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Abstract. In this paper, we study the clustering properties of the Spa-

tial Preferential Attachment (SPA) model introduced by Aiello et al. in

2009. This model naturally combines geometry and preferential attach-

ment using the notion of spheres of influence. It was previously shown

in several research papers that graphs generated by the SPA model are

similar to real-world networks in many aspects. For example, the vertex

degree distribution was shown to follow a power law. In the current pa-

per, we study the behaviour of C(d), which is the average local clustering

coefficient for the vertices of degree d. This characteristic was not pre-

viously analyzed in the SPA model. However, it was empirically shown

that in real-world networks C(d) usually decreases as d−a for some a > 0

and it was often observed that a = 1. We prove that in the SPA model

C(d) decreases as 1/d. Furthermore, we are also able to prove that not

only the average but the individual local clustering coefficient of a vertex

v of degree d behaves as 1/d if d is large enough. The obtained results

are illustrated by numerous experiments with simulated graphs.

1 Introduction

The evolution of complex networks attracted a lot of attention in recent years.

Empirical studies of different real-world networks have shown that such networks

have some typical properties: small diameter, power-law degree distribution, clus-

tering structure, and others [9,24]. Therefore, numerous random graph models

have been proposed to reflect and predict such quantitative and topological as-

pects of growing real-world networks [4,5].

The most well studied property of complex networks is their vertex degree

distribution. For the majority of studied real-world networks, the degree distri-

bution was shown to follow a heavy-tailed distribution [2,12,25]. Another im-

portant property of real-world networks is their clustering structure. One way
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to characterize the presence of clustering structure is to measure the clustering

coefficient, which is, roughly speaking, the probability that two neighbours of a

vertex are connected. There are two well-known formal definitions: the global

clustering coefficient and the average local clustering coefficient (see Section 3

for details). It is widely believed that for many real-world networks both the

average local and the global clustering coefficients tend to non-zero limit as the

network becomes large; some numerical values can be found in [24]; however,

some contradicting theoretical results are presented in [26].

In this paper, we mostly focus on the behaviour of C(d), which is the aver-

age local clustering coefficient for the vertices of degree d. It was empirically

shown that in real-world networks C(d) usually decreases as d−ψ for some

ψ > 0 [10,22,30,31]. In particular, for many studied networks, C(d) scales as

d−1 [29].

We study the clustering properties of the Spatial Preferential Attachment

(SPA) model introduced in [1]. This model combines geometry and preferential

attachment; the formal definition is given in Section 2.1. It was previously shown

that graphs generated by the SPA model are similar to real-world networks in

many aspects. For example, it was proven in [1] that the vertex degree distribu-

tion follows a power law. More details on the properties of the SPA model are

given in Section 2.2. However, the clustering coefficient C(d) was not previously

analyzed for this model, although some clustering properties were analyzed for

the generalized SPA model proposed in [14]. It is proved in [14] and [15] that the

average local clustering coefficient converges in probability to a strictly positive

limit. Also, the global clustering coefficient converges to a nonnegative limit,

which is nonzero if and only if the power-law degree distribution has a finite

variance.

In this paper, we prove that the local clustering coefficient C(d) decreases

as 1/d in the SPA model. We also obtain some bounds for the individual local

clustering coefficients of vertices. The obtained theoretical results are compared

with and illustrated by numerous experiments on simulated graphs. Our theo-

retical results are asymptotic in nature, so we empirically investigate how the

model behaves for finite size graphs and see that the asymptotic predictions

are still close to empirical observations even for small graph sizes. Additionally,

we demonstrate that some of our theoretical assumptions are probably too pes-

simistic and the SPA model behaves even more predictable than we have proven.

We also propose an efficient algorithm for generating graphs according to the

SPA model which runs much faster than the straightforward implementation.

Proofs of all theoretical results stated in this paper can be found in the

journal version [13] that focuses exclusively on asymptotic results of the model.

On the other hand, this proceeding version also contains results on simulated

graphs and so can be viewed as a complement to the journal version.
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2 Spatial Preferential Attachment model

2.1 Definition

This paper focuses on the Spatial Preferential Attachment (SPA) model, which

was first introduced by [1]. This model combines preferential attachment with

geometry by introducing “spheres of influence” whose volume grows with the

degree of a vertex. The parameters of the model are the link probability p ∈ [0, 1]

and two constants A1, A2 such that 0 < A1 <
1
p , A2 > 0. All vertices are placed

in the m-dimensional unit hypercube S = [0, 1]m equipped with the torus metric

derived from any of the Lk norms, i.e.,

d(x, y) = min
{
||x− y + u||k : u ∈ {−1, 0, 1}m

}
∀x, y ∈ S .

The SPA model generates a sequence of random directed graphs {Gt}, where

Gt = (Vt, Et), Vt ⊆ S. Let deg−(v, t) be the in-degree of the vertex v in Gt, and

deg+(v, t) its out-degree. Then, the sphere of influence S(v, t) of the vertex v at

time t ≥ 1 is the ball centered at v with the following volume:

|S(v, t)| = min

{
A1deg−(v, t) +A2

t
, 1

}
.

In order to construct a sequence of graphs we start at t = 0 with G0 being

the null graph. At each time step t we construct Gt from Gt−1 by, first, choosing

a new vertex vt uniformly at random from S and adding it to Vt−1 to create

Vt. Then, independently, for each vertex u ∈ Vt−1 such that vt ∈ S(u, t − 1), a

directed link (vt, u) is created with probability p. Thus, the probability that a

link (vt, u) is added in time-step t equals p |S(u, t− 1)|.

2.2 Properties of the model

In this section, we briefly discuss previous studies on properties and applications

of the SPA model. This model is known to produce scale-free networks, which

exhibit many of the characteristics of real-life networks [1,8]. Specifically, The-

orem 1.1 in [1] proves that the SPA model generates graphs with a power-law

in-degree distribution with coefficient 1 + 1/(pA1). On the other hand, the aver-

age out-degree is asymptotic to pA2/(1− pA1), as shown in Theorem 1.3 in [1].

In [17], it was demonstrated that the SPA model give the best fit, in terms of

graph structure, for a series of social networks derived from Facebook. In [18],

some properties of common neighbours were used to explore the underlying ge-

ometry of the SPA model and quantify vertex similarity based on the distance in

the space. Usually, the distribution of vertices in S is assumed to be uniform [18],

but [19] also investigated non-uniform distributions, which is clearly a more real-

istic setting. The SPA model was also used to study a duopoly market on which
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there is uncertainty of a product quality [20]. Finally, in [27] modularity of this

model was investigated, which is a global criterion to define communities and a

way to measure the presence of community structure in a network.

3 Clustering coefficient

Clustering coefficient measures how likely two neighbours of a vertex are con-

nected by an edge. There are several definitions of clustering coefficient proposed

in the literature (see, e.g., [5]). The global clustering coefficient Cglob(G) of a

graph G is the ratio of three times the number of triangles to the number of

pairs of adjacent edges in G. In other worlds, if we sample a random pair of

adjacent vertices in G, then Cglob(G) is the probability that these three vertices

form a triangle. The global clustering coefficient in the SPA model was previ-

ously studied in [14,15] and it was proven that Cglob(Gn) converges to a limit,

which is positive if and only if the power-law degree distribution has a finite

variance.

In this paper, we focus on the local clustering coefficient, which was not

previously analyzed for the SPA model. Let us first define it for an undirected

graph G = (V,E). Let N(v) be the set of neighbours of a vertex v, |N(v)| =

deg(v). For any B ⊆ V , let E(B) be the set of edges in the graph induced by

the vertex set B; that is, E(B) = {(u,w) ∈ E : u,w ∈ B}. Finally, clustering

coefficient of a vertex v is defined as follows:

c(v) =
|E(N(v))|(

deg(v)
2

) .

Clearly, 0 ≤ c(v) ≤ 1.

Note that the local clustering c(v) is defined individually for each vertex and

it can be noisy, especially for the vertices of not too large degrees. Therefore, the

following characteristic was extensively studied in the literature for various real-

world networks and some random graph models. Let C(d) be the local clustering

coefficient averaged over the vertices of degree d; that is,

C(d) =

∑
v:deg(v)=d c(v)

|{v : deg(v) = d}|
.

Further in the paper we will also use the notation c(v, t) and C(d, t) referring to

graphs on t vertices.

The local clustering C(d) was extensively studied both theoretically and em-

pirically. For example, it was observed in a series of papers that in real-world

networks C(d) ∼ d−ϕ for some ϕ > 0. In particular, [29] shows that C(d) can

be well approximated by d−1 for four large networks, [31] obtains power-law

in a real network with parameter 0.75, while [10] obtains ϕ = 0.33. The local
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clustering coefficient was also studied in several random graph models of com-

plex networks. For instance, it was shown in [11,21,23] that some models have

C(d) ∼ d−1. As we prove in this paper, similar behaviour is also observed in the

SPA model.

Recall that the graph Gt constructed according to the SPA model is directed.

Therefore, we first analyze the directed version of the local clustering coefficient

and then, as a corollary, we obtain the corresponding results for the undirected

version. Let us now define the directed clustering coefficient. By N−(v, t) ⊆ Vt
we denote the set of in-neighbours of a vertex v at time t. So, the directed

clustering coefficient of a vertex v at time t and the average directed clustering

for the vertices of incoming degree d are defined as

c−(v, t) =
|E(N−(v, t))|(

deg−(v,t)
2

) , C−(d, t) =

∑
v:deg−(v,t)=d c

−(v, t)

|{v : deg−(v, t) = d}|
.

Note that we normalize c−(v, t) by
(
deg−(v,t)

2

)
, since in the SPA model edges can

be created only from younger vertices to older ones.

4 Results

4.1 Notation

Let us start with introducing some notation. As typical in random graph theory,

all results in this paper are asymptotic in nature; that is, we aim to investigate

properties of Gn for n tending to infinity. We say that an event holds asymptoti-

cally almost surely (a.a.s.) if it holds with probability tending to one as n→∞.

Also, given a set S we say that almost all elements of S have some property P if

the number of elements of S that do not have P is o(|S|). Finally, we emphasize

that the notations o(·) and O(·) refer to functions of n, not necessarily positive,

whose growth is bounded. We use the notations f � g for f = o(g) and f � g

for g = o(f). We also write f(n) ∼ g(n) if f(n)/g(n) → 1 as n → ∞ (that is,

when f(n) = (1 + o(1))g(n)).

First we consider the directed clustering coefficient. It turns out that for the

SPA model we are able not only to prove the asymptotics for C−(d, n), which

is the average clustering over all vertices of in-degree d, but also analyze the

individual clustering coefficients c−(v, n). However, in order to do this, we need

to assume that deg−(v, n) is large enough.

From technical point of view, it will be convenient to partition the set of

contributing edges, E(N−(v, n)), and independently consider edges to “old” and

to “young” neighbours of v. Formally, for a given function ω(n) that tends to

infinity as n→∞, let T̂v be the smallest integer t such that deg−(v, t) exceeds
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ω log n (or T̂v = n if deg−(v, n) < ω log n). Vertices in N−(v, T̂v) are called old

neighbours of v; N−(v, n) \N−(v, T̂v) are new neighbours of v. Finally,

Eold(N
−(v, n)) = {(u,w) ∈ En : u ∈ N−(v, n), w ∈ N−(v, T̂v)},

Enew(N−(v, n)) = E(N−(v, n)) \ Eold(N−(v, n)) ;

and

c−(v, n) = cold(v, n) + cnew(v, n), (1)

where

cold(v, n) = |Eold(N−(v, n))|
/(deg−(v, n)

2

)
,

cnew(v, n) = |Enew(N−(v, n))|
/(deg−(v, n)

2

)
.

4.2 Results

Let us start with the following theorem which is extensively used in our rea-

sonings and is interesting and important on its own. Variants of this results

were proved in [18,19]; here, we present a slightly modified statement from [19],

adjusted to our current needs.

Theorem 1. Let ω = ω(n) be any function tending to infinity together with n.

The following holds with probability 1−o(n−4). For any vertex v with deg−(v, n) =

k = k(n) ≥ ω log n and for all values of t such that

n

(
ω log n

k

) 1
pA1

=: Tv ≤ t ≤ n,

we have

deg−(v, t) ∼ k
(
t

n

)pA1

.

The expression for Tv is chosen so that at this time vertex v has a.a.s.

(1 + o(1))ω log n neighbours. The implication of this theorem is that once a

vertex accumulates ω log n neighbours, its behaviour can be predicted with high

probability until the end of the process (that is, till time n).

Let us note that Theorem 1 immediately implies the following two corollaries.

Corollary 1 Let ω = ω(n) be any function tending to infinity together with n.

The following holds with probability 1−o(n−4). For every vertex v, and for every

time T so that deg−(v, T ) ≥ ω log n, for all times t, T ≤ t ≤ n,

deg−(v, t) ∼ deg−(v, T )

(
t

T

)pA1

.
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Corollary 2 Let ω = ω(n) be any function tending to infinity together with n.

The following holds with probability 1 − o(n−4). For any vertex vi born at time

i ≥ 1, and i ≤ t ≤ n we have that deg−(vi, t) ≤ ω log n (t/i)
pA1 .

Theorem 1 can be used to show that the contribution to c−(v, n) coming

from edges to new neighbours of v is well concentrated.

Theorem 2. Let ω = ω(n) be any function tending to infinity together with n.

Then, with probability 1− o(n−1) for any vertex v with

deg−(v, n) = k = k(n) ≥ (ω log n)4+(4pA1+2)/(pA1(1−pA1))

we have

cnew(v, n) = Θ(1/k).

Unfortunately, if a vertex v lands in a densely populated region of S, it might

happen that cold(v, n) is much larger than 1/k. We show the following ‘negative’

result (without trying to aim for the strongest statement) that shows that there

is no hope for extending Theorem 2 to c−(v, n).

Theorem 3. Let C = 5 log (1/p) and ξ = ξ(n) = 1/(ω(log log n)2(log log log n)) =

o(1) for some ω = ω(n) tending to infinity as n→∞. Suppose that k = k(n) is

such that 2 ≤ k ≤ nξ. Then, a.a.s., there exists a vertex v such that deg−(v, n) ∼
k and

(i) c−(v, n) = 1, provided that 2 ≤ k ≤
√

log n/C,

(ii) c−(v, n) = Ω(1)� 1/k, provided that
√

log n/C ≤ k ≤ log n/ log log n,

(iii) c−(v, n)� (log log n)2(log log log n)/k � 1/k, provided that log n/ log log n ≤
k ≤ nξ.

On the other hand, Theorem 2 implies immediately the following corollary.

Corollary 3 Let ω = ω(n) be any function tending to infinity together with n.

The following holds with probability 1− o(n−1). For any vertex v for which

deg−(v, n) = k = k(n) ≥ (ω log n)4+(4pA1+2)/(pA1(1−pA1))

it holds that

c−(v, n) ≥ cnew(v, n) = Ω(1/k)

c−(v, n) = cold(v, n) + cnew(v, n) = O(ω log n/k) +O(1/k) = O(ω log n/k).

Moreover, despite the above ‘negative’ result, almost all vertices (of large

enough degrees) have clustering coefficients of order 1/k. Here is a precise state-

ment. The conclusions in cases (i)’ and (ii)’ follow immediately from Theorem 2.
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Theorem 4. Let ε, δ ∈ (0, 1/2) be any two constants, and let k = k(n) ≤ npA1−ε

be any function of n. Let Xk be the set of vertices of Gn of in-degree between

(1− δ)k and (1 + δ)k. Then, a.a.s., the following holds.

(i) Almost all vertices in Xk have cold(v, n) = O(1/k), provided that k �
logC1 n, where C1 = (1 + (2 + ε)pA1)/(1− pA1).

(i)’ As a result, almost all vertices in Xk have c−(v, n) = Θ(1/k), provided that

k � logC n, where C = 4 + (4pA1 + 2)/(pA1(1− pA1)).

(ii) The average clustering coefficient cold(v, n) of vertices in Xk is O(1/k); that

is,
1

|Xk|
∑
v∈Xk

cold(v, n) = O(1/k),

provided that k � logC2 n, where C2 = (1 + (2 + pA1 + ε)pA1)/(1− pA1).

(ii)’ As a result, the average clustering coefficient c−(v, n) of vertices in Xk is

Θ(1/k); that is,
1

|Xk|
∑
v∈Xk

c−(v, n) = Θ(1/k),

provided that k � logC n, where C = 4 + (4pA1 + 2)/(pA1(1− pA1)).

Finally, let us briefly discuss the undirected case. The following lemma holds.

Lemma 1. Let ω = ω(n) be any function tending to infinity together with n.

The following holds with probability 1− o(n−3). For every vertex vi,

deg+(vi, i) = deg+(vi, n) ≤ ω log n.

Note that a weaker bound of log2 n was proved in [1]; with Corollary 2 in hand,

we can get slightly better bound but the argument remains the same.

According to the above lemma, a.a.s. the out-degrees of all vertices do not

exceed ω log n. Therefore, even if out-neighbours of a vertex form a complete

graph, the contribution from them is at most
(
ω logn

2

)
, which is much smaller

than k. Hence, all results discussed in this section also hold for the clustering

coefficient c(k, n) defined for the undirected graph Ĝn obtained from Gn by

considering all edges as undirected.

5 Experiments

In this section, we illustrate the theoretical, asymptotic, results presented in the

previous section by analyzing the local clustering coefficient for graphs of various

orders generated according to the SPA model.
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5.1 Algorithm

Let us first discuss the complexity of the straightforward (naive) algorithm for

generating graphs according to the SPA model. At each step we add one vertex

and, for each existing vertex, we check if the new vertex belongs to its sphere of

influence. Then we (possibly) add new edges and update the radii for all vertices.

The complexity of this procedure is Θ(n2).

Let us now propose a more efficient algorithm. First, we describe this algo-

rithm and provide heuristic arguments about its complexity. Then, we compare

running times of the new algorithm and the naive one.

Our algorithm works in several phases, as described further in the text. For

now, let us assume that we already generated a graph on n vertices according

to the SPA model and we want to add one additional vertex. It is known that

E
(

deg−(vi, t)
)
∼ A2

A1

(
t

i

)pA1

,

provided that i � 1 (see, for example, [8]). We call a vertex heavy if its degree

is at least D for some D; otherwise, it is light. All heavy vertices are kept in a

separate list H. Fix

D =
A2

A1

( n
T

)pA1

, (2)

so H has expected size around T . The choice of an optimal value of T will be

discussed further in this section.

Let us divide S = [0, 1]2 into k squares where k is some perfect square; that

is, each square will have side length 1/
√
k. (We choose the dimension m = 2 for

our simulations. However, the ideas can easily be applied for an arbitrary m.)

All light vertices are kept in k disjoint lists; let L(i) be a list containing all light

vertices from square i. The expected number of vertices in each list is (n−T )/k.

We want the following property to be satisfied:√
A1D +A2

πn
≤ 1√

k
. (3)

Indeed, if this is the case, then no light vertex vi has the area of influence that

touches squares other than the square containing vi and the 8 adjacent squares.

Moreover, the same property will hold for all t > n as areas of influence of light

vertices decrease with time. Hence, since we aim for an integer
√
k to be as large

as possible:

k =

⌊√
πn

A1D +A2

⌋2
⇒ k ≈ πn

A2 (1 + (n/T )pA1)
. (4)

The most expensive computational work for the algorithm is the number of

comparisons needed in order to add a vertex vn+1 to a graph, which is of order

f(T ) := T + 9
n− T
k

= T +
9A2

π
(1− T/n)

(
1 + (n/T )pA1

)
. (5)
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Hence, the function f(T ) is minimized for

T =
9npA1A2(n/T )pA1

πn− 9A2 − 9A2(1− pA1)(n/T )pA1
.

For large n the second and the third terms in the denominator are negligible, as

pA1 < 1; moreover, if pA1 is close to 1 we will soon show that T = Θ(n1/2−ε)

for some small ε > 0, so the approximation converges fast. Thus, we may ap-

proximate T by:

T ≈ n1−1/(pA1+1)

(
9pA1A2

π

)1/(pA1+1)

. (6)

Using this T we can calculate the recommended value of D, see (3), and the

density of the
√
k ×
√
k grid, see (4).

Below are some practical implementation details:

– It is computationally expensive to recalculate H and L division each time

a new vertex is added. By empirical testing, we have found that the recal-

culation should be done approximately after adding t/4 vertices, where t is

the number of vertices in already constructed graph. As a result, the num-

ber of phases is O(log n), as each time the number of vertices increases by

approximately 25%.

– As we work in phases, at each step we have to check if some light vertex

becomes heavy, and move it to the appropriate list, if needed. However, this

operation is not expensive computationally.

– After several phases, for actually constructed graphs the optimal parame-

ters k, T and D might deviate from the theoretical values derived above.

Therefore, in the implementation we choose the optimal parameters condi-

tional on the actual input graph structure. Namely, for each candidate value

k we can calculate the corresponding D using (3) and then calculate T from

the data (this is the actual number of heavy vertices given D). We choose

k to optimize the number of comparisons needed to add one vertex to the

actual graph, the approximation for this value is given in (5). After that we

dynamically construct H and L lists.

Let us now discuss the complexity of the obtained algorithm. Equation (5) shows

that T is expected to be of order npA1/(pA1+1). So, we may derive from (4)

that k is of order n1−pA1+(pA1)
2/(pA1+1) = n1/(pA1+1). From (5) we obtain that

f(T ) grows as npA1/(pA1+1). So, the expected complexity of the whole process is

Θ
(
n2−1/(pA1+1)

)
� n2.

Figure 1 presents an empirical comparison of the running time for new and

naive algorithms. We also present this figure in log-log scale. The computations

were performed using Julia 0.6.2 language [3] and LightGraphs [6] package on a

single thread of Intel i5-5200U @ 2.20GHz processor.
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Fig. 1. Running time of the proposed and the naive algorithms.

Finally, let us mention that further improvements of the algorithm are possi-

ble. For example, one can keep more than two lists H and L. For example, Ls(i)

could contain vertices of degree between 2s−1 and 2s that landed in region i, so

the total number of lists is O(log n). Then, the running time of the algorithm

would be O(n log n). Indeed, during a phase that started at time t, Ls has ex-

pected size O(t 2−s/pA1); since vertices from Ls(i) are gathered from the square

of area, say, 2s/t, the expected size of this list is O(2s−s/(pA1)) = O(1). Hence,

after adding one vertex, O(log n) lists are investigated and we expect only a

constant number of comparisons done on each list. Of course, there is always a

trade-off between the running time of an algorithm and how complicated it is

to implement it. For our purpose, we decided to go for a simpler algorithm with

only two lists.

5.2 Empirical analysis of the local clustering coefficient

In this section, we compare asymptotic theoretical results obtained in Section 4

with empirical results obtained for graphs with finite n. All graphs are generated

according to the algorithm described in Section 5.1.

It is proven in Theorem 4 that 1
Xd

∑
v∈Xd c

−(v, n) = Θ(1/d) for d� logC n,

where C = 4 + (4pA1 + 2)/(pA1(1− pA1)). In order to illustrate this result, we

generated 10 graphs for each p ∈ {0.1, 0.2, . . . , 0.9}, A1 = 1, A2 = 10(1 − p)/p
(A2 is chosen to fix the expected asymptotic degree equal 10) and computed the

average value of C−(d, n) for n = 106, see Figure 2 (left). Similarly, Figure 2

(right) presents the same measurements for the undirected average local cluster-

ing C(d, n). Note that in both cases figures agree with our theoretical results:

both C−(d, n) and C(d, n) decrease as c/d with some c for large enough d (we

added a function 10/d for comparison). Note that for small p the maximum de-

gree is small, therefore the sizes of the generated graphs are not large enough to

observe a straight line in log-log scale.
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Fig. 2. Average local clustering coefficient for directed (left) and undirected (right)

graphs.

Note that for all p ∈ (0, 1) we have C = 4 + 4p+2
p(1−p) > 18, so, our theoretical

results are expected to hold for d � logC n > 1020 which is irrelevant as the

order of the graph is only 106. However, we observe the desired behaviour for

much smaller values of d; that is, in some sense, our bound is too pessimistic.

Also, note that the statement C−(d, n) = Θ(1/d) is stronger that the state-

ment of Theorem 4, since in the theorem we averaged c−(v, n) over the set Xd

of vertices of in-degree between (1− δ)d and (1 + δ)d. In order to illustrate the

difference, on Figure 3 we present the smoothed curves for the directed (left)

and undirected (right) local clustering coefficients averaged over Xd for δ = 0.1.

Note that this smoothing substantially reduce the noise observed on Figure 2.
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Fig. 3. Local clustering coefficient for directed (left) and undirected (right) graphs

averaged over Xd.

Next, let us illustrate the fact that the number of edges between “new”

neighbours of a vertex is more predictable than the number of edges going from

some neighbours to “old” ones. We extensively used this difference in Section 4.2,
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where we analyzed new and old edges separately. In our experiments, we split

c−(v, n) into “old” and “new” parts as in (1), but now we take T̂v be the smallest

integer t such that deg−(v, t) exceeds deg−(v, n)/2. As a result, we compute the

average local clustering coefficients C−old(d) and C−new(d). Figure 4 shows that

C−new(d) can almost perfectly be fitted by c/d with some c, while most of the

noise comes from C−old(d).
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Fig. 4. Comparison of “new” and “old” parts of the average local clustering coefficient.

Finally, Figure 5 shows the distribution of the individual local clustering co-

efficients for one graph generated with p = 0.7. Theorem 3 states that a.a.s. there

exist a vertex v of degree d with c−(v, n)� 1/d. Also, according to this theorem,

the situation is much worse for smaller values of d. Indeed, one can see on Fig-

ure 5 that for small d the scatter of points is much larger. On the other hand, in

Theorem 4 we present bounds for c−(v, n) for almost all vertices, provided that

d is large enough. One can see it on the figure too and, similarly to previously

discussed figures, we observe the expected behaviour even for relatively small n

despite the bound logC n that is bigger than n in our case.
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16. Janson, S.,  Luczak, T., Ruciński, A.: Random Graphs. Wiley, New York, USA

(2000)

17. Janssen, J., Hurshman, M., Kalyaniwalla, N.: Model selection for social networks

using graphlets. Internet Mathematics 8(4), 338–363 (2013)

18. Janssen, J., Pra lat, P., Wilson, R.: Geometric graph properties of the spatial pre-

ferred attachment model. Advances in Applied Mathematics 50, 243–267 (2013)

19. Janssen, J., Pra lat, P., Wilson, R.: Non-uniform distribution of nodes in the spatial

preferential attachment model. Internet Mathematics 12(1–2), 121–144 (2016)
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Appendix

Proof of Lemma 1

Let us focus on any 1 ≤ i ≤ n. Since vi is chosen uniformly at random from

the unit hypercube (note that the history of the process does not affect this

distribution) with the torus metric, without loss of generality, we may assume

that vi lies in the centre of the hypercube. For 1 ≤ j < i, let Xj denote the

indicator random variable of the event that vj lies in the ball around vi (or vice

versa) with volume

αj = j−pA1ipA1−1ω2/3 log n.

By Corollary 2 (applied with ω1/3 instead of ω), we may assume that

deg−(vj , i) ≤ (i/j)pA1ω1/3 log n,

for all j ∈ [i − 1]. Note that (A1 deg−(vj , i) + A2)/i = o(αj). Hence, for all

j ∈ [i − 1], Xj = 0 implies that vi is not in the influence region of vj and so

there is no directed edge from vi to vj . Therefore, we have that

deg+(vi, i) ≤
i−1∑
j=1

Xj .

Since

E

i−1∑
j=1

Xj

 =

i−1∑
j=1

αj = ipA1−1ω2/3 log n

i−1∑
j=1

j−pA1 = O(ω2/3 log n) = o(ω log n),

the assertion follows easily from the Chernoff bound.

Proof of Theorem 1

We will use the following version of the Chernoff bound that can be found, for

example, in [16, p. 27, Corollary 2.3].

Lemma 2. Let X be a random variable that can be expressed as a sum of in-

dependent random indicator variables, X =
∑n
i=1Xi, where Xi ∈ Be(pi) with

(possibly) different pi = P(Xi = 1) = EXi. If ε ≤ 3/2, then

P(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε

2EX
3

)
. (7)

Let us start with the following key lemma.



Clustering Properties of Spatial Preferential Attachment Model 17

Lemma 3. Let ω = ω(n) be any function tending to infinity together with n. For

a given vertex v, suppose that deg−(v, T ) = d ≥ ω log n. Then, with probability

1− o(n−6), for every value of t, T ≤ t ≤ 2T ,

∣∣∣∣∣deg−(v, t)− d ·
(
t

T

)pA1

∣∣∣∣∣ ≤ 5

pA1
· t
T

√
d log n.

Proof. Our goal is to estimate deg−(v, t) − d · (t/T )
pA1 . We will show that the

upper bound holds; the lower bound can be obtained by using an analogous,

symmetric, argument.

We use the following stopping time

T0 = min

{
t ≥ T :

(
deg−(v, t) > d ·

(
t

T

)pA1

+
5

pA1
· t
T

√
d log n

)
∨ (t = 2T + 1)

}
.

Note that if T0 = 2T + 1, then the in-degree of v remained bounded as required

during the entire time interval T ≤ t ≤ 2T . Hence, in order to prove the bound,

we need to show that with probability 1− o(n−6) we have T0 = 2T + 1.

Suppose that T0 ≤ 2T . Note that for t ≥ T up to and including time-

step T0 − 1, the random variable deg−(v, t) is (deterministically) bounded from

above. Hence, the number of new neighbours accumulated during this phase of

the process, deg−(v, T0)− d, can be (stochastically) bounded from above by the

sum X =
∑T0−1
t=T Xt of independent indicator random variables Xt, where

P(Xt = 1) = p
A1

(
d
(
t
T

)pA1
+ 5

pA1
· tT
√
d log n

)
+A2

t
.

Clearly, since pA1 < 1,

EX =

T0−1∑
t=T

EXt

= pA1dT
−pA1

(
T0−1∑
t=T

tpA1−1

)
+
T0 − T
T

5
√
d log n+O(1)

= d

(
T0
T

)pA1

− d
(
T

T

)pA1

+
T0 − T
T

5
√
d log n+O(1)

= d

(
T0
T

)pA1

− d+
T0 − T
T

5
√
d log n+O(1).
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Since T0 ≤ 2T , the in-degree of v at time T0 failed the desired condition, which

implies that

X ≥ deg−(v, T0)− d

≥

(
d ·
(
T0
T

)pA1

+
5

pA1
· T0
T

√
d log n

)
− d

= EX +
5

pA1
· T0
T

√
d log n− T0 − T

T
5
√
d log n+O(1)

≥ EX + 5
√
d log n,

using again that it is assumed that pA1 < 1. It follows from the Chernoff

bound (7) that

P(|X − EX| ≥ 5
√
d log n) ≤ 2 exp

(
− (5ε/3)

√
d log n

)
,

where ε = 5
√
d log n/EX. The maximum value of EX corresponds to T0 = 2T

and so

EX ≤ d
(

2T

T

)pA1

− d+
2T − T
T

5
√
d log n+O(1)

∼ d(2pA1 − 1) ≤ d.

So ε ≥ 5
√
d−1 log n. Therefore, the probability that T0 ≤ 2T is at most

2 exp(−(25/3) log n) = o(n−6) and the proof is finished.

Now, with Lemma 3 in hand we can get Theorem 1.

Proof (Proof of Theorem 1). Let ω = ω(n) be a function going to infinity with

n. Let v be a vertex with final degree k ≥ ω log n. Let T be the first time that

the in-degree of v exceeds (ω/2) log n. Finally, let d = deg−(v, T ). We obtain

from Lemma 3 that, with probability 1− o(n−6),

d

(
t

T

)pA1
(

1− 5

pA1

√
d−1 log n

)
≤ deg−(v, t) ≤ d

(
t

T

)pA1
(

1 +
5

pA1

√
d−1 log n

)
for T ≤ t ≤ 2T . It follows that the degree tends to grow but the sphere of

influence tends to shrink between T and 2T , and thus that the conditions of

Lemma 3 again hold at time 2T . We can now keep applying the same lemma

for times 2T , 4T , 8T , 16T, . . . , using the final value as the initial one for the

next period, to get the statement for all values of t from T up to and including
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time n. Precisely, for 1 ≤ i < imax = blog2 nc + 1, let di = deg−(v, 2iT ).

Then by Lemma 3, we have for i > 1 that di ≤ di−12pA1(1 + εi), where εi =
5
pA1

√
d−1i−1 log n. Since we apply the lemma O(log n) times (for a given vertex v),

the following statement holds with probability 1 − o(n−5) from time T on: for

any 2i−1T ≤ t < 2iT , we have that

deg−(v, t) ≤ d
(
t

T

)pA1 i∏
j=0

(1 + εi).

It remains to make sure that the accumulated multiplicative error term is still

only (1 + o(1)). For that, let us note that

i∏
j=0

(1 + εi) =

i∏
j=1

(
1 +

5

pA1

√
d−12−pA1j log n

)

∼ exp

 5

pA1

√
d−1 log n

i∑
j=1

2−pA1j/2


= exp

(
O(
√
d−1 log n)

)
∼ 1,

since d grows faster than log n. A symmetric argument can be used to show a

lower bound for the error term and so the result holds.

It follows that we have the desired behaviour from time T . Precisely, for times

T ≤ t ≤ n, we have that

deg−(v, t) ∼ d
(
t

T

)pA1

,

where d = deg−(v, T ) ∼ (ω/2) log n. Setting t = n and deg−(v, n) = k, we obtain

that

T ∼
(
d

k

)1/pA1

n ∼
(
ω log n

2k

)1/pA1

n ∼
(

1

2

)1/pA1

Tv.

Therefore, for large enough n, we have that T < Tv. As a result, we obtain that,

for Tv ≤ t ≤ n,

deg−(v, t) ∼ k
(
t

n

)pA1

.

Finally, since the statement holds for any vertex v with probability 1− o(n−5),

with probability 1−o(n−4) the statement holds for all vertices. The proof of the

theorem is finished.

Proof of Theorem 2

Let B be a ball of volume b = b(n) and t = t(n) ∈ N be any function of n such

that bt → ∞ as n → ∞. It will be crucial for the argument to understand the
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behaviour of the random variables Ni,t = Ni,t(b) counting the number of vertices

in B that are of in-degree i at time t; that is,

Ni,t = |{w ∈ B : deg−(w, t) = i}|.

The arguments presented below are similar to the ones in [1] showing that the

degree distribution of Gn follows a power-law.

The equations relating the random variables Ni,t are described as follows. As

G0 is the null graph, Ni,0 = 0 for i ≥ 0. For all t ∈ N ∪ {0}, we derive that

E(N0,t+1 −N0,t | Gt) = b−N0,tp
A2

t
, (8)

E(Ni,t+1 −Ni,t | Gt) = Ni−1,tp
A1(i− 1) +A2

t
−Ni,tp

A1i+A2

t
. (9)

Recurrence relations for the expected values of Ni,t can be derived by taking

the expectation of the above equations. To solve these relations, we use the

following lemma on real sequences, which is Lemma 3.1 from [7].

Lemma 4. If (αt), (βt) and (γt) are real sequences satisfying the relation

αt+1 =

(
1− βt

t

)
αt + γt,

and limt→∞ βt = β > 0 and limt→∞ γt = γ, then limt→∞
αt
t exists and equals

γ
1+β .

Applying this lemma with αt = E(N0,t)/b, βt = pA2, and γt = 1 gives that

E(N0,t) ∼ c0bt with

c0 =
1

1 + pA2
.

For i ≥ 1, the lemma can be inductively applied with αt = E(Ni,t)/b, βt =

p(A1i+A2), and γt = E(Ni−1,t)p(A1(i−1)+A2)/(bt) to show that E(Ni,t) ∼ cibt,
where

ci = ci−1p
A1(i− 1) +A2

1 + p(A1i+A2)
.

It is straightforward to verify that

ci =
pi

1 + pA2 + ipA1

i−1∏
j=0

jA1 +A2

1 + pA2 + jpA1
.

The above formula implies that ci = (1 + o(1))ci−(1+1/(pA1)) (as i → ∞) for

some constant c, so the expected proportion Ni,t/(bt) asymptotically follows a

power-law with exponent 1 + 1/(pA1).
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We prove concentration for Ni,t when i ≤ if (for some function if = if (n))

by using a relaxation of Azuma-Hoeffding martingale techniques. The random

variables Ni,t do not a priori satisfy the c-Lipschitz condition: indeed, a new ver-

tex may fall into many overlapping regions of influence and so it can potentially

change degrees of many vertices. Nevertheless, we prove that deviations from

the c-Lipschitz condition occur with very small probability. Lemma 1 gives a de-

terministic bound for |Ni,t+1 −Ni,t| which holds with high probability. Indeed,

it is obvious that |Ni,t+1 −Ni,t| ≤ max{deg+(vt+1, t+ 1), 1}.
Let us prove concentration for the random variables Ni,t. In order to explain

the technique, we investigate N0,t, the number of vertices of in-degree zero. The

argument easily generalizes to other values of i and we explain it afterwards. We

will use the supermartingale method of Pittel et al. [28], as described in [32].

Lemma 5. Let G0, G1, . . . , Gn be a random graph process and Xt a random

variable determined by G0, G1, . . . , Gt, 0 ≤ t ≤ n. Suppose that for some real

constants βt and constants γt,

E(Xt −Xt−1 | G0, G1, . . . , Gt−1) < βt

and

|Xt −Xt−1 − βt| ≤ γt

for 1 ≤ t ≤ n. Then for all α > 0,

P

(
For some s with 0 ≤ s ≤ n : Xs −X0 ≥

s∑
t=1

βt + α

)
≤ exp

(
− α2

2
∑
γ2t

)
.

Now, we are ready to prove the concentration for N0,t.

Theorem 5. Let B be a ball of volume b = b(n) and t = t(n) ∈ N be any

function of n such that bt→∞ as n→∞. Let ω = ω(n) be any function tending

to infinity together with n. The following holds with probability 1− o(n−3).

N0,t = N0,t(B) =
bt

1 +A2p
+O((bt)1/2(ω log n)3/2) = c0bt+O((bt)1/2(ω log n)3/2).

In particular, if bt� log3 n, then N0,t ∼ c0bt.

Proof. We first need to transform N0,s (1 ≤ s ≤ t) into something close to a

martingale. It provides some insight if we define real function f(x) to model

the behaviour of the scaled random variable N0,xt/t. If we presume that the

changes in the function correspond to the expected changes of the random vari-

able (see (8)), we obtain the following differential equation

f ′(x) = b− f(x)
pA2

x
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with the initial condition f(0) = 0. The general solution of this equation can be

put in the form

f(x)xpA2 − bx1+pA2

1 + pA2
= C.

Consider the following real-valued function

H(x, y) = xpA2y − bx1+pA2

1 + pA2
(10)

(note that we expect H(s,N0,s) to be close to zero). Let ws = (s,N0,s), and

consider the sequence of random variables (H(ws) : 1 ≤ s ≤ t). The second-

order partial derivatives of H evaluated at ws are all O(spA2−1). Moreover, it

follows from Lemma 1 that we may assume that

|N0,s+1 −N0,s| ≤ ω log n. (11)

Therefore, we have

H(ws+1)−H(ws) = (ws+1 −ws) · grad H(ws) +O(spA2−1ω2 log2 n), (12)

where “·” denotes the inner product and grad H(ws) = (Hx(ws), Hy(ws)).

Observe that from our choice of H, we have that

E(ws+1 −ws | Gs) · grad H(ws) = 0.

Hence, taking the expectation of (12) conditional on Gs, we obtain that

βs+1 = E(H(ws+1)−H(ws) | Gs) = O(spA2−1ω2 log2 n).

From (12) and (11), noting that

grad H(ws) =
(
pA2s

pA2−1N0,s − bspA2 , spA2
)
,

we have that

γs+1 = |H(ws+1)−H(ws)| ≤ O(spA2ω log n).

Our goal is to apply Lemma 5 to the sequence (H(ws) : 1 ≤ s ≤ t) to get an

upper bound for H(ws). A symmetric argument applied to (−H(ws) : 1 ≤ s ≤ t)
will give us the desired lower bound so let us concentrate on the upper bound.

The bounds for βs+1 and γs+1 we derived above are universal; however, typically

vertex vs lies far away from the ball B so that N0,s is not affected. This certainly

happens if the distance from the ball B to vs is more than the radius of the ball

of volume A2/s, and so this situation occurs with probability 1 − O(b + s−1).

Moreover, if this happens and H(ws) ≥ 0, then H(ws) decreases (it can be
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viewed as some kind of “self-correcting” behaviour); hence, since we aim for an

upper bound, we may assume that H(ws) does not change. It follows that

t∑
s=1

βs = O

(
t∑

s=1

spA2−1ω2 log2 n · (b+ s−1)

)
(13)

= O

(
b ω2 log2 n

t∑
s=1

spA2−1

)
+O

(
ω2 log2 n

t∑
s=1

spA2−2

)
= O

(
b tpA2ω2 log2 n

)
+O

(
tpA2−1ω2 log2 n

)
= O

(
b tpA2ω2 log2 n

)
,

since it is assumed that bt→∞. Similarly, we get that

t∑
s=1

γ2s = O

(
t∑

s=1

(spA2ω log n)2 · (b+ s−1)

)
= O

(
b t1+2pA2ω2 log2 n

)
. (14)

Finally, we are ready to apply Lemma 5 with α = b1/2t1/2+pA2(ω log n)3/2 to

obtain that with probability 1− o(n−3),

|H(wt)−H(w0)| = O(α) = O(b1/2t1/2+pA2(ω log n)3/2).

As H(w0) = 0, it follows from the definition (10) of the function H, that with

the desired probability

N0,t =
bt

1 + pA2
+O((bt)1/2(ω log n)3/2),

which finishes the proof of the theorem.

We may repeat (recursively) the argument as in the proof of Theorem 5 for

Ni,t with i ≥ 1. Since the expected change for Ni,t is slightly different now

(see (9)), we obtain our result by considering the following function:

H(x, y) = xp(A1i+A2)y − ci−1
p(A1(i− 1) +A2)

1 + p(A1i+A2)
x1+p(A1i+A2).

Moreover, in bounding
∑
βs and

∑
γ2s (see (13) and (14)) we need b to be of

order at least (A1i + A2)/t; say, bt � i. Other than these minor adjustments,

the argument is similar as in the case i = 0, and we get the following result.

Note that the conclusion (the last claim) follows as

cibt = Θ(i−1−1/(pA1)bt) = Θ(i(bt)1/2i−2−1/(pA1)(bt)1/2)� i(bt)1/2(log n)3/2,

provided bt� i4+2/(pA1) log3 n.

Theorem 6. Let B be a ball of volume b = b(n), t = t(n) ∈ N, and if = if (n) ∈
N be any functions of n such that bt� if . Let ω = ω(n) be any function tending
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to infinity together with n. The following holds with probability 1− o(n−2). For

any 0 ≤ i ≤ if ,

Ni,t = Ni,t(B) = cibt+O(i(bt)1/2(ω log n)3/2).

In particular, if bt� i4+2/(pA1) log3 n, then Ni,t ∼ cibt.

Finally, we can move to the proof of Theorem 2.

Proof (Proof of Theorem 2). Let us fix any vertex v for which

deg−(v, n) = k = k(n) ≥ (ω log n)4+(4pA1+2)/(pA1(1−pA1)).

Based on Theorem 1, we may assume that for all values of t such that

n

(
ω log n

k

) 1
pA1

=: Tv ≤ t ≤ n,

we have

deg−(v, t) ∼ k
(
t

n

)pA1

.

For any ` ∈ N ∪ {0}, let

t` = 2`Tv, b` = A1kt
pA1−1
` n−pA1 ,

B` be the ball around v of volume b`, and L be the smallest integer ` such

that t` ≥ n. In fact, we will assume that tL = n, as we may adjust ω (that is,

multiply by a constant in (1/2, 1)), if needed. Let tv := n(ω log n)−1/(pA1); since

k ≥ (ω log n)2, we have Tv ≤ tv ≤ n. Let L′ be the smallest integer ` such that

t` ≥ tv.
Times t0 = Tv, tL′ = Θ(tv), and tL = n are important stages of the process;

vertex v has, respectively, degree (1 + o(1))ω log n, Θ(k/(ω log n)), and k. Note

that at time t` (for any 0 ≤ ` ≤ L) the sphere of influence of v has volume

(1 + o(1))b`. Moreover, based on Corollary 2 (applied with, say,
√
ω instead

of ω) we may assume that any vertex vi born after time Tv satisfies (for any

Tv ≤ t ≤ n)

deg(vi, t) ≤
√
ω log n

(
t

i

)pA1

= o

(
ω log n

(
t

i

)pA1
)

= o(deg(v, t)); (15)

as a result, the sphere of influence of w has negligible volume comparing to the

one of v.

We will independently prove an upper bound and a lower bound of cnew(v, n).

In order to do it, we need to estimate |Enew(N−(v, n))|, the number of directed

edges from u to w, where both u and w are neighbours of v born after time Tv.
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Proof of cnew(v, n) = O(1/k): Suppose that a neighbour w of v lies in B`−1 \B`
for some `. An easy but an important observation is that at any time t ≥ t`+1,

the sphere of influence of v is completely disjoint from the one of w. Hence, the

number of edges to w that contribute to cnew(v, n) can be upper bounded by

deg−(w, t`+1). It follows that

|Enew(N−(v, n))| ≤
L−2∑
`=0

∑
w∈B`−1\B`

deg−(w, t`+1) +
∑

w∈BL−2

deg−(w, tL)

≤
L−1∑
`=0

∑
w∈B`−1

deg−(w, t`+1).

Let if = (ω log n)1/(1−pA1). We will independently deal with the largest balls,

namely B` for ` < L′; for the remaining ones, we will deal with vertices of degree

more than if before analyzing the contribution from low degree ones. In other

words, we are going to show that each of the following three functions is of order

at most k:

α =

L′−1∑
`=0

∑
w∈B`−1

deg−(w, t`+1),

β =

L−1∑
`=L′

∑
w∈B`−1

deg−(w,t`+1)≤if

deg−(w, t`+1),

γ =

L−1∑
`=L′

∑
w∈B`−1

deg−(w,t`+1)>if

deg−(w, t`+1).

The conclusion will follow immediately as |Enew(N−(v, n))| ≤ α+ β + γ.

In order to bound α, we only need to use (15) to get that

E(α) =

L′−1∑
`=0

b`−1

t`+1∑
i=1

deg−(vi, t`+1) ≤
L′−1∑
`=0

b`−1

t`+1∑
i=1

√
ω log n

(
t`+1

i

)pA1

=

L′−1∑
`=0

√
ω log n b`−1 t

pA1

`+1

t`+1∑
i=1

i−pA1 =

L′−1∑
`=0

Θ
(√
ω log n b`−1 t`+1

)
=

L′−1∑
`=0

Θ

(
√
ω log n k

(
t`+1

n

)pA1
)

= Θ

(
√
ω log n k

(
tL′

n

)pA1
)
L′−1∑
`=0

2−`pA1

= Θ

(
√
ω log n k

(
tL′

n

)pA1
)

= o(k).
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The fact that, with the desired probability, α = O(k) follows from a standard

martingale argument (for example, one could use Lemma 5).

Similarly, we can deal with γ. It follows from (15) that no vertex born after

time(√
ω log n

if

)1/(pA1)

t`+1 ≤ (
√
ω log n)(1−1/(1−pA1))/(pA1) t`+1

= (
√
ω log n)−1/(1−pA1) t`+1

can satisfy deg−(w, t`+1) > if . Hence,

E(γ) =

L−1∑
`=L′

b`−1

(
√
ω logn)

−1
1−pA1 t`+1∑

i=1

deg−(vi, t`+1) ≤
L−1∑
`=L′

Θ (b`−1 t`+1)

=

L−1∑
`=L′

Θ

(
k

(
t`+1

n

)pA1
)

= Θ (k)

L′−1∑
`=0

2−`pA1 = O(k).

Finally, we need to deal with β. This time, we need to use Theorem 6 to

count (independently) the number of vertices in B`−1 of a certain degree. We

may apply this theorem as for any L′ ≤ ` ≤ L− 1, we have

b`−1t`+1 ≥ bL′−1tL′+1 = Θ

(
k

(
tv
n

)pA1
)

= Θ

(
k

ω log n

)
= Ω

(
(ω log n)3+(4pA1+2)/(pA1(1−pA1))

)
= Ω

(
(ω log n)3 i

(4pA1+2)/(pA1)
f

)
� i

4+2/(pA1)
f log3 n,

since k ≥ (ω log n)4+(4pA1+2)/(pA1(1−pA1)). (In fact, this is the main bottleneck

that forces us to assume that k is large enough.) We get the following:

β =

L−1∑
`=L′

if∑
i=1

iNi,t`+1
(B`−1) = (1 + o(1))

L−1∑
`=L′

if∑
i=1

icib`−1t`+1

= Θ

L−1∑
`=L′

b`−1t`+1

if∑
i=1

i−1/(pA1)

 = Θ

(
L−1∑
`=L′

b`−1t`+1

)
= O(k),

as argued before.

Proof of cnew(v, n) = Ω(1/k): The lower bound is straightforward. Clearly, BL+1

is contained in the sphere of influence of vertex v not only at time n but, in fact,

at any point of the process. It follows from Theorem 6 that the number of
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vertices of in-degree 1 that lie in BL+1 is Θ(bL+1n) = Θ(k). Moreover, their

in-neigbours are also contained in the sphere of influence of v and, with the

desired probability, say, half of them are born after time Tv. In order to avoid

complications with events not being independent, we can select a family of Θ(k)

directed edges such that no endpoint belongs to more than one edge. Now, each

of these selected edges have both endpoints in the in-neighbourhood of v with

probability p2, independently on the other edges. Hence, the expected number

of edges in |Enew(N−(v, n))| is Ω(1/k) and the conclusion follows easily from

the Chernoff bound.

Proof of Theorem 3

Let 1 ≤ α = α(n) = no(1) and 2 ≤ β = β(n) = O(log n) be any functions of

n. We will tune these functions at the end of the proof for a specific value of k,

depending on the case (i), (ii), or (iii) we deal with. Pick any point s in S and

consider two balls, B1 and B2, centered at s; the first one of volume C1 and the

second one of volume C2, where

C1 =
A2

10n
, and C2 =

2(A1 +A2)β

n/(2α)
.

Let v be the first vertex that lands in B1. We independently consider three

phases.

Phase 1: Up to time T1 = n/α when deg−(v, T1) = Θ(β).

Consider the time interval between n/(2α) and n/α. We are interested in the

following event D: during the time interval under consideration, β vertices land

in B1 but no vertex lands in B2 \B1. Clearly,

P(D) =

(
n/(2α)

β

)
Cβ1 (1− C2)n/(2α)−β ≥

(
nC1

3αβ

)β
exp

(
−C2n

α

)
.

Straightforward but important observations are that every vertex in B1 is inside

a ball around any other vertex in B1 (balls have volumes at least A2/(n/α) ≥
A2/n, deterministically); moreover, conditioning on D, during the whole time

interval all balls around β vertices in B1 are contained in B2 (balls have volumes

at most (A1β +A2)/(n/(2α))).

We condition on event D and consider two scenarios that will be applied for

two different ranges of k.

Event F1: vertices in B1 form a (directed) complete graph on β vertices; in

particular, deg−(v, n/α) = β − 1 and c−(v, n/α) = 1. It follows that

P(F1|D) = p(
β
2),
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and so

P(D ∧ F1) ≥
(
nC1

3αβ

)β
exp

(
−C2n

α

)
p(
β
2)

= exp

(
−β log (30αβ/A2)− 4(A1 +A2)β −

(
β

2

)
log (1/p)

)
≥ exp

(
−β logα− 2β log log n− β2 log (1/p)

)
≥ n−1/5−o(1)−1/5 ≥ n−1/2,

provided that

max
{
β logα, β2 log (1/p)

}
≤ 1

5
log n. (16)

Event F2: the first βp/8 − 1 vertices that landed in B1 right after v con-

nected to v but the remaining β(1 − p/8) vertices did not do this; moreover,

each of βp/8 − 1 neighbours of v got connected to at least βp/4 other ver-

tices. In particular, deg−(v, n/α) = βp/8 − 1 and all neighbours w of v satisfy

deg−(w, n/α) ≥ βp/4. It follows that

P(F2|D) = pβp/8−1(1− p)β(1−p/8)
βp/8∏
i=1

P
(

Bin(β − i, p) ≥ βp/4
)

≥ [p(1− p)]β P
(

Bin(β(1− p/8), p) ≥ βp/4
)βp/8

≥
[
p(1− p)

2

]β
,

since E(Bin(β(1− p/8), p)) = β(1− p/8)p ≥ βp/2. This time we get

P(D ∧ F2) ≥
(
nC1

3αβ

)β
exp

(
−C2n

α

)[
p(1− p)

2

]β
= exp

(
−β log (30αβ/A2)− 4(A1 +A2)β − β log

(
2

p(1− p)

))
≥ exp (−β logα− β log β −O(β))

≥ n−1/5−1/5−o(1) ≥ n−1/2,

provided that

max {β logα, β log β} ≤ 1

5
log n. (17)

Phase 2: Between time T1 = n/α and time T2 when deg−(v, T2) ≥ ω log n for

some ω = ω(n) ≤ log log n tending to infinity as n→∞.

We assume that events D and F2 hold. Let W be the set of the first βp/8 − 1

neighbours of v considered in the previous phase. Using the same argument as
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in Lemma 3, we are going to show that with probability at least 1/2 for any t

in the time interval under consideration and any vertex w ∈W ∪ {v},

deg−(w, t) ∼ deg−(w, n/α)

(
t

n/α

)pA1

.

Let ε = 1/(ω log log n) and suppose that

deg−(v, T ) = d ≥ βp/8− 1.

Then, with ‘failing’ probability exp(−Ω(ε2d)), for some value of t, T ≤ t ≤ 2T ,∣∣∣∣∣deg−(v, t)− d ·
(
t

T

)pA1

∣∣∣∣∣ > 5

pA1
· t
T
ε.

We will apply this bound for T = 2in/α for 0 ≤ i = O(log log n). Hence, the

probability that we fail for some vertex (at some time t between T1 and T2) is

at most

βp

8
O(log log n) exp(−Ω(ε2d)) = O(β log log n) exp

(
−Ω

(
β

(ω log log n)2

))
≤ 1

2
,

provided that

β ≥ ω3 (log log n)2(log log log n). (18)

The claim holds as the cumulative error term is

(1 +O(ε))O(log logn) = 1 +O(ε log log n) ∼ 1.

Phase 3: Between time T2 and time n.

We assume that events D and F2 hold, and Phase 2 finished successfully (that is,

concentration holds for all vertices inW ). It follows immediately from Corollary 1

that with probability 1− o(n−1β) for any t in the time interval between T2 and

n, and any vertex w ∈W ∪ {v},

deg−(w, t) ∼ deg−(w, n/α)

(
t

n/α

)pA1

.

The conclusion is that with probability at least n−1/2/3, for a given point s

in S, there exists vertex v in B1 that has Θ(β) in-neighbours in B1. Moreover,

between time n/α and n, the degree of these neighbours of v are larger by a

factor of at least 2 + o(1) than the degree of v. It follows that in this time

interval, the ball around v is contained in all the balls of early neighbours of

v. Conditioning on this event and assuming that, say, α ≥ 2, with probability
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at least 1 − β exp(−Ω(ω log n)) ≥ 1 − n−1, each early neighbour has a positive

fraction of neighbours of v as its neighbours at time n. (Note that this time

events are not independent but the failing probability is small enough for the

union bound to be applied.) It follows that with probability at least n−1/2/4, we

have c−(v, n) = Ω(β/k).

Finally, tessellate S into n1−o(1) squares of volumes, say,

C3 =
ω2 log n

n/(2α)
= n−1+o(1),

as it is assumed that α = no(1), and take various s to be the centers of the

corresponding squares. Note that conditioning of all the phases to end up with

success, balls of all vertices under consideration are contained in the square.

Moreover, in order to decide if a given square is successful does not require to

expose vertices outside of this square. Hence, the events associated with different

squares are almost independent. Formally, one would need to use (in a straight-

forward way) the second moment method to show this claim. It follows that

a.a.s. there is at least one square that is successful.

Now, we are ready to tune α and β for a specific function k. For case (i), we

take α = 1 (that is, no phase 2 and 3) and β = k. It is straightforward to see

that conditions (16) are satisfied. For case (ii), we take

β =
k

5
≤ log n

5 log log n
and α =

(
k

β

)1/(pA1)

= 51/(pA1) ≥ 5.

(This time, there is no phase 3.) Again, it is straightforward to see that condi-

tions (17) and (18) are satisfied. For case (iii), we take

β =
pA1

5
ω(log log n)2(log log log n) and α =

(
k

β

)1/(pA1)

≤ k1/(pA1) ≤ nξ/(pA1).

(Clearly, α � 1.) As usual, it is straightforward to see that conditions (17)

and (18) are satisfied, and the proof is finished.

5.3 Proof of Theorem 4

Let ω = ω(n) = logo(1) n be any function tending to infinity as n → ∞ (arbi-

trarily slowly). First, note that a.a.s.

|Xk| =
(1+δ)k∑
i=(1−δ)k

Θ(i−1−1/(pA1)n) = Θδ(nk
−1/(pA1)),



Clustering Properties of Spatial Preferential Attachment Model 31

as the degree distribution of Gn follows power law with exponent 1+1/(pA1) [1].

Let

rT = T (n) := n

(
2ω log n

k

)1/(pA1)

.

Note that T ≥ nε/(pA1), as k ≤ npA1−ε. It follows from Theorem 1 that a.a.s.,

for each v ∈ Xk,

(1 + o(1))(1− δ)(2ω log n) ≤ deg−(v, T ) ≤ (1 + o(1))(1 + δ)(2ω log n).

In particular, for n large enough,

deg−(v, T ) > ω log n (19)

(as δ < 1/2) and so all old neighbours of v are born before time T .

We start from part (i). As we aim for the statement that holds for almost

all vertices in Xk, we may concentrate on any vertex v ∈ Xk that is born after

time nk−1/(pA1)/ω = o(nk−1/(pA1)) and simply ignore the remaining ones (as

the number of them is negligible comparing to |Xk|). Since each in-neighbour vu
of v is also born after time nk−1/(pA1)/ω, we can use Corollary 2 to be able to

assume that for any u ≤ t ≤ n,

deg(vu, t) ≤ ω log n

(
t

u

)pA1

≤ ω log n

(
t

nk−1/(pA1)/ω

)pA1

.

As a result, for any T ≤ t ≤ n,

|S(vu, t)|
|S(v, t)|

≤ (1 + o(1))
ω log n

(
t

nk−1/(pA1)/ω

)pA1

deg−(v, T )(t/T )pA1
≤ (1 + o(1))

(
T

nk−1/(pA1)/ω

)pA1

∼ 2ωpA1+1 log n ≤ ω2 log n.

(Here we used Theorem 1 and (19).) Moreover, we may ignore all vertices that

have too many vertices that are too close to them at time T . Formally, we ignore

all vertices v that have at least C = d8/(εpA1)e > e vertices in the ball of volume

B = 1/(T logε/2 n) around v at time T . Indeed, suppose that T points are placed

independently and uniformly at random in S (without generating the graph).

The probability that a given point v has too many points around is at most(
T

C

)
BC ≤

(
eTB

C

)C
≤ (TB)C = log−εC/2 n = log−4/(pA1) n.

Since the expected number of such points is at most

T log−4/(pA1) n = nk−1/(pA1)(2ω log n)1/(pA1) log−4/(pA1) n

≤ nk−1/(pA1) log−2/(pA1) n,
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it follows from Markov’s inequality that a.a.s. there are at most nk−1/(pA1) log−1/(pA1) n =

o(|Xk|) of them, as claimed. (In fact, nk−1/(pA1) log−1/(pA1) n = O(|Xk|/(ω2 log n)),

which will be needed for part (ii).)

Our goal is to show that cold(v, n) = O(1/k). Since there are at most C =

O(1) close in-neighbours of v, their contribution to cold(v, n) is only O(1/k) and

so we need to concentrate on far in-neighbours of v. Let

T̂ := T log(2+ε)/(1−pA1) n,

and note that

T̂ = n

(
2ω log n

k

)1/(pA1)

log(2+ε)/(1−pA1) n = o(n),

assuming that k ≥ ω2 log1+(2+ε)pA1/(1−pA1) n, which we may by taking ω small

enough. Let u be any (far) in-neighbour of v that is outside of the ball of volume

B around v at time T . Note that

|S(u, T̂ )| ≤ (ω2 log n)|S(v, T̂ )|
∼ (ω2 log n)(A1 deg−(v, T̂ ))/T̂

≤ (ω2 log n)(4A1ω log n)(T̂ /T )pA1/T̂

≤ (ω4 log2 n)T̂ pA1−1T−pA1

= (ω4 log2 n)(log−(2+ε) n)/T

= 1/(T log−ε+o(1) n) = o(B)

and so also |S(v, T̂ )| = o(B), which implies that at time T̂ spheres of influence

of u and v are disjoint and will continue to shrink. As a result, the number of

common neighbours of v and u is at most

deg−(v, T̂ ) = k(T̂ /n)pA1 = o(k),

and so the number of common neighbours of v and its far neighbours is negligible.

Part (i) holds.

The proof of part (ii) is almost the same so we only point out small adjust-

ments that need to be implemented. It follows from Corollary 3 that we may

assume that c−(v, n) = O(ω log n/k) for any vertex v ∈ Xk. Hence, it is enough

to show that all but at most O(|Xk|/(ω2 log n)) = O(nk−1/(pA1)/(ω2 log n)) ver-

tices in Xk have c−(v, n) = O(1/k). This time we can only ignore vertices born

before time nk−1/(pA1)/(ω2 log n) which gives slightly weaker bound for the ratio

of the volumes of influence of a neighbour of v and v itself:

|S(u, t)|
|S(v, t)|

≤ ω3 log1+pA1 n.
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As a result, we need to define T̄ as a counterpart of T̂ as follows:

T̄ := T log(2+pA1+ε)/(1−pA1) n,

and note that T̄ = o(n), assuming the stronger lower bound for k. The rest of

the proof is not affected.
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