that people aim to travel one hour each day and switch attention to

other transportation characteristics (e.g. trip conditions) when travelling less than that (Marchetti 1994;

Kung et al. 2014; Metz 2008). Unfavorable traffic conditions, especially unexpectedly congested roads,

further increase the cost of the travelling time. For highly congested traffic, the value of time may grow up

to 50% for automobile users and 100% for bus passengers, pedestrians and cyclist (Waters 1994). Analyses

of transportation reliability impact by government agencies show that the uncertainty of trip length and

occurrence of unexpected delays result in an additional time cost increase (SSHRP 2014; K. Small et al.

1999).

Taking the above described factors into an account in this paper we test how the increasing adoption of

smart cars, that can adaptively update their routing decisions using information obtained from a TMS,

influences the expected congestion and ultimately, total travelling time of commuters. In Section 2 we

discuss the design of the agent-based simulation we have developed. Next, in Section 3, we present the

details of the experiment we have conducted using this simulation and in Section 4 we discuss the obtained

results. Finally, Section 5 concludes and presents outlooks for further research.

2 Simulation details

In this section we describe our approach to modeling of the traffic system and what are our assumptions

about agent behavior rules and communication capabilities. Finally, we describe the design of the

simulation framework we have developed that implements these assumptions.

2.1 Traffic system

We assume that the road network is represented by a directed graph G = (V,E) that consists of the set of n

vertices V = {v1,v2, . . . ,vn} representing junctions, and the set of k edges E = {e1,e2, . . . ,ek} representing

roads. Every edge (directed arc) ei ∈ E is defined by two vertices ei = (vs,ve), vs,ve ∈ V, vs 6= ve

corresponding to junctions between given road segment. Additionally, every edge ei is described with the

following parameters:
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1. `i - road length;

2. V (i)
max - maximum velocity allowed on the i-th road;

3. ρ
(i)
max - maximum vehicles density on the i-th road, that is, the maximum number of vehicles allowed

on the i-th road segment, calculated as follows:

ρ
(i)
max =

`isi

c
, (1)

where si is the number of lanes available on the road segment and c denotes the average space

reserved for one vehicle (in meters).

The road network is populated with agents representing vehicles moving between selected vertices

with respect to edge’s direction. In any given time t, agents are assigned to one edge and move towards

ending vertex with current edge velocity value calculated as follows:

V (i)
t =

(
V (i)

max−Vmin

)
·max

(
1− ρ

(i)
t

ρ
(i)
max

,0
)
+Vmin, (2)

where ρ
(i)
t is the current density on the i-th edge at time t, and Vmin is the fixed, minimum speed. The

minimum speed is introduced to prevent edge lock-down if maximum density is reached. Let us note that,

due to step-wise character of the simulation, density may temporary exceed maximal density which would

result in negative speed value. To address the problem, speed multiplier in Equation 2 is bounded from

below by zero. The equation we use is a slightly modified version of the classical Lighthill-Whitham-

Richards traffic flow model (Lighthill and Whitham 1955; Richards 1956). Vehicles density is common

congestion predictor present also in modern traffic flow research (Yang et al. 2019).

Proposed framework is based on discrete events simulation (DES), thus system state and simulation

clock are updated when particular events occur rather than in arbitrary chosen time interval. Discrete-event

based approach was reported in earlier research to produce more accurate results compared to standard

discrete-time simulations due to character of numerical calculations (Buss and Al Rowaei 2010).

2.2 Agent behaviour and communication design

An agent represents an individual vehicle travelling in the road network G from a starting vertex vS to a

destination vertex vD. Agents aim to select the optimal route that minimizes the travelling time between

the two assigned nodes. The route from node vS to vD is defined as a sequence of n consecutively adjacent

nodes (or, alternatively, n−1 edges):

R = (vS ≡ v1,v2, . . . ,vn−1,vn ≡ vD) ∀i∈{1,2,...,n−1}(vi,vi+1) ∈ E. (3)
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The time required to traverse the i-th edge in simulation time s is equal to the ratio of the length of the

edge and the current speed, that is, t(i)s = `i/V (i)
s . Hence, the total time, defined as in Equation 3, required

to travel the route is given by the following formula:

tR =
n−1

∑
i=1

`i

V (i)
s

. (4)

With known travel time on each edge, fastest route is determined using A-star graph traversal algorithm,

commonly used in routing simulations (Kala and Warwick 2015). However, velocities in the system

change dynamically with agents movement, see Equation 2, deprecating initially chosen paths. Depending

on how routes overlap, the capacity of a particular road may be utilized more heavily than others, thus

creating traffic congestion and slowing down all vehicles present on the edge. This effect is more apparent

when multiple agents start from nearby vertices and travel to similar destinations, which resembles rush

hours scenario when people commute from office or industry districts to residential areas. Bottlenecks

may also naturally appear on big arteries selected by many agents due to high speed limit and convenient

location.

Each agent is generated with a fixed type: smart or regular. The type determines the individual’s

behaviour, available traffic information and route optimization mechanisms. All agents possess full

knowledge of static road network characteristics—segments lengths `i and maximum speeds v(i)max. We

assume that regular agents calculate travelling time with the average speeds obtained from the “previous

day” information about the traffic (short-term memory). Specifically, the average from the “previous day”

is calculated based on speeds recorded every 30 seconds in scenario where all agents used speed limits

to pick fastest routes with given starting and ending vertices. For smart cars we assume that vehicles

additionally receive full information about the current velocities on roads with fixed time interval, and

may reroute based on local, on-board calculations, immediately after receiving data.

In our framework we may take that all routing decisions (both for regular and smart cars) are based

only on on-board computer calculations, therefore all agents can be considered as autonomous vehicles,

differing only with the amount of available information. However, we could equivalently assume that

regular cars are human-driven, where a driver makes a routing decision based on historical traffic data.

The crucial distinction between regular and smart cars lies in the amount of information they have at the

moment of making routing decisions.

The utilization of historical data supports more even traffic distribution and, as a result, shorter

travelling time in the system. However, the deterministic routing approach may lead to undesired

outcomes (Katrakazas et al. 2015). For example, agents heading towards a similar direction tend to choose

overlapping routes, switching congestion to new area instead of alleviating it. In order to reduce this

undesired effect, probabilistic approaches such as the random k-shortest path or the entropy balanced
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k-shortest path may be implemented (Brennand et al. 2015). More advanced and computationally intensive

algorithms such as metaheuristics can also be applied to the routing problem (Bullnheimer, Hartl, and

Strauss 1999). In our system, we assume that regular agents apply the k-shortest path algorithm with

probabilities assigned using the Boltzmann distribution, see Equation 6. Regular vehicles follow initially

selected routes until they reach their destinations as they obtain no additional information during the

simulation. We designed regular agents to provide a simple representation of currently used vehicular

navigation systems.

Let (R1,R2, . . . ,Rk) be a series of k shortest routes from the next node on agent’s current route to the

destination node. Routes are calculated using the Yen’s algorithm (Yen 1970) with an assigned travel time

ti based on Equation 4. Time values are ordered such that t1 ≤ t2 ≤ . . .≤ tk−1 ≤ tk and normalized in order

to remove influence of absolute length differences on probability calculations. Normalized time values tN
i

express fractions of the longest time tk, that is, values are positive and tk = 1:

t(N)
i =

ti
max({t1, t2, . . . , tk})

=
ti
tk
. (5)

The probability pi for selecting the i-th route is calculated as in Equation 6. The corresponding probability

is higher for routes with a shorter travelling time, but the behaviour of the distribution may be controlled by

parameter T . If T is close to 0, the the probability assigned to the fastest route approaches one, while large

values of T yield distributions that are close to uniform. Example of parameter T influence on the routes

probabilities is provided in Table 1. Please note that the probabilities are also affected by dynamically

changing travelling time on a given set of routes (see Equation 4).

Table 1. Probability of picking route in k-shortest path algorithm depending on route’s travelling time
and given T parameter

Route number 1 2 3 4 5
Travelling time 110 90 70 55 50

Normalized time 1.00 0.82 0.64 0.50 0.45

T = 0.1 0.01 0.10 0.09 0.35 0.55
T = 1 0.14 0.17 0.21 0.24 0.25
T = 10 0.19 0.20 0.20 0.20 0.20

pi = e−t(N)
i /T

 k

∑
j=1

e−t(N)
j /T

−1

. (6)

The smart agents inherit all route optimization mechanisms from agents of regular type but additionally

utilize “smart” rerouting service. We assume that smart vehicles receive full information about the current
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velocities with fixed time interval, and may reroute based on local, on-board calculations, immediately

after receiving data, thus frequency of rerouting is controlled with update period value and no other trigger

for re-routing is considered. Moreover, the smart individuals predict position where they expect to receive

next update and change the route only on short fragment between the next junction and the following

junction after predicted location. Such mechanism ensures that rerouting will have a meaningful impact

on the time reduction—the smart agents scale decision boundaries based on a point of receiving updated

speed values. Routes in the k-shortest path algorithm between two given vertices are calculated on demand

but, due to high computational complexity of the algorithm, received set of routes is stored for possible

reuse by other agents (see Section 2.3). With accurate weights (velocities), smart agents may divert from

congested roads and effectively choose a faster path to their destination instead of relying on a biased

estimation used by regular agents. The effectiveness of rerouting is expected to rise with decreasing update

interval as agents reroute more frequently.

In order to reduce overlap of paths, the k-shortest path algorithm is applied every time rerouting is

triggered but routes with time twice as big as shortest route are removed from the set. While rerouting on

short distances, time differences between calculated routes are much higher than with distant endpoints.

In that case, the k-shortest path algorithm may lead to increased travelling time compared to regular

agents. Additionally, in case of one-segment rerouting, path is forcefully extended to two-segment path to

introduce viable alternatives for the k-shortest path algorithm.

An additional information provided for smart agents come from a 5G VANET-based Traffic Man-

agement System focused on congestion detection and a rerouting service. The proposed solution’s

infrastructure (see Figure 1) consists of the following components:

1. in-vehicle On-Board Units (OBUs) capable of calculating new route to destination point and sending

vehicle’s velocity to external units,

2. Road Side Units (RSUs) acting as brokers providing partial velocity data to Traffic Management

Center (TMC) and aggregated to OBUs,

3. centralized TMC aggregating and sending back data obtained from RSUs.

All infrastructure components are considered to be 5G-grade, thus 100% area coverage, no data loss

and insignificant data delay below 10ms are assumed. We assumed cellular-based infrastructure due to

expected ubiquitousness of the service in large cities. Cellular infrastructure is universal and managed by

external telecommunication companies, therefore highly available in urban areas. In that setup, RSUs are

equivalent to 5G antennas which provide cellular services for smartphones and other devices. Networks

based on other technologies (DSRC, etc.) may require dedicated structures, thus would impact feasibility

of the simulation design. However, assuming some alternative communication technology with coverage

similar to 5G would not change the outcome of the simulation.
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Figure 1. Communication schema in proposed TMS

2.3 Simulation framework

We have implemented the simulation framework called SmartTransitionSim.jl and make the code

available with Open Source licence on GithHub2. The simulation software is implemented in the Julia

programming language. OpenStreetMapX.jl3 package is used for parsing OpenStreetMap map files

into directed graph with possibility of caching them for faster execution. The package also provides utility

functions to operate on loaded graph, e.g. coordinates conversion, edge characteristic extraction. The

Julia language provides a simple but comprehensive syntax, so SmartTransitionSim.jl may be

easily modified for personal use. Documentation for the current version is also available in the GitHub

repository.

The framework was optimized in terms of performance using. Major performance tweaks include:

• Yen’s algorithm is based on custom, fast A-star implementation—5 times performance improvement

over a standard implementation,

• routes calculated by the k-shortest paths algorithm are saved for future re-use (memoization

technique)—leading to up to 15 times faster simulation execution in comparison to no-memoization,

• simulations use common, separately generated agents pools—halved overall running time.

We have designed the simulation tool in such a way that the simulations can be executed in a distributed

fashion. Additionally the simulation model has been adjusted to work with KissCluster software4 that can

be used to manage the distributed simulation execution and the data collection process in the Amazon

Web Service cloud.

The agents are generated with both starting and ending nodes chosen randomly from a given rectangle

area, designated by a set of geographic coordinates within provided map bounds. All agents are generated

at once and no further vehicles are added during the lifespan of a simulation. With that assumptions,

2https://github.com/KrainskiL/SmartTransitionSim.jl
3https://github.com/pszufe/OpenStreetMapX.jl
4KissCluster is available at https://github.com/pszufe/KissCluster.
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(a) (b)

Figure 2. Base (a) and smart (b) simulation flow

Data: Transportation network graph, starting/ending area coordinates, parameters (Table 2)
Result: Array of vehicles travel time

1 generate VEHICLES population with source and destination location;
2 calculate initial routes (speed limits) and run “previous day” simulation;
3 calculate initial routes (average speeds from line 2);
4 SIMULATION_CLOCK := 0;
5 repeat
6 EVENT_TIME, EVENT := findmin(NextEdge(),NextUpdate());
7 SIMULATION_CLOCK := SIMULATION_CLOCK + EVENT_TIME;
8 if EVENT = next_edge then
9 UpdateAgentsAndVelocities();

10 if NODE = DESTINATION then
11 RemoveVehicle();
12 end
13 end
14 if EVENT = next_update then
15 foreach vehicle ∈ VEHICLES do
16 if vehicle is smart then
17 KShortestPathRerouting();
18 end
19 end
20 end
21 until active(vehicles) = 0;

Algorithm 1: Simulation pseudocode
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the simulation emulates morning or evening rush hours when congestion is usually dense and effective

traffic management can provide highest time reduction benefits. User controls “wave” direction with an

appropriate starting and ending areas. Other input parameters for simulation run are listed in Table 2.

The population of agents consists of N individuals with an α fraction of smart agents (smart agents

penetration). Smart vehicles receive speeds update every U seconds and reroute by picking one of k fastest

routes based on the Boltzmann distribution with a T parameter.

The simulation can work in two modes: base and smart (see Figure 2). In the base mode, only regular

agents occur and VANET functionalities are disabled. The scenario serves as the baseline for comparison

with smart scenario where both regular and smart agents occur (Figure 2b, Algorithm 1). Effectiveness of

implemented TMS is measured as the percentage of the total time reduction (difference in the sum of the

travelling times of all agents) between the smart and the base scenario with fixed input parameters.

Table 2. Simulation input parameters

Group Parameter Description

Agents
N Number of agents in simulation run
α Smart agents penetration

VANET U Velocities update interval (seconds)

Rerouting
T Boltzmann distribution regularization parameter
k Routes calculated in k-shortest path algorithm

3 Experiment setup

Figure 3. Agents starting and ending area in San Francisco

The evaluation of the proposed model was conducted on a map of San Francisco in California, USA.

We assumed scenario of evening commuting from financial (blue area) to residential district (red area)

(Figure 3). The parameter grid was created as the Cartesian product of the parameters values described
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in Table 3. On every computing node, common pool of 10,000 agents was generated and sampled by

consecutive simulation processes. Due to the probabilistic nature of the model, simulations were repeated

3 times for each parameter combination—in total, 54,000 simulation runs were conducted5. Repetitions

value was deemed sufficient, considering moderate average coefficient of variation for time reduction

(14%). The simulation experiments have been run on a cluster of Amazon Web Services EC2 instances.

For the sake of reproducibility, both map data and the script used in the experiment are available on GitHub

repository.6 We also provide a file with map statistics such as summary of the number of lanes, speed

limits and lengths distribution across edges.

Table 3. Simulation parameter sweep setup

Parameter α N U k T
Min 0.05 3000 50 1 0.1
Max 0.85 7500 300 5 10.0
Step 0.05 500 50 1 ×10

With described experiment setup, we aim to provide answers for the following questions:

1. How the total travelling time within the city changes with increasing smart cars penetration and

the number of agents? Congestion avoidance mechanisms provide a significant advantage for

smart vehicles but, since rerouting decisions are made locally, individuals in smart populations may

diminish gains of other smart agents.

2. Does the route overlap issue occur? That is, is the k-shortest algorithm necessary? If yes, is the

algorithm effective in distributing the traffic? Which value of T provides a near-optimal trade-off

between an ability to avoid traffic congestion and rerouting to longer paths?

3. How does the time reduction change with decreasing update period? With more frequent rerouting,

vehicles may react more effectively to changes of traffic conditions, although competition mechanism

between smart agents may intensify as well.

4 Experiment results

The obtained results prove a significant impact of routes overlap and the smart agents competition problem

in scenarios with high smart cars penetration. All time reduction values show the difference between

overall travelling time in scenario with a given α and the base scenario without smart agents (α = 0). In

smart populations with the deterministic rerouting (k = 1), unmitigated overlap issue tremendously affects

TMS efficiency. Travelling time reduction effect is near 0% and exhibits high variance (Figure 4c). With

5The final simulation run took a total of 1,500 AWS EC2 vCPU computational hours. An additional 10,000 vCPU-hours
have been used to calibrate and validate the model

6https://github.com/KrainskiL/SmartTransitionSim.jl/tree/master/example
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Figure 4. Percentage travelling time reduction for Boltzmann distribution regularization, T and the
number of routes calculated in k-shortest path algorithm, k values with fixed smart agents penetration α .
Averaged over all values of N and U parameters with error terms based on average coefficient of variation.

a mixed agent structure, system quality is affected by the overlap but routing is effective even with the

deterministic approach (Figure 4b). In scenarios dominated by regular agents, the competition mechanism

has no significant impact on travelling time but results are in general less stable compared to scenarios

with higher smart agents ratio (Figure 4a).

Based on the gathered data, the k-shortest paths algorithm alleviates detrimental effects of overlapping

routes. It is worth noting that with smaller smart agents penetration only two routes are required to reach a

peak performance while with high α , similar results were obtained with pool of two, three or four paths.

The behaviour of the algorithm may be also controlled with regularization parameter T . Time reduction

for T = 1.0 and T = 10.0 is similar, while for T = 0.1 results are clearly inferior. Since the small value of

T favour fast routes, the k-paths algorithm distribute traffic less efficiently.

In line with expectations, time reduction effectiveness increases with the number of agents. With

3,000 vehicles, the total travelling time was reduced up to 15% while with 7,500 agents maximum value

reached 30%. Independently of the population size, the highest system performance was recorded for the

penetration of smart cars around 85% (Figure 5). It is worth mentioning that the largest time reduction

effect is reached for simulations with k = 2 (Figure 5a) and performance is declining with increasing k (that

is, heatmaps become more yellow). The observation confirms that additional routes in the k-shortest path

algorithm do not contribute much to alleviating congestion but create possibility of choosing significantly

slower path.

The results also confirmed that the updating interval plays a key role in increasing the performance of

the Traffic Management System. The difference, measured in the percentage of time reduction, between

50 and 300 seconds update period reached up to 10% percent and was higher for smaller population

of agents (Figure 6a). For all population size and smart cars penetration, the biggest leap in system

performance occurred between 250 and 200 second update interval. By contrast, for smaller interval

values, the difference becomes insignificant (Figure 6b,c,d)—update period reaches optimal state near

50s value. However, since the routing mechanism is closely linked with traversed edges length and map
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Figure 5. The average percentage of time reduction based on the population size N and the smart agents
penetration α for a fixed number of evaluated routes k. Averaged over all values of T and U parameters.

characteristic, the optimal value may change based on set scenario. For 7,500 agents, peak percentage

travelling time difference reached 32% for both 50s and 100s update intervals, indicating that the optimal

update period value is between 50 and 100 seconds. This factor should be taken into account when

designing the communication protocol and polling mechanism for communicating vehicles.

In order to finish the analysis, let us mention that the simulation framework was validated against

multiple scenarios and design settings. Numerous routing rules and agent characteristics (in particular,

initial route generation process) were tested and refined. Investigation took into consideration also

criteria for starting agents movement, multiple rerouting triggers and additional VANET infrastructure

mechanisms. Throughout the development process, the framework was tested in different map settings (e.g.

Warsaw and Winnipeg urban areas) to verify that the simulation design provides consistent, interpretable

and meaningful conclusions. Validation scenarios included analysis of the parameters as in Table 3 and

various starting and ending areas per each map. We estimate that 50,000 simulation runs were conducted

to refine and validate the design. Numerical results obtained from the experiments mentioned above are

qualitatively consistent with the presented outcomes, thus in the paper we focused on detailed exposition

of San Francisco setup.
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Figure 6. The average percentage time reduction based on smart agents penetration α and different
levels of information update interval for various population sizes N. (Note that the plots do not include
data for k = 1 and T = 0.1.)

5 Conclusions

As smart cars adoption will likely take many years, it is important to validate underlying intelligent systems

under different penetration rates. In order to fill the gap in the related work, we have developed novel

microscopic simulation framework for assessing Traffic Management Systems under varying smart vehicles

penetration level. We proposed centralized TMS based on the k-shortest path algorithm and conducted

experiments using the framework. The experiments have shown that the proposed service can significantly

reduce the travelling time in urban environment. By controlling the simulation parameters, the system

performance may be fine-tuned. Moreover, the analysis revealed that an increasing smart cars penetration

activates mechanisms connected with the underlying algorithms and the system characteristics may differ

depending on the fraction of smart units. In particular, the optimality of the proposed parametrization

of path selection probabilities (introduced to avoid a situation where too many agents take the same

overlapping routes) depends on the level of smart car penetration. In practice, it means that the smart vehicle

movement algorithm should be tuned when the transportation ecosystem changes. Hence, considering that
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the transition to fully automated vehicles will span a number of years, assessing intermediate effects should

be an important stage of designing modern transportation systems. Additionally, simulation results clearly

show that with the increasing volume of traffic, the role of smart vehicles in reducing the congestion is

increasing. Moreover, the marginal value of better communication system in reducing the congestion is

also increasing with the the bigger smart car penetration—again, this value is grater with cities of smart

congestion.

Future model extensions may include a more sophisticated rerouting algorithm with individuals’

decision based on the regional (vehicle clusters) or global communication between agents and VANET

infrastructure. A more advanced design is required to tackle the problem of uneven traffic distribution and

the competition between smart agents. Next possible framework modifications include an implementation

of the value of time characteristics as a performance measure instead of a simple time reduction. We assume

that the value of time of all agents is equal but, from an economic or social point of view, introducing an

additional heterogeneity may be beneficial, e.g. higher time cost for public service or delivery vehicles.

Another consideration is the generality of the conclusions. Presented outcomes qualitatively held for

particular scenario of San Francisco and other experiments in various setups, as described in Section 4.

Of course, as in any simulation study, the generality and stability of the conclusions is a topic that may

be studied deeper in specific contexts of user interest. For this reason we provide all source codes of the

framework we have used as an open-source project to allow interested parties to implement or modify our

proposed model in their own research.
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