
Analyzing, Exploring, and Visualizing Complex
Networks via Hypergraphs using

SimpleHypergraphs.jl?

Alessia Antelmi1, Gennaro Cordasco2, Bogumi l Kamiński3, Pawe l Pra lat4,
Vittorio Scarano2, Carmine Spagnuolo2, and Przemyslaw Szufel3

1 Dipartimento di Informatica, Università degli Studi di Salerno, Italy
aantelmi@unisa.it,vitsca@unisa.it,cspagnuolo@unisa.it

2 Dipartimento di Psicologia, Università degli Studi della Campania “Luigi
Vanvitelli”, Italy gennaro.cordasco@unicampania.it

3 SGH Warsaw School of Economics, Poland bkamins@sgh.waw.pl,

pszufe@sgh.waw.pl
4 Department of Mathematics, Ryerson University, Toronto, ON, Canada

pralat@ryerson.ca

Abstract. Real-world complex networks are usually being modeled as
graphs. The concept of graphs assumes that the relations within the net-
work are binary (for instance, between pairs of nodes); however, this is
not always true for many real-life scenarios, such as peer-to-peer com-
munication schemes, paper co-authorship, or social network interactions.
For such scenarios, it is often the case that the underlying network is
better and more naturally modeled by hypergraphs. A hypergraph is a
generalization of a graph in which a single (hyper)edge can connect any
number of vertices. Hypergraphs allow modelers to have a complete rep-
resentation of multi-relational (many-to-many) networks; hence, they are
extremely suitable for analyzing and discovering more subtle dependen-
cies in such data structures.
Working with hypergraphs requires new software libraries that make it
possible to perform operations on them, from basic algorithms (such
as searching or traversing the network) to computing significant hy-
pergraph measures, to including more challenging algorithms (such as
community detection). In this paper, we present a new software library,
SimpleHypergraphs.jl, written in the Julia language and designed for
high-performance computing on hypergraphs and propose two new algo-
rithms for analyzing their properties: s-betweenness and modified label
propagation. We also present various approaches for hypergraph visual-
ization integrated into our tool. In order to demonstrate how to exploit
the library in practice, we discuss two case studies based on the 2019 Yelp
Challenge dataset and the collaboration network built upon the Game of
Thrones TV series. The results are promising and they confirm the abil-
ity of hypergraphs to provide more insight than standard graph-based
approaches.

Keywords: Hypergraphs · Analyzing hypergraphs · Exploring hyper-
graphs · Visualizing hypergraphs · Software library · Julia language

? The research is financed by NAWA — The Polish National Agency for Academic
Exchange.

2 A. Antelmi et al.

1 Introduction

Research on the analysis of networks has a long tradition, and have provided
mathematics and computer scientists tools enabling the exploration, the study,
and the comprehension of complex phenomena [63]. Since its birth in the Eigh-
teenth century at the hands of the Swiss mathematician Leonhard Euler, graph
theory — the branch of discrete mathematics dealing with the study of networks
— has contributed to the resolution of many real-world problems [29,35]. In
particular, over the last twenty years, the interests of research have focused on
complex networks, namely networks whose structure is irregular, complex and dy-
namically evolving in time [26,42,67]. Complex networks naturally model many
real-world scenarios, such as social interactions [31,55], biological [40,41,62] and
economical [37,70] systems, Internet [36], and the World Wide Web [63], just to
name a few examples. Traditionally, these networks are described using graphs,
where nodes represent elements of the network, and edges represent relationships
between some pairs of elements. However, in many practical applications, rela-
tionships between the elements of a network may not be dyadic but may involve
more than two nodes. Examples of such scenarios include membership in groups
on social platforms, co-authorships of scientific publications, or several parties
participating in a crypto-currency transaction [30]. In such cases, nodes may be
linked together based either on explicit information (e.g., inclusion in groups),
or implicit information (e.g., whether online social network users share the same
hashtag in a media post or review the same restaurant). Obviously, the resulting
complexity of these networks is tremendous, as the relationships between vertices
can involve an arbitrary number of elements. A challenging task arising in this
context is providing scientists a tool to effortlessly model such scenarios. Here,
hypergraphs come into play. A hypergraph is a generalization of a graph where
the vertices are related not only by pair-wise connections (edges), but they can
include an arbitrary number of nodes (hyperedges). In other words, hypergraphs
can naturally model all the above scenarios.

The powerful expressiveness of hypergraphs has, however, few drawbacks:
dealing with the complexity of such data structures and the lack of appropriate
tools and algorithms for their study. For this reason, hypergraphs have been lit-
tle used in literature in favor of their graph-counterpart. A traditional approach
in network science to handle such scenarios is using the two-section graph rep-
resentation of a hypergraph, which vertices are the vertices of the hypergraph
and where two distinct vertices form an edge if and only if they are in the same
hyperedge [57,69]. In other words, a complete graph (or a clique) of order k re-
places each hyperedge of cardinality k. Another way to deal with a hypergraph
is analyzing its line-graph, defined as the graph where the node-set is the set
of the hyperedges and two nodes are connected by a link when the correspond-
ing hyperedges share at least a node [48]. A third approach consists in using
a bipartite graph, where the vertices and hyperedges of a hypergraph represent
the two disjoint vertex sets. Recommender systems heavily manipulate such rep-
resentation [23,65,53]. However, all these techniques share a weakness: as they
do not exploit hypergraphs, their implementation requires a different and less

SimpleHypergraphs.jl 3

natural data structure to handle the same set of information. Additionally, both
the two-section and line-graph transformations lose information encoded in a
hypergraph that cannot be transferred to the corresponding graph. For a more
clarifying example, we can consider the network built upon e-mail exchanges be-
tween some users. In this context, the object e-mail can be modeled as a relation
involving a group of users. Thus, in this case, nodes of the network represent
the persons, while the edges of the network incorporate a sub-set of them – i.e.,
all e-mail receivers. It is worth noting that if we represent this scenario with
a graph, we lose the information about which users are receivers of the same
e-mails. This approach, combined with grouping messages having the same title,
can be used for anomaly and spam detection in electronic communication [64].

To illuminate this uncharted area, we delved into the study of hypergraphs,
discussing how and to what extent this mathematical structure can model, ana-
lyze, and visualize complex networks characterized by many-to-many relations.
In this paper, we propose SimpleHypergraphs.jl, a complete software tool writ-
ten in the Julia language. Here, our aim is two-fold: i) improving the usability
and efficiency of software libraries for hypergraphs manipulation by exploiting
the efficiency provided by Julia and ii) developing a holistic set of functionalities
ensuring the broad applicability of our library. The contributions of our work
can be summarized as follows:

– We propose a software library for the analysis, exploration, and visualization
of hypergraphs, exploiting the Julia language to ensure both efficiency and
expressiveness. Julia is a new programming language developed at MIT [25],
with a syntax similar to popular and easy-to-use scientific computing lan-
guages such as Python or R. This means that experience in those languages
can be directly applied in Julia by computational scientists [33,60]. Although
it keeps a math-oriented syntax, Julia compiles the code to a binary form.
As a result, the observed performance of Julia programs is very similar to
C++, but with around 4 times fewer lines of code.
SimpleHypergraphs.jl is available on a GitHub public repository5, where
it is possible to find the library documentation6, and several tutorials in the
form of Jupyter Notebooks7. In this article, we describe the library function-
alities available in the current version 0.1.7 of SimpleHypergraphs.jl. The
library provides a set of analytical functionalities (modularity, connected
components, random-walk), as well as a serialization mechanism to store hy-
pergraph metadata. It also includes a visualization component that allows
users to explore the network through two different hypergraph visualizations;

– We discuss two use cases where we use hypergraphs to analyze complex
networks, and we compare their performance with the corresponding two-
section graph. The first case study deals with business reviews from the
platform Yelp.com, while the second application investigates the relation-
ships between characters of the Game-of-Thrones TV Series. In order to

5 https://github.com/pszufe/SimpleHypergraphs.jl.
6 https://pszufe.github.io/SimpleHypergraphs.jl/latest/reference/.
7 https://github.com/pszufe/SimpleHypergraphs.jl/tree/master/examples.

https://github.com/pszufe/SimpleHypergraphs.jl
https://pszufe.github.io/SimpleHypergraphs.jl/latest/reference/
https://github.com/pszufe/SimpleHypergraphs.jl/tree/master/examples

4 A. Antelmi et al.

perform these analyses we propose two new algorithms for analyzing the
properties of hypergraphs: s-betweenness and modified label propagation.

The paper is structured as follows. In Section 2, we start by motivating the
introduction of a novel software library to analyze and explore hypergraphs, and
we provide a review of existing available (currently maintained) software tools.
Section 3 defines the notation used in this work and introduces our Julia-based
library for hypergraphs. Next, in Section 4, we present two use cases with the
aim to show concrete applications and discuss the s-betweenness and modified
label propagation algorithms we propose. Finally, in Section 5, we discuss some
conclusions and future directions.

2 Motivation

Hypergraphs are a natural generalization of graphs, where a single (hyper)edge
can connect more than two vertices. In several real-world applications, such
representation is not only more general but also more natural than a standard
graph representation, where a binary representation of relationships is sometimes
not sufficient to correctly capture subtle interactions. Typical applications of
hypergraphs include modeling paper co-authorship networks (different authors
contribute to the same paper [39]), online reviews (the same good purchased
by several users [72]), social network activities (the same post commented by
multiple users, links in social networks [46]), disease contingency plans (groups
of people locating in the same place [27]), bio-engineering systems (modeling
cellular networks [45]). Even though hypergraphs are natural representations
of many real-world systems, there currently are very few software frameworks
suitable for modeling and mining these structures. In this section, we give a brief
state-of-art overview of several software libraries, focusing on the availability of
their code and their capability to model and analyze hypergraphs.

– Chapel HyperGraph Library (CHGL) [4] has been developed by the
Pacific Northwest National Laboratory since 2018, and released under the
MIT license. CHGL is a library for the emerging parallel language Chapel. It
provides the AdjListHyperGraph module that allows storing hypergraphs on
shared and distributed memory. The library is not well documented and does
not support any easy mechanism for the two-section and bipartite analyses.
Nonetheless, it is worth mentioning for its compatibility for parallel and
distributed computing.

– HyperX [7] is a scalable framework for processing hypergraphs and learning
algorithms built on top of Apache Spark. This library supports the same de-
sign model of GraphX, the Apache Spark API for graphs, and graph-parallel
computation written in the Scala language. An interesting feature of this
library is that it provides native support for the hypergraph elaboration. Di-
rectly processing hypergraph data, HyperX obtains significant speedup with
respect using the bipartite or the two-section representation of a hypergraph
and then exploiting the GraphX APIs.

SimpleHypergraphs.jl 5

– Pygraph [13] is a pure Python library for graph manipulation, released un-
der the MIT license. It supports a hypergraph representation by exposing the
class hypergraph, even though it does not provide any specific optimization
or functionality for hypergraphs.

– Multihypergraph [10] is a Python package for graphs, released under the
GPL license. The library emphasizes the mathematical understanding of
graphs rather than the algorithmic efficiency, and it provides support for
hyper-edges, multi-edges, and looped-edges. This library implements only
the graph memory model definition and isomorphism functionalities, without
defining any other functionality and algorithm for graphs and hypergraphs.

– HyperNetX [6] is a Python preliminary library released in 2018 under
the Battelle Memorial Institute license. This library generalizes traditional
graph metrics (such as vertex and edge degrees, diameter, distances) to hy-
pergraphs, and it provides proper documentation and tutorials. HyperNetX
supports the bipartite representation of a hypergraph, along with the possi-
bility to load hypergraphs from their bipartite view. Furthermore, it exports
some visualization functionalities for hypergraphs based on Euler-diagrams.

– Halp [3] is a Python software package providing both a directed and an
undirected hypergraph implementation, as well as several major and classical
algorithms. The library is developed by Murali’s Research Group at Virginia
Tech, and it is released under the GPL license. The library provides several
statistics on hypergraphs and model transformations in graphs, supported
by the NetworkX Python library. Several algorithms for hypergraphs, such
as k-shortest-hyperpaths and random walk, are also implemented.

– HyperGraphLib [5] is a C++ implementation of hypergraphs that ex-
ploits the Boost Library, also defining the library license. This library pro-
vides basic functionalities for hypergraphs and implements some simple met-
rics. Moreover, it provides isomorphism functionalities and path-finding algo-
rithms. However, it does not implement any hypergraph representation into
a graph (such as a bipartite or a 2-section graph) nor software integration
with other graph libraries.

– Iper [8] is a JavaScript library for hypergraphs, released under the MIT
license. The library defines a hypergraph and allows the user to define meta-
information for vertices. However, it does not include any hypergraph trans-
formation and integration with other graph libraries for classical statistics
and algorithms.

– NetworkR [12] is an R package with a set of functions for analyzing social
and economic networks, including hypergraphs. It incorporates analyses such
as degree distribution, and density of the network, as well as microscopic
level analysis such as power, influence, and centrality of individual nodes.
The library does not provide support for meta-information on vertices and
hyperedges and provides only hypergraphs projection into graphs.

– Gspbox [2] is an easy to use Matlab toolbox that performs a wide variety
of operations on a graph. It is based on spectral graph theory, and many
of the implemented features can scale to very large graphs. Gspbox sup-
ports hypergraphs modeling, including weighted hyperedges, and vertices

6 A. Antelmi et al.

with coordinates in the space. The hypergraph manipulation is obtained by
representing the model as a graph. For this reason, although all graph func-
tionalities are available, the library does not provide any specific solutions
or optimization for hypergraphs.

Overall, all the considered libraries are a compromise between efficiency, which
characterizes low-level languages such as C/C++, and the easy-of-use and ex-
pressiveness, distinguishing interpreted and scripting languages such as Python
and R.

3 SimpleHypergraphs.jl

In this Section, we present the SimpleHypergraphs.jl library, which provides
flexible functionalities for the analysis and modeling of hypergraphs. Being im-
plemented in the Julia programming language, and released under the terms
of the Open Source MIT License, it is currently part of the official Julia pack-
age repository. This section is organized as follows. We introduce the adopted
formal notation and definitions, and we then move to describe the library de-
sign and memory model. Finally, we discuss its functionalities about hypergraph
manipulation, analysis, and visualization.

3.1 Definitions and notation

Formally, a hypergraph [30] is an ordered pair H = (V,E) where V is the set
of nodes (often also called vertices) and E is the set of edges. Each edge is a
non-empty subset of vertices; i.e., E ⊆ 2V \ {∅}, where 2V is the power set of V .
We use n = |V | and m = |E| to indicate the size of the vertex set and the edge
set, respectively. A graph can be seen as a hypergraph where each hyperedge is
a two element subset of V . In other words, a graph G = (V,E) is a hypergraph,
if E ⊆

(
V
2

)
⊆ 2V \ {∅}.

3.2 Library design

SimpleHypergraphs.jl provides APIs representing a hypergraph H = (V,E)
as an n × k matrix, where n is the number of vertices and k is the number of
hyperedges. In other words, each row of the matrix is associated with a vertex
and indicates the hyperedges the vertex belongs to. In the APIs, vertices and
hyperedges are uniquely identified by progressive integer ids, corresponding to
rows (1, . . . , n) and columns (1, . . . , k), respectively. Each position (i, j) of the
matrix denotes the weight of the vertex i within the hyperedge j. The library
also provides several constructors for defining meta-information type and enables
to attach meta-data values of arbitrary type to both vertices and hyperedges.
To ensure flexible co-operability, SimpleHypergraphs.jl provides two-fold in-
tegration both with Julia standard matrix and LightGraphs.jl APIs.

SimpleHypergraphs.jl 7

i. Julia’s matrix APIs. We achieved the Julia Array APIs integration by mak-
ing the Hypergraph struct a subclass of AbstractMatrix, and providing a
set of integration methods for manipulating matrices (i.e. querying the ma-
trix size, fetching/updating elements). Internally, a hypergraph is stored as
a sparse array. Hypergraph data are stored in a redundant format, using two
separate hashmap structures for rows and columns to ensure good algorith-
mic performances. This design choice simultaneously provides high-grade
performance across rows and columns. Furthermore, it avoids the circum-
stance where all data need to be rewritten when the adjacency matrix is
updated (typical disadvantage of a compressed sparse row matrix). As a
subclass of AbstractMatrix, the hypergraph adjacency matrix can be ma-
nipulated just like any other matrix in Julia. As a result, from the user’s point
of view, a hypergraph H = (V,E) can be seen as a n× k matrix representa-
tion, where n is the number of vertices and k is the number of hyperedges.
Vertices and hyperedges are uniquely identified by progressive integers, cor-
responding to rows (1, . . . , n) and columns (1, . . . , k), respectively. Moreover,
the library supports generic type metadata for both vertices and hyperedges.

ii. LightGraphs.jl. We obtained the integration with this Julia library to ma-
nipulate graphs by creating hypergraph “view” classes providing a rep-
resentation of a hypergraph as either a bipartite or a two-section graph.
Those representations actually do not copy the data, but provide a view
(TwoSectionView and BipartiteView) that allow to access the hypergraph
data in a read-only mode. As we developed a full set of integration methods
for the LightGraphs.jl library, the user can directly analyze a hypergraph
structure with all functionality provided by LightGraphs.jl.

3.3 Memory model and functionalities

The latest release 0.1.7 of SimpleHypergraphs.jl provides a range of new func-
tionalities and methods to build and explore hypergraphs. The following sections
introduce the hypergraph representation, several basics operations, and trans-
formations, the serialization mechanisms (raw and JSON formats), a set of an-
alytical algorithms (Section 3.4), and two visualization strategies (Section 3.5).

Hypergraph constructors. The Julia hypergraph object is defined as:

Hypergraph{T, V, E, D} <: AbstractMatrix {Union{T, Nothing }}

where T, a subtype of Real, represents the type of the weights stored in the
structure; V and E are the types of the meta-data values stored in the vertices and
edges of the hypergraph, respectively; and D, a subtype of AbstractDict{Int,T},
is the type of the underlying dictionary used for storing the weight values. Note
that when calling the constructor, the parameters {T, V, E, D} can be omitted
(starting from the rightmost). The default value for the dictionary type D is a
standard Julia dictionary Dict{Int, T} (where T is the type of the weights).

8 A. Antelmi et al.

The default value for vertex and edge metadata types, V and E, is Nothing —
i.e., by default, no metadata is stored. A new empty hypergraph can be built
specifying the number of vertices (rows) and hyperedges (columns). Option-
ally, a hypergraph can be either materialized starting from a given matrix or a
LightGraphs.jl graph object.

Querying and manipulating functions. SimpleHypergraphs.jl provides
several accessing and manipulating functions:

– add vertex! adds a vertex to a given hypergraph H. Optionally, the vertex
can be added to existing hyperedges. Additionally, a value can be stored
with the vertex using the vertex meta keyword parameter.

– remove vertex! removes a vertex from a given hypergraph H.
– set vertex meta! sets a new meta-value new value for vertex id in H.
– get vertex meta returns the meta-value stored at vertex id in H.
– get vertices returns the vertices for a given hyperedge heid in H.
– nhv returns the number of vertices in the hypergraph H.

We implemented analogous functionalities for the hyperedges.

Hypergraph transformations. The library provides two hypergraph trans-
formations into the corresponding graph representations.

1. BipartiteView. It is the bipartite representation of a hypergraph H. As
described in Bretto [30], this representation is the incidence graph of the
hypergraph H = (V,E); that is, a bipartite graph IG(H) with vertex set
S = V ∪ E, and where v ∈ V and e ∈ E are adjacent if and only if v ∈ e.
Figure 1a (on the left) illustrates a simple example of bipartite view.

2. TwoSectionView. It is a two-section representation of a hypergraph H. As
described in Bretto [30], this representation of a hypergraph H = (V,E),
denoted with [H]2, is a graph whose vertices are the vertices of H and where
two distinct vertices form an edge if and only if they are in the same hyper-
edge of H. As a result, each hyperedge from H occurs as a complete graph
in G. The weight of an edge corresponds to the number of hyperedges that
contain both the endpoints of the edge. Figure 1b (on the right) details a
trivial example of two-section view.

Both Views are instances of AbstractGraph, the graph object defined by the
LightGraphs.jl library. When the view is materialized, according to the pack-
age specifics, the generated graph does not include any meta information.

Hypergraph serialization. The library currently offers two mechanisms to
load and save a hypergraph from or to a stream. Given a hypergraph H, it may
be stored using either a plain text or JSON formats.

SimpleHypergraphs.jl 9

(a) G - Bipartite view of H. (b) G - Two-section view of H.

Fig. 1: Hypergraph transformations into the graph counterpart.

Plain text format, denoted by the HGF Format storage type. The first line consists
of two integers n and k, representing the number of vertices and the number of
edges of H, respectively. The following k rows (lines in a text file) describe the
actual structure of H: each line represents a hyperedge and contains a list of all
vertex-weight pairs within that hyperedge.

JSON format, denoted by the JSON Format storage type. The internal hyper-
graph structure is represented with a dictionary that is serialized into a plain
JSON object. Each dictionary key represents a hypergraph field, while each dic-
tionary value stores the corresponding hypergraph field value. Additionally, the
matrix view of H is also stored. We used the Julia package JSON3.jl to handle
the interaction between JSON and Julia types.

3.4 Analytical functionalities

Hypergraph modularity. Community detection is one of the most frequent
tasks as it helps to find hidden interaction patterns in relational data. Newman
and Girvan firstly proposed a hierarchical method to detect communities in
complex systems introducing the concept of modularity [54]. The modularity
value is based on the comparison between the actual density of edges inside a
community and the density one would expect to have if the vertices of the graph
were attached at random. Higher modularity values signify denser connections
between the nodes within clusters but more sparse connections between nodes in
different clusters. In SimpleHypergraphs.jl, we implemented a generalization
of the modularity notion, recently proposed for hypergraphs [22]. We further
provided an algorithm to calculate the modularity of a given vertex partition.
This functionality is achieved via the modularity function which takes in input
a hypergraph and its proposed partition given as a Vector{Set{Int}} object.

Connected components explorations. The function get_connected

_components takes a hypergraph H as input and returns a vector of vectors.
Each vector represents a set of vertices that are a connected component in H.
We define two vertices a and b of a hypergraph H to be contained in a connected
component if and only if a and b are connected by some sequences of hyperedges.

10 A. Antelmi et al.

Random walk. Defining a random walk on a hypergraph is more compli-
cated than defining the same notion on a graph, and there are a few natural
ways it can be defined. One approach can be the following. Suppose the walk
starts from some vertex i. Then it can randomly select a hyperedge i belongs
to, and next choose a target vertex within that hyperedge, again at random.
SimpleHypergraphs.jl provides the function random_walk that takes a hyper-
graph and a starting vertex id as input and returns a destination vertex id in
one step of the walk. This design choice guarantees full flexibility in defining
random walks on hypergraphs. The function also accepts two optional keyword
arguments, both functions: heselect and vselect. The first function specifies
the rule by which hyperedge is selected for a given starting vertex. The second
parameter selects the destination vertex from the selected hyperedge. By de-
fault, heselect chooses a hyperedge containing the source vertex uniformly at
random. Similarly, vselect selects a vertex from a given hyperedge uniformly
at random.

3.5 Hypergraph visualization

SimpleHypergraphs.jl currently offers the possibility to draw a hypergraph by
exploiting two kinds of visualization, through the function draw. The available
plotting methods are either based on an interactive JavaScript (JS) or a static
Python-based solution. Figure 2 illustrates the same hypergraph drawn using
the two different strategies. A more detailed description follows.

A JS-based visualization. When dealing with complex objects that need to be
visualized, it is of fundamental importance to have the possibility to easily catch
the main information and, at the same time, to be able to retrieve more de-
tail on demand [68]. For this reason, we decided to integrate a dynamic and
interactive visualization within SimpleHypergraphs.jl. This visualization is a
wrapper around an external JS package that exploits D3.js, a JS library for
manipulating documents based on data, which combines powerful visualization
components and a data-driven approach to DOM manipulation. This architec-
tural stack provides the user with a way to generate a dynamic visualization
embeddable into a web-based environment, such as a Jupyter Notebook. This
method represents each hyperedge he of an hypergraph H as a new fictitious
vertex fv to which each vertex v ∈ he is connected (see Figure 2a). The appear-
ance of vertices and hyperedges, whether displaying vertex weights and vertex
and hyperedge metadata and labels are customizable.

A Python-based visualization. This visualization is a wrapper around the draw-
ing functionalities offered by the Python library HyperNetX [6], built upon the
Python package matplotlib. HyperNetX renders a Euler diagram of the hyper-
graph where vertices are black dots and hyperedges are convex shapes containing
the vertices belonging to the edge set (see Figure 2b). As the authors note, it
is not always possible to render the correct Euler diagram for an arbitrary hy-
pergraph. For this reason, this technique may lead to cases where a hyperedge

SimpleHypergraphs.jl 11

(a) JavaScript visualization. (b) HyperNetX visualization.

Fig. 2: SimpleHypergraphs.jl visualization methods.

incorrectly contains a vertex not belonging to its set. This library allows the user
to manipulate the appearance of the resulting plot by letting the user defining the
desired label, node, and edge options. SimpleHypergraphs.jl fully integrates
the visualization potentiality of HyperNetX.

4 Use cases

In this Section, we discuss two use cases where we exploit hypergraphs to ana-
lyze complex data structures. The first case study deals with customers reviewing
businesses on the social platform Yelp.com, while the second application inves-
tigates the relationships between characters of the Game of Thrones TV Series.

4.1 Exploring and analyzing user reviews: Yelp.com

In this first use case, we present a practical application of SimpleHypergraphs.jl
applied to the analysis of business reviews from the online platform Yelp.com [14].
A hypergraph is an accurate representation of such data, where vertices symbol-
ize Yelp businesses and hyperedges costumers who reviewed multiple businesses.
An attractive property that is worth investigating in this context is the commu-
nity structure [54], i.e., the division of the network into groups of vertices that
are similar among themselves but dissimilar from the rest of the network. The
capability to detect the partitioning of a network into communities can give valu-
able insights into the organization and behavior of the system that the network
models [34,35]. In this particular case, the topology of the so-built hypergraph
suggests clusters of businesses that users commonly review together. As hyper-
graph clustering [74] is an example of an unsupervised learning technique, our

12 A. Antelmi et al.

goal is to learn if such clusters are related to some natural characteristics of
the underlying businesses. Such analysis allows us to understand which factors
(ground-truth) influence the chance that a given user reviews any two businesses.
To that end, we propose a methodology to measure and then to compare the
results of hypergraph clustering against various possible ground-truth variables.
In this context, the main challenge is to develop a measure comparable across
different ground truths. Since the Yelp dataset serves only as an example, the
proposed approach can be used to identify ground-truths in other datasets rep-
resentable as a hypergraph. As a side effect of this use case, we point out that
the hypergraph based approach conveys more information about the ground-
truth properties of a network than a standard graph analysis. In particular, we
compare the results obtained for hypergraphs with the results achieved for the
corresponding two-section graphs and show that hypergraph clusters provide
uniformly more information than their graph counterpart. In more detail, we
analyzed five different sub-hypergraphs, each one containing only reviews with
the same number of stars, from 1 to 5. This approach shed some light on how to
review linkages form; in particular, we studied how the mechanism behind those
linkages differs across different review classes.

To summarize, we were interested in the following two research questions.
i) Does modeling the Yelp dataset with hypergraphs give more qualitative in-
formation than looking at the corresponding two-section graph representation?
ii) Given the three hypergraphs consisting of positive, neutral, and negative re-
views, are the these similar and to what extent? To answer these two questions,
we set up the two experiments explained below.

The Yelp.com dataset. Yelp is an online platform where customers can share
their experiences with local businesses by posting reviews, tips, photos, and
videos. It allows businesses and customers to engage and transact [14]. Every
year, the Yelp Inc. Company releases part of their data as an open dataset to
grant the scientific community to conduct research and analysis on them. Some
interesting articles that use the Yelp dataset for their analysis can be found
in [38,43,47,50]. As a use case, we analyzed the 2019 Yelp Challenge dataset [15],
containing information about businesses, reviews, and users. Table 1 describes all
the accessible dataset entities. A more detailed description can be found on the
official page [16]. Figure 3 (on the left) presents business categories distribution,
where a category is a label describing the typology of the business such as Bars
or Shopping along with the number of reviews associated with each category.
It highlights the category distribution evaluated over all businesses. As clearly
visible from the plot, the most common business typology is Restaurant. For
this reason, we focused our analysis on this business subgroup. Figure 3 (on
the right) shows the category distribution evaluated only within the Restaurant
macro-category. Both Figures show the top-20 most common categories. It is
worth noting that as each Yelp restaurant may offer several types of cuisine
(e.g., Indian, Chinese, Asian fusion), we labeled each business with a single food
category, assigning to them the most frequent tag in the database. Namely, if a

SimpleHypergraphs.jl 13

Data Instances Description

Business 192,609 Business data including location, attributes, and categories.
User 1,637,138 User data including the user’s friend mapping and all the

metadata associated with the user.
Review 6,685,900 Full review text including the user id that wrote the review

and the business id the review is written for.
Picture 200,000 Photo data including caption and classification (one of

“food”, “drink”, “menu”, “inside” or “outside”).
Tip 1,223,094 Tips written by users on businesses. Tips are shorter than

reviews and tend to convey quick suggestions.
Check-in 192,609 Aggregated check-ins over time for each business.

Table 1: Yelp entities contained in the dataset.

restaurant R had two genres A and B, but A was overall more frequent in the
dataset, we labeled R with A.

Modeling Yelp.com using hypergraphs. We modeled the Yelp dataset using
a hypergraph H = (V,E), where V represents Yelp businesses, and E represents
Yelp users. In more detail, each hyperedge representing a user u contains all
businesses u has written at least one review for. Figure 4 shows a simple example
hypergraph, defined by four businesses (V = {b1, b2, b3, b4}) and three users
(E = {u1, u2, u3}). Here, the hyperedge u1 connects the businesses b1, b2, and
b4, as the corresponding user has written at least one review for each of the listed
business.

A
rt
s
&

E
nt

er
ta

in
m

en
t

H
om

e
&

G
ar

de
n

P
iz
za

H
ai
r
Sa

lo
ns

Fa
st

Fo
od

C
off

ee
&

T
ea

Sa
nd

w
ic
he

s

Fa
sh

io
n

A
ct

iv
e
Life

E
ve

nt
P
la
nn

in
g

B
ar

s

N
ig
ht

lif
e

A
ut

om
ot

iv
e

Loc
al

Se
rv

ic
es

H
ea

lt
h

&
M

ed
ic
al

B
ea

ut
y

&
Sp

as

H
om

e
Se

rv
ic
es

Fo
od

Sh
op

pi
ng

R
es

ta
ur

an
ts

0 · 100

2 · 104

4 · 104

6 · 104

|B
u
si
n
es
se
s|

0 · 100

1 · 106

2 · 106

3 · 106

4 · 106

|R
ev
iew

s|

Businesses

Reviews

C
aj

un
-C

re
ol

e

H
aw

ai
ia

n

P
or

tu
gu

es
e

Lat
in

A
m

er
ic
an

G
re

ek

C
ar

ib
be

an

M
id

dl
eE

as
te

rn

Fr
en

ch

K
or

ea
n

V
ie
tn

am
es

e

T
ha

i

C
an

ad
ia

n(
N
ew

)

A
si
an

Fu
si
on

In
di

an

M
ed

it
er

ra
ne

an

A
m

er
ic
an

(N
ew

)

It
al

ia
n

C
hi

ne
se

M
ex

ic
an

A
m

er
ic
an

(T
ra

di
ti
on

al
)

0 · 100

2 · 103

4 · 103

6 · 103

8 · 103

|R
es
ta
u
ra
n
ts
|

0 · 100

2 · 105

4 · 105

6 · 105

8 · 105

|R
ev
iew

s|

Restaurants

Reviews

Fig. 3: Businesses (left) and Restaurants (right) distribution together with the
number of reviews associated with each category.

14 A. Antelmi et al.

Fig. 4: The Yelp hypergraph defined by user reviews.

To accomplish our analysis, we explored only a subset of the Yelp data set,
given the massive amount of available data (around 9 GB). We modeled the Yelp
hypergraph according to the two following strategies.

1. yelp-dataset1. We collected 1 million of randomly chosen reviews, from
which we selected the businesses and the users to build the hypergraph. It is
worth mentioning that such selection defined the total number of businesses
and users involved, i.e., the size of the hypergraph itself. We run our analysis
on the largest connected component of the so-built hypergraph, removing
isolated vertices and small components. More detailed information about
the dimension of the network can be found in the following section.

2. yelp-dataset2. To generate this data set, we focused our attention only on
the businesses belonging to the category “restaurant”. We attached to each
restaurant the label (selected from its categories set) representing the type
of cuisine it offers according to the methodology described above.

Forecasting the number of stars for a new business. This experiment
focuses on the forecasting of the number of stars of a given business v, based
on the information available in the local neighborhood of v. We developed two
different strategies. We based one approach on the information provided by the
hypergraph H defined in the previous section, the other on the information
provided by the corresponding weighted two-section graph. Here, the weight of
an edge (u, v) corresponds to the number of users that reviewed both u and v;
namely, the number of hyperedges containing both u and v.

In the hypergraph-based strategy, for each business u, we first computed the
average number of stars for all hyperedges containing u (where, in each hyperedge
e, the average was computed excluding u). This estimated value corresponded
to the average rating given by the user associated with e. Then, we obtained the
prediction about the number of stars of u as the average over the values computed
in the previous step. In other words, the forecast of the number of stars of a given

SimpleHypergraphs.jl 15

user u is the average over the averages in each hyperedge involving u. Formally,

s′i(u) =
1

|E(u)|
∑

e∈E(u)

 1

|e| − 1

∑
v∈e,v 6=u

s(v)

 ,

where s(v) denotes the number of stars associated to v, E(v) denotes the set
of hyperedges that contains v, and s′i(u) denotes the forecasted value for u for
strategy i.

The graph-based strategy exploits the weighted two-section graph of H. In
this case, the forecast of the number of stars of a user u is the weighted average
over the neighborhood of u. Formally,

s′2(u) =

∑
e=(u,v)∈E

s(v)w(e)∑
e=(u,v)∈E

w(e)
,

where w(e) denotes the weight of edge e.
To compare these two strategies, we computed the average error as follows:

erri =

∑
u∈V

|s(u)− s′i(u)|

|V |
.

We performed this experiment on several instances of the yelp-dataset1, vary-
ing the number of considered reviews. In particular, we selected five subsets of
increasing size equal to 250k, 500k, 750k, and 1 million. For each subset, we com-
puted the corresponding hypergraph. All hypergraphs resulted in having 209,393
nodes, while the number of hyperedges ranged from 175,022 to 432,381.

Figure 5 depicts the results for this experiment. As clearly visible from the
plot, the error value err2 using the weighted two-section graph is always greater
than the error value err1 obtained exploiting the hypergraph representation. We
also run the stars forecasting experiment on the yelp-dataset2, which generated
an hypergraph with 35,466 nodes and 1,133,890 hyperedges. Also in this case,
the error for the two-section graph and the hypergraph was always close to
0.6 and 0.5, respectively. Interestingly, both experiment instances suggest that
the information provided by a hypergraph model is more accurate than the
information provided by the corresponding weighted two-section graph.

How much the rating of a review burden on a business? This second
experiment examines the amount of information conveyed by different kinds of
reviews, according to the number of stars associated with them. We used the
yelp-dataset2; due to performance issues, we restricted the set of businesses
only to the restaurant category, as described in Section 4.1. We ended up with
342,044 1-star reviews, 281,307 2-star reviews, 402,053 3-star reviews, 791,068
4-star reviews, and 1,188,558 5-star reviews. We built five hypergraphs, one for
each set of reviews. Henceforth, we will denote with Hi, for i = 1, 2, . . . , 5, the

16 A. Antelmi et al.

2.5 · 105 5 · 105 7.5 · 105 1 · 106
0

0.2

0.4

0.6

0.8

1

|Reviews|

err

Graph

Hypergraph

Fig. 5: Average error of the stars’ forecast experiment performed on yelp-
dataset1, varying the number of reviews used to build the hypergraph and the
corresponding two-section graph.

hypergraph generated using the set of reviews having i stars and by Gi the cor-
responding two-section graph. We first computed some statistics on these five
hypergraphs and their corresponding two-section graphs. The collected infor-
mation can be found in Table 2. This preliminary analysis highlighted that the
so-built hypergraphs were quite different from their graph counterpart. Interest-
ingly, what stands out in the columns corresponding to the two-section graphs
is that the number of both edges and triangles exhibits a “bell-shaped” trend as
a function of the number of stars.

In this second experiment, we focused our attention on understanding which
factors influence the chance that a given user reviews any two businesses. To this
aim, we tested the ability of these two different models to detect the community
structure of the network. In other words, we intended to find the division of the
vertices set into groups of restaurants that were similar among themselves but
dissimilar from the rest of the network, and getting insights about the nature of
their similarity. To have a first insight about the nature of the so-built network,

Stars Hi (|V |; |E|) Gi (|V |; |E|) Gi Modularity Gi Triangles

1 (29479; 244671) (29479; 240412) 0.6210 1,158,341
2 (28055; 173140) (28055; 484527) 0.7173 6,491,497
3 (30369; 177792) (30369; 2636712) 0.6616 289,584,451
4 (32987; 301578) (32987; 4384044) 0.6857 404,709,664
5 (32558; 590320) (32558; 2187473) 0.6657 104,128,714

Table 2: Some statistics on the yelp-dataset2 dataset.

SimpleHypergraphs.jl 17

Stars Hi (|V |; |E|) City State Alcohol Noise Level Take Out Category

1 (29479; 244671) 0.8833 0.9562 0.8166 0.8104 0.8176 0.8163
2 (28055; 173140) 0.8582 0.9462 0.7744 0.7651 0.7731 0.7702
3 (30369; 177792) 0.8132 0.9226 0.7075 0.6940 0.6966 0.6965
4 (32987; 301578) 0.7812 0.9081 0.6573 0.6385 0.6419 0.6400
5 (32558; 590320) 0.8027 0.9145 0.6963 0.6797 0.6894 0.6841

ALL (35856; 950488) 0.7500 0.8985 0.6162 0.5919 0.6013 0.5967

Table 3: Hypergraphs size for each Hi, i = 1, 2, . . . , 5. The modularity values
have been computed on 6 different manually-evaluated ground-truth partitions,
conditioned on some properties of the Yelp restaurants. Experiment have been
run on yelp-dataset2.

we manually partitioned the five hypergraphs Hi, for i = 1, 2, . . . , 5, according
to several restaurant properties available in the Yelp dataset. In particular, we
considered the following attributes: the location of the restaurant (city, and
state), whether it sells alcohol, its noise level, whether it offers a take away
service, and its food category. Table 3 contains the modularity values for the 6
different partitions evaluated. To calculate the modularity, we used the approach
presented in [44] and implemented in SimpleHypergraphs.jl (see Section 3.4).
As shown in the table, the modularity is strongest when we used geographical
information, as cities or states, to partition the hypergraph. These higher values
mean that i) people doing reviews usually visit restaurants within the same city
and that ii) if restaurants in different cities are reviewed by a single person, they
are usually in the same state. It is worth noting that 1-star reviews have the
strongest modularity values across all partitions. This result suggests that there
is a group of people who have a stronger tendency to submit negative scores on
the base of some ground-truth property of a restaurant.

Based on these outcomes, we then investigated to what extent the partition
obtained from a community detection algorithm was able to mimic the com-
munities output of a ground-truth partitioning. We compared the communities
obtained on both models (hypergraph and two-section graph) against the given
ground-truth partition to catch the best model in capturing that specific feature
of the underlying network. Specifically, we focused on the communities evaluated
on the “type of cuisine” (food category) of each restaurant. The ground-truth
partition was made up of 55 categories, of which the largest (American Tradi-
tional) comprised 7,107 restaurants.

Several community detection algorithms have been proposed in the literature.
A review of the various methods available can be found, for example, in [32,20].
We opted for the label propagation (LP) strategy proposed by Raghavan et
al. [59] to find communities in a graph. It can be summarized as follows. Ini-
tially, each node has a unique label (initialization phase). At each iteration step,
each node’s label is updated by choosing the most frequent label in its neighbors

18 A. Antelmi et al.

(propagation rule); ties are broken with a random choice. The algorithm termi-
nates either if it does not modify any label in two consecutive iterations, or it
hits the predefined number of iterations (termination criteria). We exploited the
LP implementation provided by the Julia LightGraphs library [9]. For hyper-
graphs, we propose to define a new LP strategy which generalizes the algorithm
in [59]. The proposed algorithm shares both the initialization phase as well as
the termination criteria with the standard graph label propagation algorithm.
We modified the propagation rule, splitting it into two phases: hyperedge label-
ing and vertex labeling. During the hyperedge labeling phase, the labels of the
hyperedges are updated according to the most frequent label among the ver-
tices contained in that hyperedge. Similarly, during the vertex labeling phase,
the label of each vertex is updated by choosing the most frequent label among
the hyperedges it belongs to. Both algorithms have been executed setting the
maximum number of iterations to 100.

To evaluate the correlation between two partitions, several measures have
been borrowed from information theory, for instance, the Normalized Mutual
Information (NMI) coefficient, which considers each partition as a probability
distribution. Several variants of the NMI have been introduced (see, for exam-
ple, [71] for a detailed discussion). In this paper, we use the sum variant, which
is defined as follows:

NMI(X,Y) =
I(X,Y)

H(X) +H(Y)
, (1)

where I(X,Y) denotes the Mutual Information (i.e., the shared information be-
tween the two distributions X and Y) and H(X) denotes the Shannon Entropy
(i.e., the information contained in the distribution) of X. The NMI coefficient
holds several interesting properties. One of the most useful is that it is a metric,
and it lies within a fixed range [0, 1]. Specifically, it equals 1 if the partitions
are identical, whereas it has an expected value of 0 if the two partitions are
independent. Results appear in Figure 6. Although the correlation, in general, is
not very high (the best result is 0.23 for H5), the figure provides two interesting
points. First, in all five cases, the quality of partitioning provided by hyper-
graphs is always better than that provided by the corresponding two-section
graphs. Moreover, also in this second experiment, results appear in the form of
an “inverted bell shape” (the best results, in this case, are given by the two ex-
ternal values). In a sense, very good as well as very bad reviews are much better
able to identify restaurants genre.

Performance discussion. We performed our experiments on a Linux Ubuntu
18.04 machine equipped with an Intel i7 processor endowed of 8 cores, 16 GB
of memory, and 256 GB SDD disk. We implemented the experiments using the
1.3.1 Julia language version. In the following, we present the average perfor-
mance, in seconds, obtained executing 10 runs for each experiment. With this
configuration, Julia required about 117.68 seconds to load the Yelp data (about
9GB) in memory.

SimpleHypergraphs.jl 19

1 2 3 4 5
0

0.1

0.2

Stars

NMI

Graphs

Hypergraphs

Fig. 6: NMI values between the “type of cuisine” ground-truth partition and
the 10 partitions obtained running the label propagation algorithm on the five
hypergraphs and on the corresponding 2-section graphs. Experiment have been
run on yelp-dataset2.

The first case study concerned the execution of the forecasting algorithm on
each hypergraph and the corresponding two-section graph. The completion time
for the biggest experiment was about 42 seconds, while the smallest one required
0.92 seconds. In the second use case, the average completion time for all the ex-
periments was around 20 seconds. Specifically, for all subsets of yelp-dataset2
(see Section 4), we computed the network communities - exploiting the LP al-
gorithm - on both the hypergraphs and the corresponding two-section graphs.
Moreover, we compared the goodness of the computed sets with a ground-truth
partition evaluating the NMI coefficient.

4.2 Mining and modeling social relationships: Game of Thrones

Another interesting line of inquiry is grasping the intricacies of a literary work or
a movie to get insights into their narrative structure. Various works focused on
finding common patterns across several plot lines [28], making sense of intricate
character relationships [24], or just having fun trying to predict how the plot
itself will evolve [66]. Usually, the character interaction network is modeled with
a graph, where a vertex represents a storyline character, and an edge points out
an interaction between two characters. Edges may also have different nature; for
instance, they can express that the names (or aliases) of two characters appear
within a certain number of words apart [17,28], that a character A has spoken
right after a character B, or that a character A and character B appear in a scene
together [24]. The output graph is, commonly, an indirect and weighted network.

A network built this way is an example of artificial collaboration networks,
as usually most pairs of characters have cooperated or have been antagonist one
of another [18]. A typical analysis carried on this kind of network is determining
the most important characters, according to several centrality measures. Some
nodes play a massive role in the network, either by having many connections or
by being strategically positioned to help connect distant parts of the network.

20 A. Antelmi et al.

A character may, indeed, be relevant or influential with different facets, and it is
fundamental to interpret these quantities with respect to the underlying domain.
Another question an exploratory analysis of networks of characters aims to an-
swer is to capture which characters naturally belong together, forming coherent
communities within the network. Investigating these behavioral patterns means
looking for coherent sub-plotlines hidden in the network [11].

Considering a character interactions network that is built upon characters’
co-occurrence in movie scenes, it is straightforward to see that this kind of net-
work can be naturally modeled with a hypergraph, where vertices are still as-
sociated with characters and hyperedges are related to scenes. In this case, the
topology itself of the hypergraph allows us to easily find clusters of characters
that commonly appear together within a movie or a TV series episode or season.
To verify if hypergraphs are able to convey more information than a standard
graph analysis approach also in the case of collaboration networks, we have mod-
eled and analyzed the Game of Thrones TV series characters co-occurrence. As
for the Yelp use case (see Section 4.1), we compare the findings obtained by
exploiting hypergraphs with the results achieved using the two-section graphs.

The Game of Thrones TV series dataset. Game of Thrones [1] (GoT) is
an American fantasy drama TV series, created by D. Benioff and D.B. Weiss for
the American television network HBO. It is the screen adaption of the series of
fantasy novels A Song of Ice and Fire, written by George R.R. Martin. The series
premiered on HBO in the United States on April 17, 2011, and concluded on
May 19, 2019, with 73 episodes broadcast over eight seasons. With its 12 million
viewers during season 8 and a plethora of awards—according to Wikipedia 8—
Game of Thrones has attracted record viewership on HBO and has a broad,
active, and international fan base. The intricate world narrated by George R.R.
Martin and scripted by Benioff and Weiss extend well beyond the boundaries of
the traditional TV medium to create a deeply immersive entertainment expe-
rience [21]. This allows both the academic community and industries to study
not only complex dynamics within the GoT storyline [24], but also how viewers
engage with the GoT world on social media [19,58,61], or how the novel itself is
a portrait of real-world dynamics [49,56,51,52,73].

This study is based on the dataset at the GitHub repository Game of Thrones
Datasets and Visualizations9. Specifically, we made use of the data describing
season episodes and containing meta-information about each of them, such as ti-
tle, identification number, season, and description. Information about each scene
within an episode is also reported. For each scene, start, end, location and a list
of characters performing in it are listed. Table 4 reports some basic information
about the number of episodes, scenes, and characters per GoT season. A more
detailed description of the dataset can be found on the GitHub repository.

8 https://en.wikipedia.org/wiki/Game_of_Thrones
9 Game of Thrones Datasets and Visualizations https://github.com/

jeffreylancaster/game-of-thrones by Jeffrey Lancaster

https://en.wikipedia.org/wiki/Game_of_Thrones
https://github.com/jeffreylancaster/game-of-thrones
https://github.com/jeffreylancaster/game-of-thrones

SimpleHypergraphs.jl 21

Season Episodes Scenes Characters

1 10 286 125
2 10 468 137
3 10 470 137
4 10 517 152
5 10 508 175
6 10 577 208
7 7 468 75
8 6 871 66

Table 4: Some GoT dataset numbers.

Modeling Game of Thrones using hypergraphs. We studied GoT char-
acters’ co-occurrences with different levels of granularity. We modeled the GoT
dataset building three different types of hypergraphs, each one reporting whether
the GoT characters have appeared in the same season, in the same episode, or
in the same scene together. In the following, we describe the hypergraphs con-
sidered in our study:

– Seasons. A coarse–grained model is represented by the seasons hypergraph
Hseasons = (V,Eseasons), where V represents GoT characters, and Eseasons

represents, for each GoT season s, the set of characters appearing in s. The
hypergraph Hseasons is shown in Figure 7, using an Euler-based visualization
(see Section 3.5).

– Episodes×Season. An intermediate-grained model is obtained by consid-
ering co-occurrence within Episodes. In this case, we considered 8 differ-
ent hypergraphs, Hs

episodes = (V s, Es
episodes), s ∈ [1, 8], where s indicates a

GoT season, V s represents the GoT characters appearing in season s, and
Es

episodes represents, for each GoT episode e of season s, the set of characters
appearing in e. The 8 hypergraphs Hs

episodes are shown in Figure 8.
– Scenes×Season. A fine-grained model is obtained by considering co-occurrence

within scenes. In this case, we considered 8 different hypergraphs, Hs
scenes =

(V s, Es
scenes), s ∈ [1, 8], where s indicates a GoT season, V s represents the

GoT characters appearing in season s, and Es
scenes represents, for each GoT

scene f of season s, the set of characters appearing in f .

The collaboration structure of Game of Thrones. We performed a com-
munity detection task on the Scenes×Season hypergraphs and their correspond-
ing two-section graphs. Running the community detection algorithm on such
networks allows us to find coherent plotlines and, therefore, groups of characters
frequently appearing in a scene together. In this experiment, our goal is to fig-
ure out whether and to what extent hypergraphs are able to capture characters’
collaboration (and, generally speaking, any type of user-defined collaboration)

22 A. Antelmi et al.

Fig. 7: The GoT season hypergraph Hseasons defined by characters overlapping
through seasons.

with respect to graphs. Specifically, we executed the label propagation algo-
rithms defined in Section 4.1 and measured the quality of the solution obtained
by computing the modularity. Results, described in Table 5, show that the so-
lutions obtained for hypergraphs provide a higher number of communities. This
pattern emerges particularly in the graphs describing the last two seasons, which
are characterized by a smaller number of characters.

To measure the difference between the two approaches, we computed the NMI
between the obtained partitions, shown in Table 6. Considering the NMI values,
the partitions are strongly related, except for the last two seasons (the seasons
with the lower number of characters). It is important to notice that the last two
seasons exhibit the worst results. Nonetheless, we believe that it is well justified
to the nature of their screenplay: fewer characters and high related plotlines.
The equivalent hypergraphs are characterized by a high degree for both nodes
and hyperedges. As a consequence, the corresponding two-section views result in
quasi -complete graphs. In this particular case, the label propagation algorithm
is not able to find out distinct communities.

HS1
scenes HS2

scenes HS3
scenes HS4

scenes HS5
scenes HS6

scenes HS7
scenes HS8

scenes

(|C|,m) (|C|,m) (|C|,m) (|C|,m) (|C|,m) (|C|,m) (|C|,m) (|C|,m)

H (12, .5359) (15, .4511) (15, .7028) (18, .5527) (22, .5794) (19, .5781) (11, .2159) (8, .1536)
G (8, .3399) (9, .6970) (11, .7652) (11, .6218) (15, .7300) (16, .7342) (4, 2163) (1, .0)

Table 5: A comparison between hypergraph and graph capability on discovering
characters’ communities. For each hypergraph (H) and its two-section graph
(G), the table provides the number of communities (|C|) and the corresponding
modularity values (m).

SimpleHypergraphs.jl 23

(a) HS1
episodes (b) HS2

episodes

(c) HS3
episodes (d) HS4

episodes

(e) HS5
episodes (f) HS6

episodes

(g) HS7
episodes (h) HS8

episodes

Fig. 8: GoT characters overlap through Episodes×Season.

24 A. Antelmi et al.

S1 S2 S3 S4 S5 S6 S7 S8

NMI .82085 .83354 .92340 .87596 .88143 .88143 .69506 .0

Table 6: NMI values evaluated between the partitions obtained computing the
communities on the Scenes×Season hypergraphs and their corresponding two-
section graphs.

Discussion on season 8. It is worth discussing the interesting facts revealed
by the results of the 8th season. The label propagation algorithm, in the case of
the two-section graph, reveals only one big community — the whole graph itself.
However, in the case of hypergraphs, it can determine eight different communi-
ties. In the following, we discuss the conflicting results obtained by providing a
possible interpretation for the 8 discovered communities by the label propagation
algorithm run on the hypergraph model.

In more detail, three minor communities of characters, appearing only in few
scenes in the whole season, emerged from the (hyper)network structure. These
communities are made up by: i) the Winterfell boy — appearing only in the
first episode; ii) Dirah, Craya, Marei — seen only in the first episode; and iii)
Eleanor and her daughter — occurring only in the fifth episode. Exploiting a
hypergraph approach, the algorithm correctly identifies background characters
that do not contribute to the main storyline and that are not strictly related to
any main character. Other two communities pinpoint key characters belonging
to the two central alliances: the north versus the south. The south-alliance is
made up of Cercei Lannister, her counselor Qyburn, her guard Gregor Clegane,
and her husband Euron Greyjoy ; while the north-alliance is forged by Jon Snow
and Daenerys Targaryen, with her dragons. In particular, in the north-alliance
community also appear two enemies that have been faced by Jon and Daenerys:
the Night King (and his white walker soldiers), and Harry Strickland, captain of
the sellsword Golden Company. Two more communities can be labeled as north-
allied: they contain a group of characters that consistently have interacted and/or
fought together. Indeed, one group contains Bran Stark and Theon Greyjoy
(who stands guard for him in the battle for Winterfell), Lyanna Mormont and
Wun Wun (they fought against in the battle for Winterfell), Lord Varys, Davos
Seaworth, Grey Worm and Jorah Mormont. The other community includes Arya
and Sansa Stark, Samwell Tarly and his partner Gilly, Brienne of Tarth and
Jamie Lannister, Tyrion, Tormund, Missandei, Melisandre, and Sandor Clagane,
among few others. The algorithm also discovers a community related to the sub-
plotline of Yara Greyjoy and some lords loyal to her: after having being saved by
her brother Theon, she leaves the stage to claim her land. She reappears only in
the last episode of the season, together with the other main characters. In this
group, we can also find two royal background characters - Edmure Tully and
Robin Arryn - that do not contribute to the development of the main plotline
and only appear in the last episode.

SimpleHypergraphs.jl 25

Which are the most important characters? Identifying truly important
and influential characters in a vast narrative like GoT may not be a trivial task,
as it depends on the considered level of granularity. In these cases, the main
character(s) in each plotline is referred with the term fractal protagonist(s), to
indicate that the answer to “who is the protagonist” depends on the specific
plotline [11]. Following the same methodology of previous experiments, in this
section, we focus on evaluating GoT characters according to both the degree and
betweenness centrality metrics, exploiting Seasons×Scenes hypergraphs and the
corresponding two-section graphs.

Degree centrality. Generally speaking, this metric gives information about the
number of interactions of a node. If we consider a hypergraph Hs

scenes, the degree
centrality of a node is the number of scenes in a given season s a character v
appears in. In other words, we are enumerating the number of hyperedges where
the vertex is contained. Formally,

CH(v) = |E(v)|
Analogously, the degree centrality of a character v, on the associated two-

section graph G = [Hs
scenes]2, represents the number of characters he/she played

with during season s. Formally,

CG(v) = deg(v)

Figure 9 shows that the information provided by the hypergraph analysis is
much better to distinguish the centrality of characters. Indeed, each figure depicts
the centrality values of the 10 most important characters of the corresponding
season. Only CH(v) exhibits a clear trend, which is also more coherent among
seasons. For instance, Jon Snow is the higher degree central character in the last
4 seasons, while Tyrion Lannister in the 2, 3, and 4 seasons.

Betweenness centrality. We investigated the importance of the characters also
evaluating the betweenness centrality (BC) metric of hypergraph nodes. BC
measures the centrality of a node by computing the number of times that a
node acts as a bridge between the other two nodes, considering the shortest
paths between them. Along the same line of HyperNetX [7], we define the s-
node-shortest-path between two different nodes u and v is the shortest s-node-
walk between them. A s-node-walk is a sequence of nodes (characters) such that
they share at least s hyperedges. We notice that a 1-node-walk corresponds to
a walk on a graph (or in on the two-section graph), and consequently, a 1-node-
shortest-path is a classical shortest path. Moreover, using the s-node-shortest-
path definition, we are able to compute the BC considering a path made using
more robust connections (or interactions), which we suppose to be more precise
to evaluate the importance of the characters in each season. Formally, the s-
betweenness centrality is defined as

Cs
B =

∑
x6=v 6=y∈V

σs
xy(v)

σs
xy

,

26 A. Antelmi et al.

Fig. 9: GoT characters degree centrality scores per season.

where σs
xy(v) is the number of the s-node-shortest-paths between two vertices x

and y that pass through v, while σs
xy is the total number of s-node-shortest-paths

between x and y. We notice that Cs
B generalizes the definition of betweenness

centrality. Using s = 1, C1
B is the betweenness centrality of the two-section view

of H. The rationale behind this generalized definition is that it allows measuring
the centrality of the nodes according to a robust shortest path definition. We
compared the obtained results varying the value of s from 1 to 3, measuring

SimpleHypergraphs.jl 27

Fig. 10: GoT characters s-betweenness centrality scores per Season 1 and 4.

their correlation to understand whether they provide different information. In
Table 7, we report the correlation scores for the season with minimum (season
1) and maximum (season 4) correlation. Furthermore, Figure 10 depicts the
corresponding s-betweenness centrality values. It is worth mentioning, especially
in season 1, that each character rank varies according to the s-value.

ρ(1, 2) ρ(1, 3) ρ(2, 3)

Season 1 - MIN -0.0078 0.1174 0.8366
Season 4 - MAX 0.8004 0.7962 0.7999

Table 7: Pearson correlation values for s-betweenness centrality using {1, 2, 3}-
path on the seasons with minimum and maximum correlation.

5 Conclusions

In this work, we have presented a new library for analyzing, exploring, and vi-
sualizing of hypergraph structures through an optimized set of hypergraph ma-
nipulations. The library, named SimpleHypergraphs.jl, provides Hypergraph
views built exploiting the popular Julia library LightGraphs.jl for manipu-
lating graphs. Functionalities for the I/O, manipulation, transformation, and
visualization of hypergraphs have been developed and are available on a pub-
lic GitHub repository. The library enables the user defining meta-information
type as well as attaching meta-data values of arbitrary nature to both vertices
and hyperedges. This approach allows programmers to efficiently analyze the
structural properties of the network, combined with the possibility to perform
semantic analysis based on the attached meta-data. To the best of our knowl-
edge, SimpleHypergraphs.jl is the only hypergraph software tool providing
this functionality.

Hypergraphs are a natural generalization of graphs and, at least theoretically,
they provide a much richer structure than their well-known graph counterparts.

28 A. Antelmi et al.

More importantly, they seem to be more suitable than graphs to model many
natural phenomena that involve group-based interactions, such as collaborative
activities. However, it is not still clear if the advantage of preserving a more de-
tailed relationship structure justifies a more complicated data structure and, as a
consequence, more complex underlying algorithms. In our work, we investigated
this aspect of the research on hypergraphs by providing two case studies be-
longing to different domains. In the first case study, we explored the application
of data analysis using hypergraphs for understanding users reviewing activities
on the social networkYelp.com. In the second case study, we proposed the ap-
plication of hypergraph analysis for discovering the community structure of a
network society based on the interactions of characters in the Game of Thrones
TV series. Results suggest that the hypergraph structure seems to improve the
analysis of networks defined by many-to-many relationships, as they convey more
information compared to the alternative view using the graph structure.

Future investigations are necessary to validate the conclusions drawn from
this study. We plan to explore other types of data by widening the application
domain. Furthermore, we are currently working on improving the library func-
tionalities by implementing more algorithms and different accurate and engaging
visualizations mechanisms.

SimpleHypergraphs.jl 29

References

1. Game of Thrones. www.hbo.com/game-of-thrones, 2019. [Online; 2019].

2. gspbox, MatLab. github.com/epfl-lts2/gspbox, 2019. [Online; 2019].

3. halp, Python. github.com/Murali-group/halp, 2019. [Online; 2019].

4. Hypergraph, Chapel. github.com/pnnl/chgl, 2019. [Online; 2019].

5. HyperGraphLib, C++ . github.com/alex-87/HyperGraphLib, 2019. [Online;
2019].

6. HyperNetX, Python. github.com/pnnl/HyperNetX, 2019. [Online; 2019].

7. HyperX, Scala. github.com/jinhuang/hyperx, 2019. [Online; 2019].

8. iper, JavaScript. github.com/fibo/iper, 2019. [Online; 2019].

9. LightGraphs.jl, Julia. github.com/JuliaGraphs/LightGraphs.jl, 2019. [Online;
2019].

10. multihypergraph, Python. github.com/vaibhavkarve/multihypergraph, 2019.
[Online; 2019].

11. Network of Thrones. networkofthrones.wordpress.com, 2019. [Online; 2019].

12. networkR, R. github.com/O1sims/networkR, 2019. [Online; 2019].

13. pygraph, Python. github.com/jciskey/pygraph, 2019. [Online; 2019].

14. yelp. www.reuters.com/finance/stocks/company-profile/YELP.N, 2019. [On-
line; 2019].

15. yelp-dataset. www.yelp.com/dataset/challenge, 2019. [Online; 2019].

16. yelp-dataset-docs. www.yelp.com/dataset/documentation, 2019. [Online; 2019].

17. Agarwal, A., Corvalan, A., Jensen, J., and Rambow, O. Social network
analysis of alice in wonderland. In Proceedings of the NAACL-HLT 2012 Workshop
on Computational Linguistics for Literature (Montréal, Canada, 2012), Association
for Computational Linguistics, pp. 88–96.

18. Alberich, R., Miro-Julia, J., and Rossello, F. Marvel universe looks almost
like a real social network, 2002.

19. Antelmi, A., Breslin, J., and Young, K. Understanding user engagement with
entertainment media: A case study of the twitter behaviour of game of thrones (got)
fans. In 2018 IEEE Games, Entertainment, Media Conference (GEM) (2018),
pp. 1–9.

20. Antelmi, A., Cordasco, G., Spagnuolo, C., and Vicidomini, L. On evaluat-
ing graph partitioning algorithms for distributed agent based models on networks.
In Euro-Par 2015: Parallel Processing Workshops (Cham, 2015), Springer Inter-
national Publishing, pp. 367–378.

21. Askwith, Ivan D. Television 2.0 : reconceptualizing TV as an engagement
medium. dspace.mit.edu/handle/1721.1/41243, 2007. [Online; 2019].

22. B., K., V., P., P., P., P., S., and F., T. Clustering via hypergraph modularity.
PLoS ONE 11, 11 (2019), e0224307.

23. Beel, J., Gipp, B., Langer, S., and et al. Research-paper recommender sys-
tems: a literature survey. Int J Digit Libr, 17 (2016), 305–338.

24. Beveridge, A., and Shan, J. Network of thrones. Math Horizons 23, 4 (2016),
18–22.

25. Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. Julia: A fresh
approach to numerical computing. SIAM review 59, 1 (2017), 65–98.

26. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U.
Complex networks: Structure and dynamics. Physics Reports 424, 4 (2006), 175 –
308.

www.hbo.com/game-of-thrones
github.com/epfl-lts2/gspbox
github.com/Murali-group/halp
github.com/pnnl/chgl
github.com/alex-87/HyperGraphLib
github.com/pnnl/HyperNetX
github.com/jinhuang/hyperx
github.com/fibo/iper
github.com/JuliaGraphs/LightGraphs.jl
github.com/vaibhavkarve/multihypergraph
networkofthrones.wordpress.com
github.com/O1sims/networkR
github.com/jciskey/pygraph
www.reuters.com/finance/stocks/company-profile/YELP.N
www.yelp.com/dataset/challenge
www.yelp.com/dataset/documentation
dspace.mit.edu/handle/1721.1/41243

30 A. Antelmi et al.

27. Bodó, Á., Katona, G. Y., and Simon, P. L. Sis epidemic propagation on
hypergraphs. Bulletin of mathematical biology 78, 4 (2016), 713–735.

28. Bonato, A., D’Angelo, D. R., Elenberg, E. R., Gleich, D. F., and Hou,
Y. Mining and modeling character networks. In Algorithms and Models for the
Web Graph (Cham, 2016), A. Bonato, F. C. Graham, and P. Pra lat, Eds., Springer
International Publishing, pp. 100–114.

29. Bondy, J. A., and Murty, U. S. R. Graph Theory with Applications. Elsevier
Science Publishing Company, Incorporated, 1976.

30. Bretto, A. Hypergraph Theory: An Introduction. Springer Publishing Company,
Incorporated, 2013.

31. Chen, D.-B., Sun, H.-L., Tang, Q., Tian, S.-Z., and Xie, M. Identifying
influential spreaders in complex networks by propagation probability dynamics.
Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 3 (2019), 033120.

32. Danon, L., D́ıaz-guilera, A., and Duch, J. Comparing community structure
identification. Journal of Statistical Mechanics: Theory and Experiment (2005).

33. Edelman, A. Julia: A fresh approach to technical computing and data processing.
Tech. rep., MASSA. INST OF TECH CAMBRIDGE CAMBRIDGE, 2019.

34. EL-MOUSSAOUI, M., AGOUTI, T., TIKNIOUINE, A., and ADNANI,
M. E. A comprehensive literature review on community detection: Approaches
and applications. Procedia Computer Science 151 (2019), 295–302.

35. Fortunato, S. Community detection in graphs. Physics Reports 486, 3-5 (2010),
75–174.

36. Gan, C., Yang, X., Liu, W., Zhu, Q., Jin, J., and He, L. Propagation of com-
puter virus both across the internet and external computers: A complex-network
approach. Communications in Nonlinear Science and Numerical Simulation 19, 8
(2014), 2785–2792.

37. Göbel, M., and Araújo, T. A network structure analysis of economic crises. In
Complex Net. and Their App. VIII (2020), pp. 547–560.

38. Gulati, A., and Eirinaki, M. Influence propagation for social graph-based rec-
ommendations. In 2018 IEEE International Conference on Big Data (Big Data)
(2018), pp. 2180–2189.

39. Han, Y., Zhou, B., Pei, J., and Jia, Y. Understanding importance of col-
laborations in co-authorship networks: A supportiveness analysis approach. In
Proceedings of the 2009 SIAM International Conference on Data Mining (2009),
SIAM, pp. 1112–1123.

40. Hasenjager, M. J., Hoppitt, W., and Leadbeater, E. Network-based diffu-
sion analysis reveals context-specific dominance of dance communication in forag-
ing honeybees. Nature Communications 11, 1 (2020).

41. Hossain, M., Khan, A., and Uddin, S. Understanding the progression of con-
gestive heart failure of type 2 diabetes patient using disease network and hospital
claim data. In Complex Net. and Their App. VIII (2020).

42. Interdonato, R., Atzmueller, M., Gaito, S., Kanawati, R., Largeron, C.,
and Sala, A. Feature-rich networks: going beyond complex network topologies.
Applied Network Science 4, 1 (2019).

43. Ji, Z., Pi, H., Wei, W., Xiong, B., Woźniak, M., and Damasevicius, R.
Recommendation based on review texts and social communities: A hybrid model.
IEEE Access 7 (2019), 40416–40427.

44. Kamiński, B., Poulin, V., Pra lat, P., Szufel, P., and Théberge, F. Clus-
tering via hypergraph modularity. PloS one 14, 11 (2019).

45. Klamt, S., Haus, U.-U., and Theis, F. Hypergraphs and cellular networks.
PLoS computational biology 5, 5 (2009), e1000385.

SimpleHypergraphs.jl 31

46. Li, D., Xu, Z., Li, S., and Sun, X. Link prediction in social networks based on
hypergraph. In Proceedings of the 22nd International Conference on World Wide
Web (2013), ACM, pp. 41–42.

47. Li, R., Jiang, J.-Y., Ju, C. J.-T., and Wang, W. Corals: Who are my potential
new customers? tapping into the wisdom of customers’ decisions. In Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining
(2019), WSDM ’19, pp. 69–77.

48. Liu, D., Blenn, N., and Mieghem, P. V. Characterising and modelling social
networks with overlapping communities. Int. J. Web Based Communities 9, 3
(2013), 371–391.

49. Lovric, B., and Hernández, M. The house of black and white: Identities of color
and power relations in the game of thrones. Revista Nós 4, 2 (2019), 161–182.

50. Lu, X., Qu, J., Jiang, Y., and Zhao, Y. Should i invest it?: Predicting fu-
ture success of yelp restaurants. In Proceedings of the Practice and Experience on
Advanced Research Computing (2018), PEARC ’18, pp. 64:1–64:6.

51. Milkoreit, M. Pop-cultural mobilization: Deploying game of thrones to shift us
climate change politics. International Journal of Politics, Culture, and Society 32,
1 (2019), 61–82.

52. Muno, W. “Winter Is Coming?” Game of Thrones and Realist Thinking. Springer
International Publishing, Cham, 2019, pp. 135–149.

53. Musto, C., Basile, P., Lops, P., de Gemmis, M., and Semeraro, G. Introduc-
ing linked open data in graph-based recommender systems. Information Processing
& Management 53, 2 (2017), 405 – 435.

54. Newman, M. E., and Girvan, M. Finding and evaluating community structure
in networks. Physical review E 69, 2 (2004), 026113.

55. Nguyen, V. X., Xiao, G., Xu, X.-J., Wu, Q., and Xia, C.-Y. Dynamics of
opinion formation under majority rules on complex social networks. Scientific
Reports 10, 1 (2020).

56. Olesker, R. Chaos is a ladder: A study of identity, norms, and power transition
in the game of thrones universe. The British Journal of Politics and International
Relations 0, 0 (2019), 1369148119885065.

57. Peng, Y., Shi, J., Fantinato, M., and Chen, J. A study on the author collabo-
ration network in big data. Information Systems Frontiers 19, 6 (2017), 1329–1342.

58. Pérez, H. J., and Reisenzein, R. On jon snow’s death: Plot twist and global
fandom in game of thrones. Culture & Psychology 0, 0 (2019), 1354067X19845062.

59. Raghavan, U. N., Albert, R., and Kumara, S. Near linear time algorithm to
detect community structures in large-scale networks. Physical review. E, Statistical,
nonlinear, and soft matter physics 76 (2007).

60. Regier, J., Fischer, K., Pamnany, K., Noack, A., Revels, J., Lam, M.,
Howard, S., Giordano, R., Schlegel, D., McAuliffe, J., et al. Cataloging
the visible universe through bayesian inference in julia at petascale. Journal of
Parallel and Distributed Computing (2019).

61. Rhodes, R. E., and Zehr, E. P. Fight, flight or finished: forced fitness behaviours
in game of thrones. British Journal of Sports Medicine 53, 9 (2019), 576–580.

62. Romero, M., Finke, J., Quimbaya, M., and Rocha, C. In-silico gene annotation
prediction using the co-expression network structure. In Complex Net. and Their
App. VIII (2020).

63. Scharnhorst, A. Complex networks and the web: Insights from nonlinear physics.
Journal of Computer-Mediated Communication 8, 4 (2006), 0–0.

32 A. Antelmi et al.

64. Silva, J., and Willett, R. Hypergraph-based anomaly detection of high-
dimensional co-occurrences. IEEE transactions on pattern analysis and machine
intelligence 31, 3 (2008), 563–569.

65. Silveira, T., Z.-M. L. X., and et al. How good your recommender system
is? a survey on evaluations in recommendation. International Journal of Machine
Learning and Cybernetics 10, 5 (2019), 813–831.

66. Stavanja, J., and Klemen, M. Predicting kills in game of thrones using network
properties, 2019.

67. Strogatz, S. H. Exploring complex networks. Nature 410 (2001).
68. Tufte, E. The Visual Display of Quantitative Information. Graphics Pr, 1983.
69. Vargas, D. L., Bridgeman, A. M., Schmidt, D. R., Kohl, P. B., Wilcox,

B. R., and Carr, L. D. Correlation between student collaboration network
centrality and academic performance. Physical Review Physics Education Research
14, 2 (2018).

70. Verba, M. A. “learning hubs” on the global innovation network. In Complex Net.
and Their App. VIII (2020), pp. 620–632.

71. Vinh, N. X., Epps, J., and Bailey, J. Information theoretic measures for clus-
terings comparison: Variants, properties, normalization and correction for chance.
J. Mach. Learn. Res. 11 (2010), 2837–2854.

72. Yuan, X., Sun, M., Chen, Z., Gao, J., and Li, P. Semantic clustering-based
deep hypergraph model for online reviews semantic classification in cyber-physical-
social systems. IEEE Access 6 (2018), 17942–17951.

73. Zare, Z. Representation of gender roles in child and young characters in game of
thrones series. IAU International Journal of Social Sciences 9, 2 (2019), 83–91.

74. Zhou, D., Huang, J., and Schölkopf, B. Learning with hypergraphs: Cluster-
ing, classification, and embedding. In Advances in neural information processing
systems (2007), pp. 1601–1608.

	 Analyzing, Exploring, and Visualizing Complex Networks via Hypergraphs using SimpleHypergraphs.jl

