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Douglas West¶ Xuding Zhu‖

January 29, 2018

Abstract

A twisted hypercube of dimension k is created from two twisted hypercubes of dimension
k − 1 by adding a matching joining their vertex sets, with the twisted hypercube of dimension
0 consisting of one vertex and no edges. We generate random twisted hypercube by generating
the matchings randomly at each step. We show that, asymptotically almost surely, joining any
two vertices in a random twisted hypercube of dimension k there are k internally disjoint paths

of length at most k
lg k +O

(
k

lg2 k

)
. Since the graph is k-regular with 2k vertices, the number of

paths is optimal and the length is asymptotically optimal.

1 Introduction

The hypercube Qk is a fundamental and thoroughly studied graph and a useful interconnection
network. It has vertex set {0, 1}k, with vertices adjacent when they differ in exactly one coordinate.
The graph can also be formed inductively by letting Q0 be a single vertex and creating Qk from
two copies of Qk−1 by adding a matching joining corresponding vertices in the two copies.

Among the most appealing features of the hypercube are its good expansion properties and
small diameter. A u, v-path is a path with endpoints u and v. The distance between u and v,
denoted d(u, v), is the minimum length (number of edges) of a u, v-path. The diameter of G,
denoted d(G), is maxu,v∈V (G) d(u, v).

The diameter of the hypercube Qk is k, although the number of vertices is 2k. Furthermore,
this measure of maximum distance is quite robust. Saad and Schultz [14] proved that joining any
two vertices in Qk there are at least k − 1 internally disjoint paths of length at most k.

Nevertheless, one can seek even stronger results for appropriately modified graphs. For any
k-regular graph with 2k vertices, the diameter is bounded from below using a counting argument:
there are at most k(k − 1)d−1 vertices at distance d from a given vertex. Hence the diameter is at
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least k
lg k , and the hypercube exceeds this by a factor of lg k, where lg k = log2 k. The expansion

properties of Qk are limited by the prevalence of small cycles, especially 4-cycles, which reduce the
number of vertices reachable within a given distance.

To overcome this difficulty, various researchers proposed more flexible constructions. The terms
“twisted hypercube” or “crossed hypercube” appear in dozens of papers, often studying restricted
versions of the matchings allowed in the general recursive model we study. Often the aim was to
reduce the diameter while maintaining k-regularity and vertex set {0, 1}k, although connectivity
and other properties of paths and cycles have also been studied.

Definition 1. For k ≥ 1, a twisted hypercube of dimension k is obtained from two twisted hyper-
cubes of dimension k − 1 by adding a matching joining the vertex sets of the two smaller graphs.
The unique twisted hypercube of dimension 0 consists of one vertex and no edges.

A k-dimensional twisted hypercube is k-regular with 2k vertices, so its diameter is at least k
lg k .

Esfahanian, Ni, and Sagan [4] twisted a single 4-cycle, thereby reducing the diameter to k − 1.
Using cartesian products of 3-dimensional twisted hypercubes, Chedid and Chedid [2] noted that
diameter 2k/3 can be achieved. A model proposed by Efe [3], an explicit inductive restricted
version of the model we study, reduced the diameter to d(k+ 1)/2e. To our knowledge, the earliest
suggestion of the general recursive twisting in Definition 1 was in an unpublished private comment
by Peter Slater in 1997. In response to that comment, Hartman [6] found an explicit inductive
construction of a k-dimensional twisted hypercube with diameter at most c k

lg k , were c can be any
number greater than 8. Recently, Zhu [20] presented a simple inductive construction of twisted
hypercubes: to obtain the k-dimensional twisted hypercube Hk, take two copies 0Hk−1 and 1Hk−1
of Hk−1, let κ = dlg(k − 1) − 2 lg2(k − 1)e, add a matching edge connecting 0a1a2 . . . ak−1 and
1b1b2 . . . bk−1 if for 1 ≤ i < κ, bi = ai + ak−κ+i (mod 2) and for κ ≤ i < k, bi = ai. It was proved
in [20] that Hk has diameter asymptotic to k

lg k .
In addition to decreasing the diameter, one can ask for robustness. Fault-tolerance for diameter

is captured by the notion of “wide diameter”. A graph is k-connected if the deletion of fewer than
k vertices cannot result in a disconnected graph or a graph with only one vertex. By Menger’s
Theorem [12], in a k-connected network there exist k internally disjoint paths joining any two
vertices, where paths with the same endpoints are internally disjoint if they share no other vertices.
Therefore, when G is `-connected, we may define the `-wide-distance between u and v, denoted
d`(u, v), to be the least integer d such that G contains ` internally vertex-disjoint u, v-paths of
length at most d. The `-wide-diameter of G, denoted d`(G), is maxu,v∈V (G) d`(u, v). Note that

d(G) = d1(G) ≤ d2(G) ≤ . . . ≤ d`(G).

The wide diameter was introduced independently by Hsu and Lyuu [7] and by Flandrin and
Li [5]. For general graphs, Hsu and  Luczak [8] showed that every k-regular k-connected graph
on n vertices has k-wide-diameter at most n/2. Wide diameter was studied for various Cartesian
product graphs and hypergraph variations in [1, 11, 15, 16, 18, 19].

When the `-wide-diameter of a graph equals its diameter, the graph can be said to be (`− 1)-
fault-tolerant for diameter. The result of Saad and Schultz [14] mentioned earlier shows that the
hypercube Qk is (k− 2)-fault-tolerant for diameter. Their full result on the wide-diameter of Qk is

d`(Qk) =

{
k if 1 ≤ ` ≤ k − 1,

k + 1 if ` = k.

Qi and Zhu [13] showed that for the k-dimensional twisted hypercubes constructed in [20], for
` ≤ lg k, its `-wide diameter is asymptotically k

lg k . Our objective in this paper is to extend this
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statement to all ` ≤ k. In particular, we show that both the reduction of diameter asymptotically
to k

lg k and the stronger property of having `-wide-diameter asymptotic to diameter for ` ≤ k are
achieved by asymptotically almost all twisted hypercubes when generated by choosing random
matchings.

Definition 2. A random k-dimensional twisted hypercube, denoted Q̂k, is formed as follows. Let
Q̂0 consist of a single vertex and no edges. For k ≥ 1, form Q̂k from two disjoint independently
generated random (k − 1)-dimensional twisted hypercubes Q̂k−1 and Q̂′k−1 by adding a random

matching joining their vertex sets. In the process of forming Q̂k, at step i there are 2k−i inde-
pendently generated random matchings used to form connected subgraphs with 2i vertices; we call
these matchings of type i.

Let us stress again that Q̂k−1 and Q̂′k−1 are generated independently and need not be isomorphic;

in fact, they are isomorphic with only a small probability when k is large. The set of edges of Q̂k
contains for 1 ≤ i ≤ k a union of 2k−i (independent) random matchings of type i. We still treat
V (Q̂k) as {0, 1}k. Thus for a1 · · · ak−i ∈ {0, 1}k−i, there is a matching of type i that matches the
set a1a2 · · · ak−i0× {0, 1}i−1 to the set a1a2 · · · ak−i1× {0, 1}i−1.

As is usual when discussing randomized constructions, our results are asymptotic. That is, we
always consider k → ∞, so we may always assume that k is large enough to guarantee the truth
of statements that depend on k being large enough. The notation o(f(k)) indicates a function of k
whose ratio to f(k) tends to 0. The notation O(f(k)) indicates a function of k whose magnitude is
bounded by a multiple of f(k) when k is sufficiently large. We also write f(k) ∼ g(k) if f(k)/g(k)→
1 as k →∞, which is equivalent to f(k) = (1 + o(1))g(k).

We say that a property or event Ak holds asymptotically almost surely (or a.a.s.) if the prob-
ability of Ak tends to 1 as k goes to infinity. We write Q̂k to indicate a graph generated by the
model specified in Definition 2. Finally, we denote the logarithm of x with base 2 by lg x. Our
main result is the following.

Theorem 3. Asymptotically almost surely, dk(Q̂k) = k
lg k +O

(
k

lg2 k

)
∼ k

lg k .

We have noted that the diameter is always at least k
lg k for a k-regular graph with 2k vertices.

Since d1(G) ≤ · · · ≤ dk(G), the result implies that a.a.s. for 1 ≤ ` ≤ k we have d`(Q̂k) ∼ k
lg k , which

is (asymptotically) sharp.
We also remark that the a.a.s. claim in Theorem 3 also holds with probability 1 − o(e−αk),

where α is any positive constant. This can be easily deduced from Remark 8 in Section 3 and
some straightforward modifications of the argument. However, we do not attempt to optimize this
probability bound.

2 The Pairing Model

Twisted hypercubes are regular graphs. Analysis of random twisted hypercubes is greatly aided
by modifying a model that has proved to be highly successful in analyzing random regular graphs.
This is the so-called pairing model (also known as the configuration model).

We view each vertex of Q̂k as a set of k points. The points in a vertex are assigned distinct
labels (types) from 1, . . . , k, corresponding to the k matchings that form Q̂k. In a matching of
type i, we are restricted for each a ∈ {0, 1}k−i to match the points of type i in the vertices of
a1a · · · ak−i0 × {0, 1}i−1 with the points of type i in the vertices of a1 · · · ak−i1 × {0, 1}i−1 (which
we call the permissible points), and we do so at random. This can be done in many different ways,
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some of which turn out to be very convenient. In particular, the edges can be chosen sequentially.
As matchings are independent, one can generate part of one matching and move to generating part
of another one, if needed. The graph Q̂k is then obtained by merging the k points in each vertex;
each point contributes one incident edge.

In the usual pairing model, all points in all vertices are available as neighbors, and hence loops
and multiple edges may arise. In the restricted version we have specified here, the resulting graph
is always simple. Although odd cycles may occur as soon as dimension 3 is reached, always Q̂k has
girth at least 4.

The most important advantage of the pairing model is the ability to view the edges as generated
sequentially. A matching between sets S1 and S2 of points can be selected uniformly at random
in many ways. In particular, at any stage the first point in the next random pair chosen can be
selected using any rule whatsoever, as long as the second point in that pair is chosen uniformly
at random from the remaining unmatched points in the opposite set. For example, one can insist
that the next point chosen is the next one remaining in any pre-specified ordering of the points in
S1 ∪ S2. Alternatively, it can be restricted to come from a vertex containing one of the points in
the previous pair chosen (if any such points remain available).

We use this idea several times. For example, consider the process of generating Q̂4. We start
with 24 vertices, where each vertex consists of four points. No edge is generated yet and our
goal is to explore the graph around an arbitrarily chosen vertex v containing points a, b, c, d (see
Figure 1). Point a must be matched to e in the matching of type 1. Since points must be matched
to permissible points of the same type, point b is matched randomly to one of the two f points, c is
matched to one of the four g points, and d to one of the eight h points. The neighborhood of v has
been explored. After that, we may want to continue exploring the graph from one of the neighbors
of v or start from a new vertex, depending on the application. For more details about the model,
see the survey by Wormald [17] on random regular graphs, for example.

h h h h

h h h h

f f
g g

g g
ea b

c d
v

Figure 1: Exploring neighborhoods using the pairing model

We will use a well-known bound on tail probabilities.

Theorem 4 (Chernoff Bound (see [9], Theorem 2.1)). Let X be distributed as a binomial random
variable with n trials and success probability p, so E[X] = µ = pn. If 0 < δ < 1, then

P[X < (1− δ)µ] ≤ exp

(
−δ

2µ

2

)
. (1)
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If δ > 0, then

P[X > (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
. (2)

3 Further Tools

The main task in this section is to show that a.a.s. Q̂k−1 has good expansion properties. In
particular, we want to show that a.a.s. from every vertex of Qk−1 we can reach many vertices in
a relatively short distance. Specifically, we want to reach k2k/2 vertices within distance k

2 lg k +

O
(

k
lg2 k

)
. This is asymptotically best possible within Q̂k−1, since Qk−1 is (k − 1)-regular, and

hence the number of vertices within distance d of a given vertex is at most 1+(k−1)
∑d−1

j=0(k−2)j .

The sum is (1 + o(1))kd. Thus to reach k2k/2 vertices we need d > k
2 lg k .

Definition 5. For v ∈ V (Q̂k−1), say that a set V ′ ⊆ V (Q̂k−1) is v-proper if v ∈ V ′, each vertex

of V ′ has distance at most k
2 lg k + O

(
k

lg2 k

)
from v in the subgraph of Q̂k−1 induced by V ′, and

|V ′| ≥ 2k/2k.

Lemma 6. Given h ≤ 2k, let v1, . . . , vh be distinct vertices in Q̂k−1. With probability 1− o(2−2k),
there exist h pairwise disjoint vertex sets V1, . . . , Vh such that Vj is vj-proper, for 1 ≤ j ≤ h.

Proof. Fixing k, let r0 be the largest integer r such that kr ≤ 20.1k, and let r1 be the smallest
integer r such that (k/4)r/4 ≥ 2k/2k. Clearly,

r0 =
0.1k

lg k
+O(1) and r1 =

k

2 lg k
+O

(
k

lg2 k

)
∼ k

2 lg k
.

For technical reasons, we consider a subgraph of Q̂k−1, denoted by Qk−1, that consists of the
matchings of type more than 0.51k. In order to analyze this subgraph, we modify the pairing
model so that instead of k − 1 points associated with each vertex there are q points, where q =
k−1−b0.51kc. Note that 0.49k−1 ≤ q ≤ 0.49k. Since Qk−1 ⊆ Q̂k−1, the claim follows immediately
from the same claim for Qk−1. Therefore, we restrict our attention to Qk−1.

Let U = {v1, . . . , vh}, and consider a breadth-first search (BFS) in Qk−1 starting from the set
U . The search builds a forest with components T1, . . . , Th such that vj lies in Tj for all j. Since
we are using the pairing model to generate Qk−1, we describe the process in terms of points rather
than vertices. (See Section 2 for details on the pairing model used.) In each step of the process, we
partition the set of points into three sets: points already matched (saturated), unmatched points
associated with vertices containing some point reached by the BFS (discovered), and the remaining
points (undiscovered).

Initially, all the points associated with vertices in U are labeled discovered and added to a queue
L; the remaining points are undiscovered. At each step, the next discovered point p is removed
from L and matched to a point p′ of the same type as p that is taken uniformly at random from
the set of currently unsaturated points among those permitted to be matched to p. These points
may be discovered or undiscovered; recall that the ith point associated with each vertex is used
only in a matching of type i. If p′ is undiscovered (we reach a new vertex), then the remaining
points associated with the vertex containing p′ change from undiscovered to discovered and are
added to the end of L. Otherwise p′ was discovered earlier, and all points associated with the
vertex containing p′ are already discovered or saturated. In this case we call the edge pp′ a bad
edge. Finally, both p and p′ are labeled as saturated.
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For 0 ≤ i ≤ r1, let F (i) be the forest obtained from the BFS once the balls of radius i around
U are exposed; this is the graph consisting of all edges reaching vertices at distance at most i in
Qk−1 from some vertex of U , with all bad edges removed. For 1 ≤ j ≤ h and 0 ≤ i ≤ r1, let Vj(i)
be the set of vertices at distance i from vj in F (i), and let Sj(i) be the set of points associated
with vertices in Vj(i) that are labeled discovered when all vertices in Vj(i) are reached by the BFS.
In particular, Vj(0) = {vj} and |Sj(0)| = q. Since bad edges are removed during the construction
of F (i), the vertices of U must lie in distinct components. Therefore, the sets V1(i), . . . , Vh(i) are
pairwise disjoint, and the same holds for S1(i), . . . , Sh(i). Let Vj =

⋃r1
i=0 Vj(i). In order to prove

the claim, we only need to show that with probability 1 − o(2−2k) each Vj has size at least 2k/2k,
since the other specified requirements on Vj hold by construction.

We analyse F (i) in two phases. During the first, we obtain the desired expansion up to level
r0. We compute an upper bound on the number m of edges encountered during this phase:

m ≤ hq
r0−1∑
i=0

(q − 1)i ≤ 2kqr0 ≤ 2k(0.49k)r0 ≤ 2k20.1k ≤ 20.11k.

Note that q
∑r0−1

r=0 (q−1)r is the number of edges in a rooted q-ary tree of depth r0, which corresponds
to the optimal situation with no bad edge present. For 0 ≤ ` ≤ m, we wish to bound the probability
p` that the next edge after exposing ` edges is bad. Recall that there are initially hq discovered
points, and each exposed edge discovers at most q − 1 new points. Moreover, since we only use
matchings of type more than 0.51k, each matching has at least 20.51k−1 points. Therefore,

p` ≤
hq + `(q − 1)

20.51k−1 − `
≤ (h+ `) 0.49k

20.51k−1 − `
≤ (h+ `)k

20.51k
,

since ` ≤ 20.11k = o(20.51k−1). Since the bound on p` increases with `, we can apply it for each
step among the first m edges. Therefore, to bound the probability p of having at least c bad edges
among the first m edges, we can use the Union Bound over the possible subsets of size c to compute

p ≤
(
m

c

)(
(h+m)k

20.51k

)c
≤

(
e(h+m)mk

c20.51k

)c
≤
(

2ek

c20.29k

)c
,

since m ≤ 20.11k. We choose c = 7 so that 0.29c > 2, and then the probability of having at least c
bad edges during this phase is o(2−2k). The worst scenario for expansion from Sj(i) to Sj(i+ 1) is
when c bad edges are within Sj(i); the remaining points generate q−1 points that fall into Sj(i+1).
Thus, for 1 ≤ j ≤ h,

|Sj(0)| = q ≥ 0.49k − 1 ≥ k/4 (3)

|Sj(1)| ≥ (|Sj(0)| − 2c) · (q − 1) ≥ (|Sj(0)| − 2c) · (0.49k − 2) ≥ (k/4)2

. . . ≥ . . .

|Sj(r0)| ≥ (|Sj(r0 − 1)| − 2c) · (q − 1) ≥ (|Sj(r0 − 1)| − 2c) · (0.49k − 2) ≥ (k/4)r0+1.

During the second phase, we control the expansion continuing from level r0 up to level r1. It
follows from the definition of r0 that kr0+1 ≥ 20.1k. Therefore,

(k/4)r0+1 ≥ 20.1k−O(k/ lg k) ≥ 20.05k.

For 1 ≤ j ≤ h and r0 ≤ i ≤ r1− 1, conditioned on the event |Sj(i)| ≥ (k/4)i+1 ≥ 20.05k, we want to
have |Sj(i+1)| ≥ |Sj(i)|(k/4) with probability 1−o(1/(22kk2)). This will imply |Sj(r1)| ≥ (k/4)r1+1,
and thus

|Vj(r1)| ≥ |Sj(r1)|/k ≥ (k/4)r1/4 ≥ 2k/2k
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with probability at least 1 − o(1/(22kk)). Since Vj =
⋃r1
i=0 Vj(i) ⊇ Vj(r1), the result then follows

from applying the Union Bound over all h choices of j.
Fix i and j, and assume |Sj(i)| ≥ 20.05k. Let X be the random variable counting the bad edges

created when the edges of the matching for points in Sj(i) are exposed. The number of points
discovered when BFS is performed up to level i + 1 (from all h initial vertices) is at most hki+1,
which is bounded by 2ki+2. The probability of generating a bad edge changes at each step of the
BFS, but for all edges added when moving from level i to level i+ 1 this probability is bounded by
p′i, where

p′i ≤
2ki+2

20.51k−1 − 2ki+2
= O

(
ki+2

20.51k

)
.

As a result, X is stochastically bounded above by Bin(|Sj(i)|, p′i). Thus

E[X] ≤ |Sj(i)| · p′i = O

(
|Sj(i)| ·

ki+2

20.51k

)
= o
(
|Sj(i)|

)
.

It therefore follows from the Chernoff Bound that

P
(
X ≥ |Sj(i)|/100

)
≤ exp

(
− Ω(|Sj(i)|)

)
= o(1/(22kk2)).

Therefore, with the desired probability

|Sj(i+ 1)| ≥ (|Sj(i)| − 2X)(q − 1) ≥ |Sj(i)|(49/50)(0.49k − 2) ≥ |Sj(i)|(k/4). (4)

This completes the proof of the lemma.

In order to prove our main result, we slightly strengthen the previous lemma by allowing a
constant number of vertices to be removed from the graph. The proof can be easily adapted from
the proof of Lemma 6, so we will only sketch the main differences. Before we state the corollary, let
us say a few words about the conditional probability space we work with. Given a set of vertices
W , we reveal the neighbors of W by exposing the appropriate matchings. Then we fix any possible
outcome of that event (even if it is highly unlikely one), restrict the probability space to that
situation, and continue the process for a given U ⊆ V (Q̂k−1)−W .

Corollary 7. Let W be a set of m vertices in Q̂k−1, where m is fixed and does not depend on k.
Expose all edges with endpoints in W , and condition the probability space on these edges. Let U be
a set of distinct vertices {v1, . . . , vh} in Q̂k−1−W , where 1 ≤ h ≤ 2k. With probability 1−o(2−2k),
there exist pairwise disjoint sets V1, . . . , Vh in V (Q̂k−1)−W such that Vj is vj-proper, for 1 ≤ j ≤ h.

Proof (sketch). First expose the neighbors of the vertices in W with respect to Qk−1, saturating the
corresponding points (for each edge we saturate two points, one for each endvertex). Next run the
same BFS process as analyzed in the proof of Lemma 6. The only difference is that we may have
some additional saturated points along the way (possibly in U). However, each vertex of Qk−1−W
has at most m saturated points, one for each vertex in W . Therefore, the same analysis is valid,
replacing the factor q − 1 in (3) and (4) with q − 1−m, which is asymptotic to 0.49k (recall that
m is fixed and q = k − 1− b0.51kc).

Remark 8. Note that the statements of Lemma 6 and Corollary 7 are still valid if we replace the
probability bound 1 − o(2−2k) by 1 − o(e−αk), where α is any positive constant. To show this, the
only modification required in the argument of Lemma 6 is to pick c to be large enough rather than
setting c = 7.
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We will also need the following property of each possible Q̂k.

Lemma 9. If k ≥ 3, then Q̂k has no two vertices with identical neighborhoods.

Proof. Let A and B denote the two instances of Q̂k−1 joined by the last matching (the one of type
k) to create Q̂k. We may let A be the graph induced by all vertices whose last coordinate is 0,
while B is induced by those with last coordinate 1. We call A and B the sides of Q̂k. Note that A
and B are any graphs that may arise during the random process.

By construction, every vertex has exactly one neighbor in the opposite side and k−1 neighbors
in its own side. If distinct vertices u and v lie in opposite sides, say u ∈ A and v ∈ B, then u has
more neighbors than v in A, so u and v cannot have the same neighborhoods. If u and v lie in the
same side, say A, then they have distinct neighbors in B via the last matching.

4 Proof of the Main Result

Now, we are ready to prove our main result. We repeat the statement for convenience.

Theorem 3. A.a.s. dk(Q̂k) = k
lg k +O

(
k

lg2 k

)
∼ k

lg k .

Proof. Let A and B be the sides of Q̂k, as defined in the proof of Lemma 9. We must show that

any two vertices u and v are joined by k internally disjoint paths of length at most k
lg k +O

(
k

lg2 k

)
.

We consider several cases. In all cases we may assume by symmetry that u ∈ A.
In each case, we will grow trees in the two sides of Q̂k and add edges to link paths in pairs of

trees. Growing trees in the lemma and later adding at most three edges for each pair of trees are
separate processes; the first is recursive with no linking step, while the linking is done once at the
end. Hence the added 3 remains an additive constant to the length and does not generate a linear
term.

Case 1: Vertices u and v lie in opposite sides of Q̂k and are adjacent. Since u ∈ A and v ∈ B,
they are adjacent only by the last matching. The edge uv provides one u, v-path, so we only need to
find k− 1 more. Let u1, . . . , uk−1 be the neighbors of u in A, and let v1, . . . , vk−1 be the neighbors
of v in B. Applying Corollary 7 to side A (with U = {u1, . . . , uk−1} and W = {u}) and to side B
(with U = {v1, . . . , vk−1} and W = {v}), with probability 1 − o(2−2k) there are pairwise disjoint
sets U1, . . . , Uk−1 ⊆ A not containing u and V1, . . . , Vk−1 ⊆ B not containing v such Uj is uj-proper
and Vj is vj-proper, for 1 ≤ j ≤ k − 1. See Figure 2.

: : :: : :

: : : : : :

v

v1 v2 vk−2 vk−1

V1 V2 Vk−2 Vk−1

U1 U2 Uk−2 Uk−1

u1 u2 uk−2 uk−1

u

B

A

Figure 2: Case 1: vertices u and v lie in opposite sides of Q̂k and are adjacent.
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Now we consider the last matching, joining A and B. For 1 ≤ j ≤ k− 1, the probability p that
no vertex in Uj is matched to a vertex in Vj is bounded using

p ≤
2k/2k∏
i=1

(
1− 2k/2k

2k−1 − i+ 1

)
≤

(
1− 2k/2k

2k−1

)2k/2k

≤ exp
(
−2k2

)
= o(2−2k/k).

Taking the Union Bound over all choices of j, we have matched Uj to Vj for all j with probability
1 − o(2−2k). Therefore, with at least that probability, we have k internally disjoint u, v-paths of

length at most k
lg k +O

(
k

lg2 k

)
.

Case 2: Vertices u and v lie in opposite sides of Q̂k and have no common neighbor. That is,
after exposing all matching edges at u and v, it turns out that u and v are non-adjacent and have
no common neighbors; no other points are exposed yet. Let u1, . . . , uk−1 be the neighbors of u in
A, and let v1, . . . , vk−1 be the neighbors of v in B. Let vk be the neighbor of u in B, and let uk
the neighbor of v in A. The rest of the argument follows as in Case 1, using 1 ≤ j ≤ k instead of
1 ≤ j ≤ k − 1. See Figure 3.

: : :

: : :

v

v1 v2 vk−1

V1 V2

U1 U2

u1 u2 uk−1
u

VkVk−1

Uk−1

Uk

vk

uk

B

A

Figure 3: Case 2: vertices u and v lie in opposite sides of Q̂k and have no common neighbor.

Case 3: Vertices u and v lie in opposite sides of Q̂k and are nonadjacent but have a common
neighbor. All edges at u and v are exposed, and a common neighbor is found. The number of
common neighbors is 1 or 2, since there can be at most one in each side. The case with a common
neighbor in each side is easy. Define uj and vj as in Case 1, and let uk−1 ∈ A and vk−1 ∈ B be
the common neighbors of u and v. The u, v-paths via uk−1 and vk−1 are sufficiently short. To find
the remaining paths, proceed as before with U = {u1, . . . , uk−2} and W = {u, uk−1} on side A and
with U = {v1, . . . , vk−2} and W = {v, vk−1} on side B.

Otherwise, by symmetry we may let uk−1 ∈ A be the common neighbor of u and v. Let
v′k−1 be the neighbor of u in B. Some vertex in {v1, . . . , vk−1} (label it vk−1) is not matched
into {u1, . . . , uk−2} by the matching of type k. Let u′k−1 be the neighbor of vk−1 in A. Now
proceed as before with U = {u1, . . . , uk−2, u′k−1} and W = {u, uk−1} on side A, and with U =
{v1, . . . , vk−2, v′k−1} and W = {v, vk−1} on side B. See Figure 4.

Case 4: Vertices u and v lie on the same side of Q̂k. Suppose first that u and v are adjacent.
Since Q̂k is triangle-free, u and v have no common neighbors. Let u1, . . . , uk−2 be the neighbors of
u in A other than v, let v1, . . . , vk−2 be the neighbors of v in A other than u, and let u′ and v′ be
the respective neighbors of u and v in B. Finally, let v′i be the neighbor of vi in B, for 1 ≤ i ≤ k−3.

We apply Corollary 7 in A using U = {u1, . . . , uk−2, v1, . . . , vk−2} and W = {u, v}. With
probability 1 − o(2−2k), we obtain 2k − 4 pairwise disjoint sets U1, . . . , Uk−2, V1, . . . , Vk−2 (also
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: : :

: : :

v

v1 v2
vk−1

V1 V2

U1 U2

u1 u2

uk−1

u

B

A

Vk−2

Uk−2

vk−2

uk−2
u0k−1

v0k−1
V 0

k−1

U 0

k−1

Figure 4: Case 3: vertices u and v lie in opposite sides of Q̂k and are at distance 2.

disjoint from {u, v}) such that Uj is uj-proper and Vj is vj-proper, for 1 ≤ j ≤ k − 2. (In this
application of Corollary 7, the sets V1, . . . , Vk−3 will not be used further. We include v1, . . . , vk−3 in
U because we must keep them out of U1, . . . , Uk−2 and Vk−2 in order to build paths through them.
We cannot place them in W , because Corollary 7 applies only for W of constant size, not growing
with k.)

We also use Corollary 7 with W = ∅ (or simply Lemma 6) in B with U = {v′1, . . . , v′k−3, v′, u′} to
obtain pairwise disjoint sets V ′1 , . . . , V

′
k−3, V

′, U ′ having the desired properties to those above (with

probability 1− o(2−2k)). We then proceed as in the previous cases by exposing the last matching
(between A and B) to discover edges between Uj and V ′j for 1 ≤ j ≤ k − 3, between Uk−2 and V ′,
and between Vk−2 and U ′. See Figure 5.

: : :

: : : v v1 v2u1 u2

B

A

vk−2

uk−3
uk−2

v01
v02

v0k−3

u0 v0

u
vk−3

V 0

1
V 0

2
V 0

k−3 U 0
V 0

U1 U2
Uk−3 Uk−2 Vk−2

Figure 5: Case 4: vertices u and v lie on the same side of Q̂k.

Finally, suppose that u and v are not adjacent. Let ` be their number of common neighbors in
A. By Lemma 9, u and v do not have the same neighborhoods in A, so 0 ≤ ` ≤ k−2. The common
neighbors immediately yield ` short u, v-paths. Let u1, . . . , uk−1−` be the remaining neighbors of
u in A, and let v1, . . . , vk−1−` be the remaining neighbors of v in A; these sets are nonempty. We
proceed as in the previous argument, with k − 1− ` in place of k − 2.

We conclude that given any two vertices u and v, with probability at least 1− o(2−2k) we find

k internally disjoint u, v-paths of length at most k
lg k +O

(
k

lg2 k

)
. Taking the Union Bound over all

O(22k) pairs finishes the proof.
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