
A Scalable Unsupervised Framework for
Comparing Graph Embeddings

Bogumi l Kamiński1, Pawe l Pra lat2, and François Théberge3

1 Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw,
Poland; bogumil.kaminski@sgh.waw.pl

2 Department of Mathematics, Ryerson University, Toronto, ON, Canada;
pralat@ryerson.ca

3 Tutte Institute for Mathematics and Computing, Ottawa, ON, Canada;
theberge@ieee.org

Abstract. Graph embedding is a transformation of vertices of a graph
into a set of vectors. A good embedding should capture the graph topol-
ogy, vertex-to-vertex relationship, and other relevant information about
the graph, its subgraphs, and vertices. If these objectives are achieved, an
embedding is a meaningful, understandable, and often compressed rep-
resentations of a network. Unfortunately, selecting the best embedding
is a challenging task and very often requires domain experts.
In the recent paper [1], we propose a “divergence score” that can be as-
signed to embeddings to help distinguish good ones from bad ones. This
general framework provides a tool for an unsupervised graph embedding
comparison. The complexity of the original algorithm was quadratic in
the number of vertices. It was enough to show that the proposed method
is feasible and has practical potential (proof-of-concept). In this paper,
we improve the complexity of the original framework and design a scal-
able approximation algorithm. Moreover, we perform some detailed qual-
ity and speed benchmarks.

Keywords: Graph Embedding · Geometric Chung-Lu Model.

1 Introduction

The study of networks has emerged in diverse disciplines as a means of analyz-
ing complex relational data. Indeed, capturing aspects of a complex system as a
graph can bring physical insights and predictive power [2]. Network Geometry is
a rapidly developing approach in Network Science [3] which further abstracts the
system by modelling the vertices of the network as points in a geometric space.
There are many successful examples of this approach that include latent space
models, and connections between geometry and network clustering and commu-
nity structure. Very often, these geometric embeddings naturally correspond to
physical space, such as when modelling wireless networks or when networks are
embedded in some geographic space. See [4] for more details about applying
spatial graphs to model complex networks.

2 Kamiński, Pra lat, and Théberge

Another important application of geometric graphs is in graph embedding.
The idea here is that, for a given network, one tries to embed it in a geometric
space by assigning coordinates to each vertex such that nearby vertices are more
likely to share an edge than those far from each other. In a good embedding most
of the network’s edges can be predicted from the coordinates of the vertices.
Unfortunately, in the absence of a general-purpose representation for graphs,
very often graph embedding requires domain experts to craft features or to use
specialized feature selection algorithms. Having said that, there are some graph
embedding algorithms that work without any prior or additional information
other than graph structure, but these are randomized algorithms that are usually
not very stable; that is, the outcome of two applications of the algorithm is often
drastically different despite the fact that all the algorithm parameters remain
the same.

Consider a graph G = (V,E) on n vertices, and several embeddings of its
vertices in some multidimensional spaces (possibly in different dimensions). The
main question we try to answer in this paper is: how do we evaluate these
embeddings? Which one is the best and should be used? In order to answer these
questions, we propose a general framework that assigns the divergence score to
each embedding which, in an unsupervised learning fashion, distinguishes good
from bad embeddings. In order to benchmark embeddings, we generalize the
well-known Chung-Lu random graph model to incorporate geometry. The model
is interesting on its own and should be useful for many other problems and tools.
In order to test our algorithm, in [1] we experimented with synthetic networks as
well as real-world networks, and various embedding algorithms. In this paper, we
concentrate on the complexity challenges of the original algorithm and propose
a fast approximated algorithm that works very well in practice.

The paper is structured as follows. In Section 2, we describe our algorithm
for comparing graph embeddings, and we illustrate our approach on one simple
graph. The Chung-Lu model is generalized in Section 3. In the recent paper [1],
we experimented with many datasets and embedding algorithms to show that
the framework works well. In this paper, for illustration purposes, we use some of
these datasets and their corresponding embeddings. However, due to the space
limitation, we do not explain how they are constructed. Interested reader is di-
rected to [1] for more details. Here, we focus on improvements that were required
to make an algorithm scalable. The results presented in Section 4 for a novel ex-
tension of the original algorithm are the main contribution of this paper. We
conclude with a discussion on some future directions in Section 5.

2 General Framework

Suppose that we are given a graph G = (V,E) on n vertices with the degree
distribution w = (w1, . . . , wn) and an embedding of its vertices to k-dimensional
space, E : V → Rk. Our goal is to assign a “divergence score” to this embedding.
The lower the score, the better the embedding is. This will allow us to compare
several embeddings, possibly in different dimensions.

A Scalable Unsupervised Framework for Comparing Graph Embeddings 3

2.1 Intuition Behind the Algorithm

What do we expect from a good embedding? As already mentioned, in a good
embedding, one should be able to predict most of the network’s edges from the
coordinates of the vertices. Formally, it is natural to expect that if two vertices,
say u and v, are far away from each other (that is, dist(E(u), E(v)) is relatively
large), then the chance they are adjacent in the graph is smaller compared to
another pair of vertices that are close to each other. But, of course, in any real-
world network there are some sporadic long edges and some vertices that are
close to each other are not adjacent. In other words, we do not want to pay
attention to local properties such as existence of particular edges (microscopic
point of view) but rather evaluate some global properties such as density of some
relatively large subsets of vertices (macroscopic point of view). So, how can we
evaluate if the global structure is consistent with our expectations and intuition
without considering individual pairs?

The approach we take is as follows. We identify dense parts of the graph
by running some good graph clustering algorithm. As was illustrated in [1],
the choice of graph clustering algorithm is flexible so long as the vertex set is
partitioned into clusters such that there are substantially more edges captured
within clusters than between them. The clusters that are found will provide the
desired macroscopic point of view of the graph. Note that for this task we only
use information about the graph G; in particular, we do not use the embedding
E at all. We then consider the graph G from a different point of view. Using the
Geometric Chung-Lu (GCL) model that we introduce in this paper especially
for this purpose, based on the degree distribution w and the embedding E , we
compute the expected number of edges within each cluster found earlier, as
well as between them. The embedding is scored by computing a divergence score
between these expected number of edges, and the actual number of edges present
in G. Our approach falls into a general and commonly used method of statistical
inference, in our case applied to the Geometric Chung-Lu model. With these
methods, one fits a generative model of a network to observed network data,
and the parameters of the fit tell us about the structure of the network in much
the same way that fitting a straight line through a set of data points tells us
about their slope.

Finally, let us make a comment that not all embeddings proposed in the
literature try to capture edges. Some algorithms indeed try to preserve edges
whereas others care about some other structural properties; for example, they
might try to map together nodes with similar functions. Because of the applica-
tions we personally need to deal with require preserving (global) edge densities,
our framework favours embeddings that do a good job from that perspective.

2.2 Algorithm

Given a graph G = (V,E), its degree distribution w on V , and an embedding
E : V → Rk of its vertices in k-dimensional space, we perform the five steps
detailed below to obtain ∆E(G), a divergence score for the embedding. We can

4 Kamiński, Pra lat, and Théberge

apply this algorithm to compare several embeddings E1, . . . , Em, and select the
best one via arg mini∈[m]∆Ei(G) (here and later in the paper, we use [n] to denote
the set of natural numbers less than or equal to n; that is, [n] := {1, . . . , n}).
Note that our algorithm is a general framework and some parts have flexibility.
We clearly identify these below.

Step 1: Run some stable graph clustering algorithm on G to obtain a partition
C of the vertex set V into ` communities C1, . . . , C`.
Note: In our implementation, we used the ensemble clustering algorithm for
graphs (ECG) which is based on the Louvain algorithm and the concept of
consensus clustering [5], and is shown to have good stability.
Note: In some applications, the desired partition can be provided together with
a graph (for example, when nodes contain some natural labelling and so some
form of a ground-truth is provided).

Step 2: For each i ∈ [`], let ci be the proportion of edges of G with both
endpoints in Ci. Similarly, for each 1 ≤ i < j ≤ `, let ci,j be the proportion of
edges of G with one endpoint in Ci and the other one in Cj . Let

c̄ = (c1,2, . . . , c1,`, c2,3, . . . , c2,`, . . . , c`−1,`) and ĉ = (c1, . . . , c`) (1)

be two vectors with a total of
(
`
2

)
+ ` =

(
`+1
2

)
entries which together sum to

one. These graph vectors characterize the partition C from the perspective of
the graph G.
Note: The embedding E does not affect the vectors c̄ and ĉ. They are calculated
purely based on G and the partition C.

Step 3: For a given parameter α ∈ R+ and the same vertex partition C, we
consider G(w, E , α), the GCL Model presented in Section 3. For each 1 ≤ i <
j ≤ `, we compute bi,j , the expected proportion of edges of G(w, E , α) with one
endpoint in Ci and the other one in Cj . Similarly, for each i ∈ [`], let bi be the
expected proportion of edges within Ci. That gives us another two vectors

b̄E(α) = (b1,2, . . . , b1,`, b2,3, . . . , b2,`, . . . , b`−1,`)

b̂E(α) = (b1, . . . , b`) (2)

with a total of
(
`+1
2

)
entries which together sum to one. These model vectors

characterize the partition C from the perspective of the embedding E .
Note: The structure of graph G does not affect the vectors b̄E(α) and b̂E(α);
only its degree distribution w and embedding E are used.
Note: We used the Geometric Chung-Lu Model but the framework is flexible.
If, for any reason (perhaps there are some restrictions for the maximum edge
length; such restrictions are often present in, for example, wireless networks)
it makes more sense to use some other model of random geometric graphs, it
can be easily implemented here. If the model is too complicated and computing
the expected number of edges between two parts is challenging, then it can be
approximated easily via simulations.

A Scalable Unsupervised Framework for Comparing Graph Embeddings 5

Step 4: Compute the distances between the two pairs of vectors, that is, be-
tween c̄ and b̄E(α), and between ĉ and b̂E(α), in order to measure how well
the model G(w, E , α) fits the graph G. Let ∆α be a weighted average of the two
distances.
Note: We used the well-known and widely used Jensen–Shannon divergence
(JSD) to measure the dissimilarity between two probability distributions. The
JSD can be viewed as a smoothed version of the Kullback-Leibler divergence. In
our implementation, we used simple average, that is,

∆α =
1

2
·
(
JSD(c̄, b̄(α)) + JSD(ĉ, b̂(α))

)
. (3)

We decided to independently treat internal and external edges to compensate
the fact that there are

(
`
2

)
coefficients related to external densities whereas only

` ones related to internal ones. Depending on the application at hand, other
weighted averages can be used if more weight needs to be put on internal or
external edges.

Step 5: Select α̂ = arg minα∆α, and define the divergence score for embedding
E on G as: ∆E(G) = ∆α̂.
Note: The parameter α is used to define a distance in the embedding space, as
we detail in Section 3. In our implementation we simply checked values of α on
a grid between 0 and 10. There are clearly better ways to search the space of
possible values of α but, since the algorithm worked very fast on our graphs, we
did not optimize this part.

In order to compare several embeddings for the same graph G, we repeat
steps 3-5 above and compare the divergence scores (the lower the score, the
better). Let us stress again that steps 1-2 are done only once, so we use the same
partition of the graph into ` communities for each embedding. The code can be
accessed at the following GitHub repository4.

2.3 Illustration

We illustrate our framework on the well-known Zachary’s Karate Club graph [6].
The parameter α ≥ 0 in the GCL model controls the distance used in the
embedding space. With α = 0, the embedding is not taken into account and the
classic Chung-Lu model is obtained, so only the degree distribution is accounted
for. As α gets larger, long edges in the embedding space are penalized more
severely. In the left plot of Figure 1, we show the impact of varying α on the two
components of equation (3) which respectively consider pairs of vertices that
are internal (to some cluster) or external (between clusters). Recall that the
divergence score for a given embedding is obtained by choosing α̂ = arg minα∆α.
In the right plot of Figure 1, we used UMAP (Uniform Manifold Approximation
and Projection) [7] to show a 2-dimensional projection of the best embedding as
obtained by our framework (with node2vec, 64 dimensions and parameters p=0.5
and q=1.0). The vertices are coloured according to the two known communities.

4 https://github.com/ftheberge/Comparing Graph Embeddings

6 Kamiński, Pra lat, and Théberge

Fig. 1. Zachary’s Karate Club Graph. We illustrate the divergence score as a function
of α (left) for the best embedding found by our framework (right). The colors represent
the two ground-truth communities.

We can use the GCL model to generate edges, as with the standard Chung-Lu
model. In Figure 2, we generate 3 such graphs using the best embedding shown
in Figure 1. The left plot uses α = 0, which ignores the embedding and clearly
generates too many long edges between the clusters. The center plot uses the
optimal value (α̂ = 2.75 in this case), generating a graph that resembles the true
one. The rightmost plot uses the larger value α = 7, which penalizes long edges
more severely, yielding a graph with less edges between the two communities.

Fig. 2. Zachary’s Karate Club Graph. We generate random edges following the Ge-
ometric Chung-Lu Model with the same expected degree distribution and with the
highest scoring embedding. We look at three cases: α = 0 which ignores the embedding
(left), α = 7 which penalizes long edges too severely (right), and the best α̂ = 2.75
(center).

3 Geometric Chung-Lu Model

It is known that classical Erdős-Rényi (binomial) random graphs G(n, p) can
be generalized to the Chung-Lu model G(w), the random graph with a given

A Scalable Unsupervised Framework for Comparing Graph Embeddings 7

expected degree distribution w = (w1, . . . , wn). It is a classic and well-known
model but unfamiliar reader is directed to, for example, [1] or [8]. Since our goal
is to compare different embeddings of the same graph, we will generalize the
Chung-Lu model further, including geometry coming from the graph embedding.
In such models, that are called spatial models or geometric graphs, vertices are
embedded in some metric space and link formation is influenced by the metric
distance between vertices. The main principle of spatial models is that vertices
that are metrically close are more likely to link to each other. This is a formal
expression of the intuitive notion we have about virtual networks: Web links are
likely to point to similar pages, people that share similar interests are more likely
to become friends on Facebook, and scientific papers mostly refer to papers on
similar topics.

In the Geometric Chung-Lu model we are not only given the expected degree
distribution of a graph G

w = (w1, . . . , wn) = (degG(v1), . . . ,degG(vn))

but also an embedding of vertices of G in some k-dimensional space, function
E : V → Rk. In particular, for each pair of vertices, vi, vj , we know the distance
between them:

di,j = dist(E(vi), E(vj)).

It is desired that the probability that vertices vi and vj are adjacent to be
a function of di,j , that is, to be proportional to g(di,j) for some function g.
The function g should be a decreasing function as long edges should occur less
frequently than short ones. There are many natural choices such as g(d) = d−β

for some β ∈ [0,∞) or g(d) = exp(−γd) for some γ ∈ [0,∞). We use the
following, normalized function g : [0,∞)→ [0, 1]: for a fixed α ∈ [0,∞), let

g(d) :=

(
1− d− dmin

dmax − dmin

)α
,

where

dmin = min{dist(E(v), E(w)) : v, w ∈ V, v 6= w}
dmax = max{dist(E(v), E(w)) : v, w ∈ V }

are the minimum, and respectively the maximum, distance between vertices in
embedding E . One convenient and desired property of this function is that it
is invariant with respect to an affine transformation of the distance measure.
Clearly, g(dmin) = 1 and g(dmax) = 0; in the computations, we can use clipping
to force g(dmin) < 1 and/or g(dmax) > 0 if required. Let us also note that if
α = 0 (that is, g(d) = 1 for any d ∈ [0,∞) with g(dmax) = 00 = 1), then we
recover the original Chung-Lu model as the pairwise distances are neglected.
Moreover, the larger parameter α is, the larger the aversion to long edges is.
Since this family of functions (for various values of the parameter α) captures a
wide spectrum of behaviours, it should be enough to concentrate on this choice

8 Kamiński, Pra lat, and Théberge

but one can easily experiment with other functions. So, for now we may assume
that the only parameter of the model is α ∈ [0,∞).

The Geometric Chung-Lu (GCL) model is the random graph G(w, E , α) on
the vertex set V = {v1, . . . , vn} in which each pair of vertices vi, vj , indepen-
dently of other pairs, forms an edge with probability pi,j , where

pi,j = xixjg(di,j)

for some carefully tuned weights xi ∈ R+. The weights are selected such that
the expected degree of vi is wi; that is, for all i ∈ [n]

wi =
∑

j∈[n],j 6=i

pi,j = xi
∑

j∈[n],j 6=i

xjg(di,j).

Additionally, we set pi,i = 0 for i ∈ [n]. Let us mention one technical assumption.
It might happen that pi,j is greater than one and so it should really be regarded
as the expected number of edges between vi and vj ; for example, as suggested
in the book of Newman [2], one can introduce a Poisson-distributed number of
edges with mean pi,j between each pair of vertices vi, vj .

In [1], we proved that there exists the unique selection of weights, provided
that the maximum degree of G is less than the sum of degrees of all other vertices.
Since each connected component of G can be embedded independently, we may
assume that G is connected and so the minimum degree of G is at least 1. As
a result, this very mild condition is trivially satisfied unless G is a star on n
vertices.

It is not clear how to find weights explicitly but they can be easily (and
efficiently) approximated numerically to any desired precision, as is discussed in
detail in in [1].

4 Complexity — Scalable Algorithm

The original algorithm proposed in [1] has a running time that is quadratic as a
function of the number of vertices. It was enough to experiment with graphs on
a few thousands of vertices to show that the proposed method is feasible and has
practical potential (the so-called proof-of-concept). In this section, we improve
the complexity and design a scalable algorithm that efficiently evaluates graph
embeddings even on millions of vertices.

The main bottleneck of the original algorithm is the process of tuning n
weights xi ∈ R+ (i ∈ [n]) in the Geometric Chung-Lu model (Step 3 of the
algorithm). This part requires Θ(n2) steps and so it is not feasible for large
graphs. The other components are much faster with the graph clustering algo-
rithm (Step 1 of the algorithm) being the next computationally intensive part,
typically requiring O(n lnn) steps. We modify our algorithm slightly to obtain a
scalable approximation algorithm that can be efficiently run on large networks.
Its running time is O(n lnn) which is practical. Indeed, let us point out that

A Scalable Unsupervised Framework for Comparing Graph Embeddings 9

graph embedding algorithms have their own complexity and so our benchmark
framework is certainly not a bottleneck of the whole process anymore.

Recall that in Part 3 of the algorithm, for a given parameter α ∈ R+ and
vertex partition C, we need to compute the expected proportion of edges of
G(w, E , α) that are present within partition parts and between them, vectors

b̄E(α) and b̂E(α) defined in (2). The main idea behind our approximation algo-
rithm is quite simple. Our goal is to group together vertices from the same part
of C that are close to each other in the embedded space. Once such refinement
of partition C is generated, we simply replace each group by the corresponding
auxiliary vertex that is placed in the (appropriately weighted) center of mass
of the group it is associated with. Such auxiliary vertices will be called land-
marks. Finally, vectors b̄E(α) and b̂E(α) will be approximated by vectors āE(α)
and âE(α) in the corresponding auxiliary graph of landmarks. Since we aim for
a fast algorithm, the numer of landmarks should be close to n′ =

√
n so that the

process of tuning weights can be done in O(n′2) = O(n) time.
The process of selecting landmarks is discussed in the next subsection but

let us mention about one more modification that needs to be done. Our initial
Geometric Chung-Lu model produces simple graphs. On the other hand, after
merging vertices from one group into the corresponding landmark, we need to
control the expected number of edges between these vertices. Hence, we need to
generalize our model to include loops which we discuss in the following subsection
before we move to the quality and speed comparison.

Generating Landmarks

We start with a partition C of the vertex set V into ` communities C1, . . . , C`.
The number of communities is typically relatively small. In what we write below,
our mild assumption is that ` <

√
n; otherwise, one may simply use the original

algorithm or increase the number of landmarks (alternatively, one may insist
that the number of initial communities produced by graph clustering algorithm
is small). For each part Ci (i ∈ [`]) we compute the weighted center of mass
pi and the weighted sum of squared errors (SSE) ei, that is,

pi :=

∑
j∈Ci

wj E(vj)∑
j∈Ci

wj
and ei =

∑
j∈Ci

wj dist
(
pi, E(vj)

)2
.

(Recall that wj is the degree of vertex vj and E(vj) is its position in the embedded
space Rk.) The weighted sum of squared errors is a natural measure of variation
within a cluster.

We will refine the partition C by repeatedly splitting some parts of it with the
goal to reach precisely

√
n parts. However, before we explain which parts will be

split, let us concentrate on splitting a given part Ci. The goal is to partition Ci
with SSE equal to ei into two parts with the corresponding SSEs equal to e1i and
e2i in such a way that max{e1i , e2i } is as small as possible. Finding the best parti-
tion is difficult and computationally expensive. However, this can be efficiently

10 Kamiński, Pra lat, and Théberge

well approximated by finding the first principal component in the well-known
weighted Principal Component Analysis (PCA). This transformation is
defined in such a way that the first principal component has the largest possible
weighted variance (that is, accounts for as much of the weighted variability as
possible). After projecting all the points from Ci onto this component, we get
a total order of these points and one can quickly check which of the natural
|Ci| − 1 partitions minimizes max{e1i , e2i }. The original part Ci is then replaced
with two parts, C1

i and C2
i , with the corresponding centers of mass and SSEs.

See Figure 3 for an illustration of this process.

Splitting Ci into two parts so as to minimize max{e1i , e2i } can be achieved
in O(|Ci|) steps using the bisection search over a projection of data onto the
first principal component. Indeed, this is doable because of the following: (1)
finding the first principal component and calculating the projection onto it has
linear cost, (2) finding the median over some range has a linear cost, (3) when a
splitting hyperplane is moved, and as a consequence points between C1

i and C2
i

are moved, then e1i and e2i can be updated using an online algorithm that also
has a linear cost, and (4) the number of potentially moved points in the bisection
search is halved in each step. (See split cluster rss function in the reference
implementation. In the code we make a significant use of the fact, that the Julia
language provides an efficient implementation of views into arrays which allowed
us to keep the number of required memory allocations made in the code small.)
As a result, since we will be recursively applying splitting until reaching

√
n

parts, similarly as in the case of well-known Quicksort sorting algorithm, the
expected total running time of this part of the algorithm is O(n lnn).

C1
i

C2
i

Fig. 3. Splitting Ci using SSE and the first principal component. Dots represent orig-
inal points, thick black line represents the first principal component, and blue line
represents the hyperplane orthogonal to the first principal component. It provides the
desired split of Ci into C1

i and C2
i .

Now, we are ready to describe the strategy for selecting parts for splitting.
First of all, let us mention that it is not desired to replace the whole original
part by one landmark as it may introduce large error. Indeed, the intuition is
that replacing many vertices with a landmark might affect the expected number
of edges between them but the expected number of edges between vertices that
belong to different landmarks (that are often far away from each other) is not

A Scalable Unsupervised Framework for Comparing Graph Embeddings 11

affected too much. As a result, in our implementation we insist on splitting
each original part into s smaller parts even if the original SSE is small. (s is a
parameter of the model that we will discuss soon.) After this initial phase we
start splitting parts in a greedy fashion, each time selecting a part that has the
largest SSE. The process stops once n′ =

√
n parts are generated.

Let us now briefly discuss the influence of the parameter s. In a typical
scenario, even if s is small, each cluster is split many times in the second part of
the process where we greedily split clusters with large SSE. In such situations, the
value of the parameter s actually does not matter and this is what we observed
in our experiments. However, it is theoretically possible that in some rare cases
this natural splitting might not happen. As a result, in the implementation we
provided, we allow the user to tune parameter s to cover such rare instances.

Now, let us come back to the algorithm. As already mentioned, each part Ci is
replaced by its landmark ui. The position of landmark ui in the embedded space
Rk coincides with the weighted center of mass of its part, that is, E(ui) = pi.
Finally, the expected degree of landmark ui (that we denote as w′i in order
to distinguish it from wi, the expected degree of vertex wi) is the sum of the
expected degrees of the associated vertices in the original model, that is, w′i :=∑
j∈Ci

wj .

Note: We experimented with a number of different strategies for splitting,
other than minimizing the maximum SSE, such as balancing sizes of all clusters
and balancing diameters of all clusters. Once the objective function is fixed,
the algorithm may greedily select the worst cluster (from a given perspective)
and then split it appropriately (again, to minimize the objective function). The
results were comparable across all strategies.

Including Loops in the Geometric Chung-Lu Model

In order to approximate vectors b̄E(α) and b̂E(α) from the original model on n
vertices, we will use the auxiliary model on n′ =

√
n landmarks. Each landmark

ui is located at pi ∈ Rk (the weighted center of mass of the associated vertices)
and has expected degree wi (the sum of expected degrees of the associated
vertices). One can find the pairwise distances between landmarks, and apply
the original model G(w, E , α) for landmarks to compute the expected number of
edges between and within parts, vectors āE(α) and âE(α), as an approximation of

the original vectors b̄E(α) and b̂E(α). It is expected that āE(α) approximates well
b̄E(α) but, since many vertices (

√
n on average) are reduced to one landmark,

the number of internal edges might be affected, that is, âE(α) might not be very

close to b̂E(α).
We partially address this issue by insisting that each original part is split

into a number of landmarks. In order to achieve even better approximation
we introduce loops in our Geometric Chung-Lu Model. This generalization is
straightforward. The Geometric Chung-Lu (GCL) model is the random graph
H(w, E , α) on the set of landmarks V = {u1, . . . , un′} in which each pair of
landmarks ui, uj , independently of other pairs, forms an edge with probability

12 Kamiński, Pra lat, and Théberge

pi,j , where
pi,j = xixjg(di,j)

for some carefully tuned weights xi ∈ R+. Additionally, for i ∈ [n′], the proba-
bility of creating a self loop around landmark ui is equal to

pi,i = x2i g(di,i), where di,i =

√
ei∑

j∈Ci
wj
.

Note that the “distance” di,i from landmark ui to itself is an approximation of
the unobserved weighted average distance da,b over all pairs of vertices a and b
associated with ui. The weights are selected such that the expected degree of
landmark ui is w′i; that is, for all i ∈ [n′]

w′i =
∑
j∈[n′]

pi,j = xi
∑
j∈[n′]

xjg(di,j).

Since it is an extension to [1], we revisited the proof of the uniqueness of weights
in this more general setting (the proof is omitted here due to page limit). We
showed that the weights exist and are unique if and only if the following condition
is satisfied for more than two landmarks (for completeness, in the full version
of the paper we also derived the conditions for the graph on n′ = 2 landmarks,
which are slightly different):

dt,t > 0 ∨ 2w′t <
∑
j∈n′

w′j ,

where t = arg maxj∈n′ w′j . Finally, let us mention that, as in the case of the
original model, standard root-finding algorithms can be used to efficiently find
the desired weights.

Quality and Speed Comparison

We start our experiments with the College Football graph and testing the same
set of embeddings as in [1]. This well-studied graph with known community
structure represents the schedule of United States football games between Divi-
sion IA colleges during the regular season in Fall 2000 [9]. The data consists of
115 teams (vertices) and 613 games (edges). For each embedding, we compared
the original divergence score computed for n = 115 vertices with the approx-
imated counterpart computed for n′ = 36 landmarks. (The value of 36 was
selected rather arbitrarily; the graph is tiny so any number of landmarks seems
reasonable for this illustration purpose.) Each of the 12 clusters were forced to
split once before greedy strategy was applied. The graph presented in Figure 4
shows very high correlation between the two measures which indicates that the
approximation algorithm preforms well, as expected.

We compared the two sets of divergence scores for all embeddings, the first set
based on the original algorithm and the second one based on the approximated

A Scalable Unsupervised Framework for Comparing Graph Embeddings 13

Fig. 4. College Football Graph exhibits high correlation between the original diver-
gence score and its approximated counterpart.

version. The two sets of scores (as well as their rankings) are highly correlated
as indicated by the following two measures of similarity: Pearson’s correlation of
0.941 for the divergence scores and Kendall-tau of 0.802 for the rankings. Having
said that, the rankings that we obtained are not identical. In Figure 5, we show
the best and worst scoring embeddings for the approximated divergence score
based on landmarks. The conclusion is the same as for the original algorithm:
embeddings that score high are of good quality wheres the ones that score low
are of poor quality.

Fig. 5. The College Football Graph. We show the best (left) and the worst (right)
scoring embedding based on the approximated algorithm with landmarks.

Our next experiment is with Email-Eu-core Network on 986 vertices. This
network was generated using email data from a large European research institu-
tion and is available as one of the SNAP Datasets [10]. As before, we tested all
available embeddings. Clearly, our approximation algorithm provides a trade-off
between the speed and the accuracy of the obtained approximation—the more
landmarks we use, the better approximation we get but the algorithm gets slower.
The goal of this experiment is to investigate how sensitive the approximation

14 Kamiński, Pra lat, and Théberge

is as a function of the number landmarks. We compare the Pearson’s correla-
tion between the two sets of divergence scores of all embeddings, the first one
computed for the original graph on n = 986 vertices, and the second one com-
puted for the approximated variant on n′ landmarks with n′ ≥ 25—see Figure 6.
As expected, there is a high correlation between the two sets with a satisfying
outcomes already around

√
n landmarks.

Fig. 6. Pearson’s correlation between the divergence scores computed for the original
graph on n = 986 vertices and the ones computed for the approximated variant on
n′ ≥ 25 landmarks.

Fig. 7. Comparing quality and speed for ABCD graphs. We compare the approximated
divergence score and the time required to compute it as a function of the number of
landmarks.

In order to see how the approximated algorithm behaves on large graphs,
our last experiments are concerned with relatively large instances of ABCD
graphs, on n = 10,000 vertices and on n = 100,000 vertices. The Artificial
Benchmark for Community Detection (ABCD graph) [11] is a random graph
model with community structure and power-law distribution for both degrees

A Scalable Unsupervised Framework for Comparing Graph Embeddings 15

and community sizes (a new model that is an attempt to solve some of the
problems of the standard method for generating artificial networks, the LFR
graph generator [12]). Whereas the smaller graph can be easily tested by the
original algorithm, dealing with the larger graph seems impractical (we only
tested it for n′ ≤ 10,000 < n = 100,000 landmarks). On the other hand, the
approximated algorithm easily deals with graphs of that size.

For each graph, we tested the embedding obtained by 8-dim node2vec algo-
rithm (time required to generate embedding for the small graph was roughly 32
seconds wheres the large graph required 6 minutes and 20 seconds to be pro-
cessed). The results are presented in Figure 7. For each number of landmarks
n′, we plot the approximated divergence score as well as the time required to
compute it on 2.2GHz Intel Xeon E5 processor. We clearly see the trade-off
between the accuracy and the speed of the algorithm with the “sweet spot”
around n′ ≈

√
n where the approximated divergence score is very close to the

original divergence score whereas the algorithm is still extremely fast. In order
to reach that conclusion, we tested the algorithm for the values of n′ up to
n′ = 104 = (105)4/5 = n4/5, much larger than n′ =

√
n. As a result, in practice,

one can easily deal with graphs or order n = (104)2 = 108.

5 Future Directions

In this paper, our aim was to introduce a scalable general framework for eval-
uating embeddings. This exploratory research showed that our divergence score
is a very promising distinguisher. The next natural step is to do extensive ex-
periments of various embedding algorithms on large real-world datasets in order
to evaluate and compare them.

A further extension of this work could be made to weighted graphs or hy-
pergraphs that are generalizations of graphs in which a single (hyper)edge can
connect any number of vertices. Hypergraphs are often more suitable and useful
for representing and modelling many important networks and processes. We are
interested in generalizing classic notions to hypergraphs, such as clustering via
modularity [13], as well as developing new algorithms to apply to them [14].
Hence, a natural line of development of the proposed embedding comparison
framework is to generalize it to allow for evaluation of embeddings of hyper-
graphs.

As a side effect of our research on evaluating graph embeddings, we have
introduced the Geometric Chung-Lu model that is interesting on its own right
and potentially applicable in other problems. As it is not the main focus of this
paper, we did not analyze its graph-theoretic properties in detail. It remains as
a subject for further research.

References

1. B. Kamiński, P. Pra lat, and F. Théberge, An Unsupervised Framework for Com-
paring Graph Embeddings, Journal of Complex Networks, in press, 27pp.

16 Kamiński, Pra lat, and Théberge

2. Newman M. Networks: An Introduction. Oxford University Press; 2010.
3. Bianconi G. Interdisciplinary and physics challenges of network theory. EPL. 2015;

111(5):56001.
4. J. Janssen. Spatial Models for Virtual Networks. CiE 2010, LNCS 6158, pp. 201-

210, 2010.
5. Poulin V., Théberge F. (2019) Ensemble Clustering for Graphs. In: Aiello L., Cher-

ifi C., Cherifi H., Lambiotte R., Lió P., Rocha L. (eds) Complex Networks and Their
Applications VII. COMPLEX NETWORKS 2018. Studies in Computational In-
telligence, vol 812. Springer, Cham.

6. Zachary, W. W. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research 33, 452-473 (1977).

7. L. McInnes, J. Healy, J. Melville. UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction. pre-print arXiv:1802.03426, 2018.

8. Chung FRK, Lu L. Complex Graphs and Networks. American Mathematical So-
ciety; 2006.

9. M. Girvan, M.E. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences 99, 7821-7826 (2002).

10. J. Leskovec, A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collection,
http://snap.stanford.edu/data.

11. B. Kamiński, P. Pra lat, and F. Théberge, Artificial Benchmark for Community
Detection (ABCD) — Fast Random Graph Model with Community Structure,
pre-print arXiv:2002.00843, 2020.

12. A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing
community detection algorithms. Phys. Rev. E, 78(4), 2008.

13. B. Kaḿinski, V. Poulin, P. Pra lat, P. Szufel, and F. Théberge, Clustering via
Hypergraph Modularity, PLoS ONE 14(11): e0224307.

14. A. Antelmi, G. Cordasco, B. Kamiński, P. Pra lat, V. Scarano, C. Spagnuolo, and P.
Szufel, Analyzing, Exploring, and Visualizing Complex Networks via Hypergraphs
using SimpleHypergraphs.jl, Internet Mathematics (2020), 32pp.

