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Abstract. The size-Ramsey number R̂(F ) of a graph F is the smallest integer m such
that there exists a graph G on m edges with the property that any colouring of the edges
of G with two colours yields a monochromatic copy of F .

In this paper, first we focus on the size-Ramsey number of a path Pn on n vertices.
In particular, we show that 5n/2 − 15/2 ≤ R̂(Pn) ≤ 74n for n sufficiently large. (The
upper bound uses expansion properties of random d-regular graphs.) This improves the

previous lower bound, R̂(Pn) ≥ (1 +
√

2)n−O(1), due to Bollobás, and the upper bound,

R̂(Pn) ≤ 91n, due to Letzter.
Next we study long monochromatic paths in edge-coloured random graph G(n, p) with

pn→∞. Let α > 0 be an arbitrarily small constant. Recently, Letzter showed that a.a.s.
any 2-edge colouring of G(n, p) yields a monochromatic path of length (2/3−α)n, which is
optimal. Extending this result, we show that a.a.s. any 3-edge colouring of G(n, p) yields
a monochromatic path of length (1/2− α)n, which is also optimal.

We also consider a related problem and show that for any r ≥ 2, a.a.s. any r-edge
colouring of G(n, p) yields a monochromatic connected subgraph on (1/(r − 1) − α)n
vertices, which is also tight.

1. Introduction

Following standard notation, we write G → (F )r if any r-edge colouring of G (that
is, any colouring of the edges of G with r colours) yields a monochromatic copy of F .
For simplicity, we often write G → F instead of G → (F )2. Furthermore, we define the

size-Ramsey number of F as R̂(F, r) = min{|E(G)| : G → (F )r}, i.e., it is the smallest
number of edges in a graph G such that G → (F )r. Again, for simplicity, we denote

R̂(F ) = R̂(F, 2).
We consider the size-Ramsey number of the path Pn on n vertices. It is easy to see

that R̂(Pn) = Ω(n) and that R̂(Pn) = O(n2). For example, K2(n−1) → Pn. Indeed, in any
2-colouring of the edges of K2(n−1) every vertex is adjacent to at least n − 1 edges of the
same colour, say red. Furthermore, any two vertices with n− 1 red adjacent edges are in
the same red component. Thus, there is a monochromatic component of order at least n
with minimum degree at least n− 1, which clearly must contain a copy of Pn.

The exact behaviour of R̂(Pn) was not known for a long time. In fact, Erdős [16] offered
$100 for a proof or disproof that

R̂(Pn)/n→∞ and R̂(Pn)/n2 → 0.
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This problem was solved by Beck [2] in 1983 who, quite surprisingly, showed that R̂(Pn) <
900n. (Each time we refer to inequality such as this one, we mean that the inequality holds

for sufficiently large n.) A variant of his proof, provided by Bollobás [11], gives R̂(Pn) <
720n. Very recently, the authors of this paper [15] used a different and more elementary

argument that shows that R̂(Pn) < 137n. The argument was subsequently tuned by

Letzter [30] who showed that R̂(Pn) < 91n. On the other hand, the first nontrivial lower
bound was provided by Beck [3] and his result was subsequently improved by Bollobás [9]

who showed that R̂(Pn) ≥ (1 +
√

2)n−O(1).

In Section 2, we show that for any r ≥ 1, R̂(Pn, r) ≥ (r+3)r
4

n − O(r2) (Theorem 2.1),
which slightly improves the lower bound of Bollobás [9] for two colours and generalizes

it to more colours. It follows that R̂(Pn) ≥ 5n/2 − O(1). In Section 3, using expansion

properties of random d-regular graphs, we show that R̂(Pn) ≤ 74n (Theorem 3.4) which
improves the leading constant provided by Letzter [30]. We also generalize our upper

bound to more colours, showing that R̂(Pn, r) ≤ 33r4rn (Theorem 3.6).

In Section 4, we deal with the following, closely related problem. It is known, due to
Gerencsér and Gyárfás [22], that Kn → P(2/3+o(1))n; due to Gyárfás, Ruszinkó, Sárközy,
and Szemerédi [24, 25] and also Figaj and  Luczak [19], we know that Kn → (P(1/2+o(1))n)3.
Moreover, these results are best possible. Unfortunately, very little is known about the
behaviour for more colours; although it is conjectured that Kn → (P(1/(r−1)+o(1))n)r for
r ≥ 3, which would be best possible. Clearly, if for some subgraph G of Kn, G → Pcn,
then Kn → Pcn as well. On the other hand, one could expect that sparse subgraphs of Kn

“arrow” much shorter paths. However, this intuition is false. As a matter of fact, for two
colours Letzter [30] showed that a.a.s. G(n, p)→ P(2/3−α)n, provided that pn→∞, which
is optimal. (Here and later on, α > 0 is an arbitrarily small constant.) In general, it is
known due to Dellamonica, Kohayakawa, Marciniszyn, and Steger [13] that for any r ≥ 3
a.a.s. G(n, p)→ (P(1/r−α)n)r, provided that pn→∞. This is, perhaps, not sharp but it is a
consequence of the poor current understanding of the behaviour of the multicolored Ramsey
number of Pn (see Section 4 for more details). On the other hand, note that the best one
can hope for is that a.a.s. G(n, p) → (P(1/(r−1)+o(1))n)r, provided that pn → ∞, since
there are r-colourings of the edges of Kn (and so also of G(n, p)) with no monochromatic
path of length n/(r − 1). In this paper, we improve the case r = 3 and show that a.a.s.
G(n, p)→ (P(1/2−α)n)3 (Theorem 4.1), which is optimal.

In the next section, Section 5, we continue with similar direction but relax the property of
having Pcn as a subgraph to having a component of size cn. It is known, due to Gyárfás [23]
and Füredi [21], that for any r-colouring of the edges of Kn, there is a monochromatic
component of order (1/(r − 1) + o(1))n. They also showed that this is best possible if
r − 1 is a prime power. We show that Kn and G(n, p) behave very similarly with respect
to the size of the largest monochromatic component. More precisely, we prove that a.a.s.
for any r-colouring of the edges of G(n, p), there is a monochromatic component of order
(1/(r − 1) − α)n, provided that pn → ∞ (Theorem 5.3). As before, this result is clearly
best possible.
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2. Lower bound on the size-Ramsey number of Pn

In this section, we improve the lower bound (for two colours) given by Bollobás [9] who

showed that R̂(Pn) ≥ (1 +
√

2)(n− 1)− 4. In our result, the leading constant (1 +
√

2) is
increased to 5/2. Moreover, we provide a more general result that holds for any number

of colours r, which improves the trivial lower bound R̂(Pn, r) ≥ (r − 1)(n− 1) + 1.

Theorem 2.1. Let r ≥ 1. Then, for all sufficiently large n

R̂(Pn, r) ≥
(r + 3)r

4
n− r(5r + 11)

4
+ 3.

We will need the following auxiliary claim.

Claim 2.2. Let k ≥ 0 and T be a tree. Then, at least one of the following two properties
holds:

(i) T has k edges e1, e2, . . . , ek such that T − {e1, e2, . . . , ek} contains no Pn,
(ii) T contains (k + 2) vertex-disjoint connected subgraphs of order at least bn/2c each.

Proof. We prove the statement by induction on k. For k = 0, if (i) fails, then T contains a
copy of Pn and we are done. Indeed, after splitting the path as equally as possible we get
two components of the desired order so (ii) holds.

Let k ≥ 0 and suppose that the statement holds for any integer i satisfying 0 ≤ i ≤
k. Again, assume that (i) fails for (k + 1); that is, for any choice of e1, e2, . . . , ek+1,
T − {e1, e2, . . . , ek+1} contains Pn. We will show that (ii) must hold; that is, T contains
(k + 3) vertex-disjoint connected subgraphs of order at least bn/2c each.

Clearly T ⊇ Pn. Hence, let e be such that T − e consists of two components, T1 and
T2, each of order at least bn/2c. By the assumption we made (that (i) fails for (k + 1)),
for any choice of k1 edges e1, e2, . . . , ek1 in T1 and k2 edges f1, f2, . . . , fk2 in T2 such that
k1 + k2 = k, either T1 − {e1, e2, . . . , ek1} or T2 − {f1, f2, . . . , fk2} contains Pn.

If T1 − {e1, e2, . . . , ek1} ⊇ Pn and T2 − {f1, f2, . . . , fk2} ⊇ Pn for any choice of the edges,
then (by inductive hypothesis) T1 and T2 have, respectively, (k1 + 2) and (k2 + 2) vertex-
disjoint connected subgraphs of size bn/2c, giving k1 + k2 + 4 ≥ k + 3 vertex-disjoint
connected subgraphs of order bn/2c in T . Therefore, without loss of generality, we may
assume that T2−{f1, f2, . . . , fk2} + Pn for some choice of f1, f2, . . . , fk2 , where k2 is as small
as possible. Of course, this implies that T1 − {e1, e2, . . . , ek1} ⊇ Pn for any choice of the
edges. Now, we need to consider two cases. If k2 = 0, then (by inductive hypothesis) T1 has
(k1 + 2) vertex-disjoint connected subgraphs of order bn/2c which, together with T2 yield
(k+3) desired large subgraphs in T . On the other hand, if k2 ≥ 1, then (due to minimality
of k2) we infer that for any choice of f1, f2, . . . , fk2−1 we have T2−{f1, f2, . . . , fk2−1} ⊇ Pn.
Thus, (again, by inductive hypothesis) T has (k1 + 2) + (k2− 1 + 2) = k+ 3 vertex-disjoint
connected subgraphs of order bn/2c, as needed. �

Now, we are ready to prove the main result of this section. The proof uses some ideas
of Bollobás [9] and Beck [3].

Proof of Theorem 2.1. We prove the statement by induction on r. For r = 1 the desired
inequality is trivially true: R̂(Pn, 1) ≥ n − 1. Assume that the statement holds for some
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r ≥ 1 and, for a contradiction, suppose that it fails for (r + 1), that is,

R̂(Pn, r + 1) <
(r + 4)(r + 1)

4
n− (r + 1)(5(r + 1) + 11)

4
+ 3.

Let G = (V,E) be a graph of order N and size R̂(Pn, r + 1), such that G → (Pn)r+1.
Clearly, G is connected. We will independently deal with two cases, depending on N .

Case 1 : N > (r + 2)(n − 3)/2. Let T be any spanning tree of G. We apply Claim 2.2
with k = r. First, let us assume that property (i) in the claim holds; that is, T has r edges
e1, e2, . . . , er such that T −{e1, e2, . . . , er} contains no Pn. We colour all (N − 1)− r edges
in T − {e1, e2, . . . , er} using the first colour. The number of uncoloured edges is at most

R̂(Pn, r + 1)−(N − r − 1)

<
(r + 4)(r + 1)

4
n− (r + 1)(5(r + 1) + 11)

4
+ 3− r + 2

2
(n− 3) + r + 1

=
(r + 3)r

4
n− r(5r + 11)

4
+ 3 ≤ R̂(Pn, r),

where the last inequality follows from the inductive hypothesis. Thus, we can colour the
uncoloured edges with the remaining r colours in such a way that there is no monochromatic
Pn. Consequently, G 6→ (Pn)r+1, which gives us the desired contradiction.

Assume then that property (ii) in the claim holds; that is, T contains (r + 2) vertex-
disjoint connected subgraphs of order at least bn/2c each. We colour bn/2c − 1 edges of
each of the (r + 2) components with the first colour. (If some component has more than
bn/2c − 1 edges, we select edges to colour arbitrarily.) The number of uncoloured edges is
at most

R̂(Pn, r + 1)−(r + 2)
(⌊n

2

⌋
− 1
)

<
(r + 4)(r + 1)

4
n− (r + 1)(5(r + 1) + 11)

4
+ 3− (r + 2)

(
n

2
− 3

2

)
=

(r + 3)r

4
n− r(5r + 11)

4
+ 3− (r + 1) < R̂(Pn, r),

and this yields a contradiction (G 6→ (Pn)r+1), as before.

Case 2 : N ≤ (r + 2)(n − 3)/2. Let W1 ⊆ V be any set of size |W1| = n − 1, and let
W2,W2, . . . ,Wr+1 be an equipartition of V \W1. Clearly, for any 2 ≤ i ≤ r + 1,

|Wi| ≤
⌈

1

r

(
r + 2

2
(n− 3)− (n− 1)

)⌉
=

⌈
n− 3

2
− 2

r

⌉
<
n− 1

2
− 2

r
.

For 2 ≤ i ≤ r+ 1, let Gi = G[Wi,W1 ∪ · · · ∪Wi−1] be the bipartite subgraph of G induced
by the edges between Wi and W1 ∪ · · · ∪Wi−1. We colour the edges of Gi with the i-th
colour and the remaining edges (inside Wi’s for 1 ≤ i ≤ r+1) with the last colour. Clearly
there is no monochromatic (or, in fact, any) copy of Pn in Wi’s. Furthermore, each path
in Gi must alternate between Wi and W1 ∪ · · · ∪Wi−1. Thus, the longest path in Gi has at
most 2|Wi| + 1 < n vertices. We get the desired contradiction (G 6→ (Pn)r+1) for the last
time and the proof is finished. �
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3. Upper bound on the size-Ramsey number of Pn

In this section we improve the upper bound on R̂(Pn) as well as on R̂(Pn, r) for an
arbitrary r.

Let us recall a few classic models of random graphs that we study in this section and
later on in the paper. The binomial random graph G(n, p) is the random graph G with

vertex set [n] := {1, 2, . . . , n} in which every pair {i, j} ∈
(
[n]
2

)
appears independently as

an edge in G with probability p. The binomial random bipartite graph G(n, n, p) is the
random bipartite graph G = (V1 ∪V2, E) with partite sets V1, V2, each of order n, in which
every pair {i, j} ∈ V1×V2 appears independently as an edge in G with probability p. Note
that p = p(n) may (and usually does) tend to zero as n tends to infinity.

Recall that an event in a probability space holds asymptotically almost surely (or a.a.s.)
if the probability that it holds tends to 1 as n goes to infinity. Since we aim for results that
hold a.a.s., we will always assume that n is large enough. For simplicity, we do not round
numbers that are supposed to be integers either up or down; this is justified since these
rounding errors are negligible to the asymptomatic calculations we will make. Finally, we
use log n to denote natural logarithms.

However, our main results in this section refer to another probability space, the proba-
bility space of random d-regular graphs with uniform probability distribution. This space
is denoted Gn,d, and asymptotics are for n→∞ with d ≥ 2 fixed, and n even if d is odd.

Instead of working directly in the uniform probability space of random regular graphs
on n vertices Gn,d, we use the pairing model (also known as the configuration model) of
random regular graphs, first introduced by Bollobás [8], which is described next. Suppose
that dn is even, as in the case of random regular graphs, and consider dn points partitioned
into n labelled buckets v1, v2, . . . , vn of d points each. A pairing of these points is a perfect
matching into dn/2 pairs. Given a pairing P , we may construct a multigraph G(P ), with
loops allowed, as follows: the vertices are the buckets v1, v2, . . . , vn, and a pair {x, y} in
P corresponds to an edge vivj in G(P ) if x and y are contained in the buckets vi and vj,
respectively. It is an easy fact that the probability of a random pairing corresponding to a
given simple graph G is independent of the graph, hence the restriction of the probability
space of random pairings to simple graphs is precisely Gn,d. Moreover, it is well known

that a random pairing generates a simple graph with probability asymptotic to e−(d
2−1)/4,

so that any event holding a.a.s. over the probability space of random pairings also holds
a.a.s. over the corresponding space Gn,d. For this reason, asymptotic results over random
pairings suffice for our purposes. For more information on this model, see, for example,
the survey of Wormald [37].

3.1. Existing approach. Using the following (deterministic) lemma Letzter showed that

R̂(Pn) < 91n. A similar result was first noticed by Ben-Eliezer, Krivelevich and Sudakov [4,
5] and later by Pokrovskiy [32].

Lemma 3.1 ([4, 5, 30, 32]). Let G be a graph of order cn for some c > 2. Assume that
for every two disjoint sets of vertices S and T such that |S| = |T | = n(c − 2)/4 we have
e(S, T ) 6= 0. Then, G→ Pn.

In fact, she showed that a.a.s. G(cn, d/n) → Pn with c = 4.86 and d = 7.7. This is an
improved version of a result of the authors of this paper [15]. A slightly stronger bound
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can be obtained if random d-regular graphs are used. Here a.a.s. Gcn,d → Pn with c = 5.219

and d = 30, which implies that R̂(Pn) < 78.3n for sufficiently large n. Since we will provide
a stronger result (see Theorem 3.4), we omit the proof.

Lemma 3.1 provides a sufficient condition for G → Pn that is quite convenient for any
good expander G. On the other hand, it is not so difficult to see that it can never give an
upper bound better than 26.4n. Indeed, let α = (c − 2)/(4c) and G be a graph of order
N = cn and average degree d such that for every two disjoint sets of vertices S and T
with |S| = |T | = αN we have e(S, T ) 6= 0. Then the complement of G contains no copy of
KαN,αN and the well-known Kővári, Sós and Turán [28] inequality (see also Theorem 11
in [10]) yields

N

(
N − 1− d

αN

)
≤ (αN − 1)

(
N

αN

)
,

which for N sufficiently large implies that d ≥ logα
log(1−α) − 1. Thus, the number of edges in

G is at least
Nd

2
=
cnd

2
≥ c

2

(
logα

log(1− α)
− 1

)
n = f(c)n,

where

f(c) :=
c

2

(
log(c− 2)/(4c)

log(3c+ 2)(4c)− 1

)
.

The above function takes a minimum at c = c0 ≈ 5.633 which gives f(c0) ≈ 26.415.

3.2. Improved approach. In this subsection, we provide another sufficient condition
for G → Pn which can be viewed as a slight straightening of Lemma 3.1. We start
with the following elementary observation, which was also first discovered by Ben-Eliezer,
Krivelevich and Sudakov [4, 5] and later by Pokrovskiy [32].

Lemma 3.2 ([4, 5, 32]). Let G be a graph of order cn for some c > 1. Then, the vertex
set V (G) can be partitioned into three sets P,U,W , |U | = |W | = (cn − |P |)/2 such that
the graph induced by P has a Hamiltonian path and e(U,W ) = 0.

Now we are ready to state the main tool used in this subsection.

Lemma 3.3. Let G be a graph of order cn for some c > 2. Assume that for every four
disjoint sets of vertices S1, S2, T1, T2 such that |S1| + |S2| = |T1| + |T2| = |S1| + |T1| =
|S2|+ |T2| = n(c− 2)/2 we have e(S1, T2) 6= 0 or e(S2, T1) 6= 0. (Clearly, this implies that
|S1| = |T2| and |S2| = |T1|.) Then, G→ Pn.

Proof. Suppose that G 6→ Pn; that is, suppose that it is possible to colour the edges of
G with the colours blue and red such that there is no monochromatic Pn. Let Gb be the
graph on the vertex set V (G), induced by blue edges. It follows from Lemma 3.2 (applied
to Gb) that there exist two disjoint sets U,W ⊆ V (Gb) = V (G) each of size n(c − 1)/2
such that there is no blue edge between U and W (observe that |P | < n as there is no blue
Pn in G). Now, consider a bipartite graph Gr = (U ∪W,Er), with partite sets U,W , and
Er = {uw ∈ E(G) : u ∈ U,w ∈ W}. Clearly, all edges of Gr are red. Lemma 3.2 (this
time applied to Gr) implies then that there exist two disjoint sets U ′,W ′ ⊆ V (Gr) ⊆ V (G)
each of size n(c− 2)/2 such that there is no red edge between U ′ and W ′ (again, observe
that |P ′| < n as there is no red Pn in G ⊇ Gr). Moreover, as Gr is bipartite, the path P ′

has at most n/2 vertices in U and at most n/2 vertices in W . Hence, we may assume that
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|(U ′∪W ′)∩U | = |(U ′∪W ′)∩W | = n(c−2)/2. Let S1 = U∩U ′, S2 = U∩W ′, T1 = W ∩U ′,
and T2 = W ∩W ′. Clearly, |S1|+ |S2| = |T1|+ |T2| = |S1|+ |T1| = |S2|+ |T2| = n(c− 2)/2,
e(S1, T2) = 0, and e(S2, T1) = 0. The proof of the theorem is finished. �

It is straightforward to show (we omit the proof) that for binomial random graphs

with c = 5.28 and d = 6 a.a.s. G(cn, d/n) → Pn, which implies that R̂(Pn) < 83.7n for
sufficiently large n. As expected, random d-regular graphs give a better constant. Here is
the main result of this section.

Theorem 3.4. Let c = 5.4806 and d = 27. Then, a.a.s. Gcn,d → Pn, which implies that

R̂(Pn) < 74n for sufficiently large n.

Proof. Consider Gcn,d for some c ∈ (2,∞) and d ≥ 1. Let s = s(n), a = a(n), b = b(n),
t = t(n) be functions of n such that sn, an, bn and tn are integers and 0 ≤ s ≤ (c− 2)/4,
0 ≤ a ≤ s, 0 ≤ b ≤ s, 0 ≤ t ≤ min{(c− 2)/2− a− b, 2}. Let X(s, a, b, t) be the expected
number of (ordered) quadruples of disjoint sets S1, S2, T1, T2 such that |S1| = |T2| = sn,
|S2| = |T1| = ((c− 2)/2− s)n, e(S1, T2) = e(S2, T1) = 0, e(S1, T1) = adn, e(S2, T2) = bdn,
and e(S1 ∪ S2, V \ (S1 ∪ S2 ∪ T1 ∪ T2)) = tdn. (Note that, in particular, |S1| + |S2| =
|T1|+ |T2| = |S1|+ |T1| = |S2|+ |T2| = n(c− 2)/2.)

Let M(i) be the number of perfect matchings on i vertices, that is,

M(i) =
i!

(i/2)!2i/2
.

(Each time we deal with perfect matchings, i is assumed to be an even number.) Using
the pairing model, we get that

X(s, a, b, t) =

(
cn

sn

)(
(c− s)n

( c−2
2
− s)n

)(
c+2
2
n

sn

)(
( c+2

2
− s)n

( c−2
2
− s)n

)(
sdn

adn

)(
( c−2

2
− s)dn
adn

)
(adn)!

·
(
sdn

bdn

)(
( c−2

2
− s)dn
bdn

)
(bdn)!

(
( c−2

2
− a− b)dn
tdn

)(
2dn

tdn

)
(tdn)!

·M
((

c− 2

2
− a− b− t

)
dn

)
M

((
c+ 2

2
− a− b− t

)
dn

)
/M(cdn).

In this formula the first four binomial coefficients count the number of choices for S1, T1, S2,

and T2. The next factors,
(
sdn
adn

)(
( c−2

2
−s)dn
adn

)
(adn)!, choose adn pairs between S1 and T1.

Similarly,
(
sdn
bdn

)(
( c−2

2
−s)dn
bdn

)
(bdn)! deal with bdn pairs between S2 and T2. The next three

factors,
( c−2

2
−a−b)dn
tdn

)(
2dn
tdn

)
(tdn)!, count the number of tdn pairs between S1 ∪ S2 and V \

(S1 ∪ S2 ∪ T1 ∪ T2). Finally, M
((

c−2
2
− a− b− t

)
dn
)

counts pairs inside S1 ∪ S2, and

M
((

c+2
2
− a− b− t

)
dn
)

counts the remaining pairs.
Our goal is to show that X(s, a, b, t) = o(n−4) (regardless of the choice of s, a, b, t) so

that
∑

s,a,b,tX(s, a, b, t) = o(1). Hence, we need to maximize X(s, a, b, t). One can show

that the maximum is obtained for a = b and for the case when |S1| = |S2| = |T1| = |T2| =
s = (c− 2)/4. Therefore, we need to concentrate on

Y (a, t) = X

(
c− 2

4
, a, a, t

)
= ef(a,t)n+o(n),
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where

f(a, t) = c log c+ 4(d− 1)

(
c

4
− 1

2

)
log

(
c

4
− 1

2

)
+ (d− 1)2 log 2− 2da log a− dt log t

−d
2
c log c− 4d

(
c

4
− 1

2
− a
)

log

(
c

4
− 1

2
− a
)
− d(2− t) log(2− t)

+d
( c

2
− 1− 2a

)
log
( c

2
− 1− 2a

)
− d

2

( c
2
− 1− 2a− t

)
log
( c

2
− 1− 2a− t

)
+
d

2

( c
2

+ 1− 2a− t
)

log
( c

2
+ 1− 2a− t

)
.

Since ∂f
∂t

= 0 if and only if t2 − (c − 4a)t + (c − 2 − 4a) = 0, function f(a, t) has a local

maximum for t = t0 := (c − 4a)/2 −
√

(c− 4a)2 − 4(c− 2− 4a)/2, which is also a global
one on the interval under consideration. We get

f(a, t) ≤ g(a) := f(a, t0).

Finally, by taking c = 5.4806 and d = 27, we get g(a) < −0.0001 for any a we deal with.
It follows that for any choice of parameters, X(s, a, b, t) ≤ Y (a, t) ≤ exp(−0.0001n) =

o(n−4), and the proof is finished. It follows that R̂(Pn) < 74n for n large enough, as
cd/2 = 73.9881 < 74. �

3.3. More colours. In this subsection, we turn our attention to colourings with more than
two colours. Here is a natural generalization of Lemma 3.3 in easier, bipartite, setting.

Lemma 3.5. Let r ≥ 2 and G = (V1 ∪ V2, E) be a balanced bipartite graph of order cn
for some c > 2r − 1. Assume that for every two sets S ⊆ V1 and T ⊆ V2, |S| = |T | =
((c+ 1)/2r − 1)n/2, we have e(S, T ) 6= 0. Then, G→ (Pn)r.

Proof. Suppose that G 6→ (Pn)r; that is, suppose that it is possible to colour the edges
of G with the colours from the set {1, 2, . . . , r} such that there is no monochromatic Pn.
Let βi be defined recursively as follows: β0 = c, βi = (βi−1 − 1)/2 for i ≥ 1. Note that
βi = (c + 1)/2i − 1 for i ≥ 0. We will use (inductively) Lemma 3.2 to prove the following
claim, which will finish the proof (by taking S = Sr and T = Tr).

Claim: For each i ∈ {0, 1, . . . , r}, there exist two sets Si ⊆ V1 and Ti ⊆ V2, each of size
at least βin/2, such that there is no edge between Si and Ti whose colour belongs to the
set {1, 2, . . . , i}.

The base case (i = 0) trivially (and vacuously) holds by taking S0 = V1 and T0 = V2.
Suppose that the claim holds for some i, 0 ≤ i < r. We apply Lemma 3.2 to the bipartite
graph with partite sets Si, Ti, induced by the edges in colour (i + 1). It follows that
Si ∪ Ti can be partitioned into three sets P,U,W , P has a Hamiltonian path, |U | = |W | =
(βin − |P |)/2, and e(U,W ) = 0. Since G is bipartite, |Si \ P | = |Ti \ P | = (βin − |P |)/2.
Without loss of generality, we may assume that |(Si \ P ) ∩ U)| ≥ |(Ti \ P ) ∩ U)|. As a
result, |(Si \P )∩U)| = |(Ti \P )∩W )| ≥ n(βi− |P |)/4 ≥ n(βi− 1)/4. The inductive step
is finished by taking Si+1 = (Si \ P ) ∩ U and Ti+1 = (Ti \ P ) ∩W . �

Theorem 3.6. Let r ≥ 2, c = 2r+1, and d = 8r. Then, a.a.s. G(cn, cn, d/n) → (Pn)r,

which implies that R̂(Pn, r) < 33r4rn for sufficiently large n.
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Proof. Consider G(cn, cn, d/n) = (V1 ∪ V2, E). We will show that the expected number of
pairs of sets S ⊆ V1 and T ⊆ V2 such that |S| = |T | = cn/2r+2 and e(S, T ) = 0 tends
to zero as n → ∞. This will finish the first part of the proof by Lemma 3.5, combined
with the first moment principle, as cn/2r+2 < ((c+ 1)/2r − 1)n/2 (recall that c = 2r+1).
Indeed, the expectation we need to estimate is equal to(

cn

cn/2r+2

)2(
1− d

n

)(cn/2r+2)2

≤ (2r+2e)2cn/2
r+2

exp

(
−d
( c

2r+2

)2
n

)
= o

(
(e2r)2cn/2

r+2

exp

(
−d
( c

2r+2

)2
n

))
= o

(
exp

((
4r − dc

2r+2

)
cn

2r+2

))
= o(1),

as dc/2r+2 = 4r. The second part follows from the fact that the number of edges in
G(cn, cn, d/n) is well concentrated around c2dn and c2d = 32r4r < 33r4r. �

Summarizing, we showed that there exist some positive constants c1, c2 such that for any
r ≥ 1 we have

c1r
2 · n ≤ R̂(Pn, r) ≤ c2r4

r · n.
Of course, one can improve Lemma 3.5 slightly. For example, in the first step there is no
need to assume that the graph is bipartite. Also one could try to use the “double wholes”
approach as in Lemma 3.3. However, the improvement would not be substantial. It would
be interesting to determine the order of magnitude of R̂(Pn, r) as a function of r (for fixed
n).

4. Multicoloured path Ramsey number of G(n, p)

Determining the classical Ramsey number for paths, R(Pn, r), it is a well-known problem
that attracted a lot of attention. The case r = 2 is well understood, due to the result of
Gerencsér and Gyárfás [22]. It is known that

R(Pn, 2) =

⌊
3n− 2

2

⌋
.

For r = 3 and n sufficiently large, Gyárfás, Ruszinkó, Sárközy, and Szemerédi [24, 25]
proved that

R(Pn, 3) =

{
2n− 1 for odd n,

2n− 2 for even n,

as conjectured earlier by Faudree and Schelp [18]. (An asymptotic value was obtained
earlier by Figaj and  Luczak [19].) However, this problem is still open for small values of n.
On the other hand, very little is known for any integer r ≥ 4. The well-known Erdős and
Gallai result [17] implies only that R(Pn, r) ≤ rn. Very recently, Sárközy [33] improved it
and showed that for any integer r ≥ 2,

R(Pn, r) ≤
(
r − r

16r3 + 1

)
n.
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It is believed that the value of R(Pn, r) is close to (r− 1)n, which would be optimal, since
for some values of r there are r-colourings of the edges of K(r−1)n with no monochromatic
component of size bigger than n (see Section 5).

In this section, we consider an analogous problem for G(n, p) with average degree, np,
tending to infinity as n→∞. We are interested in the following constant:

cr = sup{c ∈ [0, 1] : G(n, p)→ (Pcn)r a.a.s., provided np→∞}. (1)

The case r = 2 is already investigated; due to Letzter [30] we know that c2 = 2/3. For
an arbitrary integer r ≥ 3 it is known due to Dellamonica, Kohayakawa, Marciniszyn, and
Steger (see Theorem 7 in [13]) that cr ≥ 1/r. Here we improve the case r = 3.

Theorem 4.1. Let α > 0 be an arbitrarily small constant and p = p(n) be such that pn→
∞. Then, a.a.s. G(n, p)→

(
P(1/2−α)n

)
3
, which is optimal. This implies that c3 = 1/2.

Furthermore, we conjecture that cr = n/R(Pn, r) for any r ≥ 2, which is true for r = 2 [30]
and for r = 3, due to the above theorem.

The proof is based on a rather standard application of Sparse Regularity Lemma combined
with an ingenious idea of Figaj and  Luczak [19] of “connected matchings”.

First we introduce some notation needed to state Sparse Regularity Lemma. For given two
disjoint subsets of vertices U and W in a graph G, we define the p-density of the edges between
U and W as

dp(U,W ) =
e(U,W )

p|U ||W |
.

Moreover, we say that U,W is an (ε, p)-regular pair if, for every U ′ ⊆ U and W ′ ⊆ W with
|U ′| ≥ ε|U |, |W ′| ≥ ε|W |, |dp(U ′,W ′) − dp(U,W )| ≤ ε. Suppose that 0 < η < 1, D > 1 and
0 < p < 1 are given. We will say that a graph G is (η, p,D)-upper-uniform if for all disjoint
subsets U1 and U2 with |U1| ≥ |U2| ≥ η|V (G)|, dp(U1, U2) ≤ D.

The following theorem, which is a variant of Szemerédi’s Regularity Lemma [36] for sparse
graphs, was discovered independently by Kohayakawa [27] and Rödl (see, for example, [12]).

Theorem 4.2 (Sparse Regularity Lemma). For every ε > 0, r ≥ 1 and D ≥ 1, there exist η > 0
and T such that for every 0 ≤ p ≤ 1, if G1, G2, . . . , Gr are (η, p,D)-upper-uniform graphs on the
vertex set V , then there is an equipartition of V into s parts, where 1/ε ≤ s ≤ T , for which all
but at most ε

(
s
2

)
of the pairs induce an (ε, p)-regular pair in each Gi.

There is also an improved version of this lemma given by Scott [34], where the upper-uniform
requirement is omitted.

The proof of Theorem 4.1 also relies on the following lemma of Figaj and  Luczak [19].

Theorem 4.3 ([19]). Let 0 < ε ≤ 0.001 and let G be a graph of order n with at least (1− ε)
(
n
2

)
edges. Then, for any 3-colouring of the edges of G, there is a monochromatic component which
contains a matching saturating at least (1/2− 5ε1/7)n vertices.

Proof of Theorem 4.1. Let α > 0 and p = p(n) be such that pn → ∞ as n → ∞. We will show
that a.a.s. for every 3-edge colouring of G = G(n, p) = (V,E) there is a monochromatic path of
length at least (1/2− α)n.

For each i ∈ {1, 2, 3}, let Gi be a subgraph of G induced by the edges coloured with colour i.
Let 0 < η < 1 be any constant. By Chernoff’s bound, for any U and W of size at least ηn, the
p-density dp(U,W ) in G is at most 2 and so the p-density in each Gi is also at most 2. (Indeed,
there are obviously at most (2n)2 = 4n choices for U and W , and for each choice the failure
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probability is at most 2 exp(−η2n2p/3) = o(4n).) Thus, each Gi is an (η, p, 2)-upper-uniform
graph.

Set D = 2 and assume that ε > 0 is sufficiently small. Apply the sparse regularity lemma
with above defined ε,D, and r = 3. Let η and T be the constants arising from this lemma.
Consequently, Theorem 4.2 implies that there is an equipartition of V = V1 ∪V2 ∪ · · · ∪Vs, where
1/ε ≤ s ≤ T , for which all but at most ε

(
s
2

)
of the pairs induce an (ε, p)-regular pair in each Gi.

Let R be the auxiliary (cluster) graph with vertex set [s], where {i, j} is an edge if and only
if Vi, Vj induce an (ε, p)-regular bipartite graph in each of the 3 colours. Colour {i, j} in R by
the majority colour appearing between Vi and Vj in G. Again by Chernoff’s bound the p-density
dp(Vi, Vj) in G is at least 1/2. Hence, if {i, j} is coloured by c, then dp(Vi, Vj) in Gc is at least
1/6.

Observe that the number of edges in R is at least (1 − ε)
(
s
2

)
. By Theorem 4.3 we obtain a

monochromatic, say red, minimal component F which contains a matching M saturating at least
` = (1/2− 5ε1/7)s vertices of R. Let W = (i1, i2, . . . ik, i1) be a minimal closed walk contained in
F which contains M . Clearly, F is a tree and so k ≤ 2(s−1). We divide each set Vij into two sets
Uj ,Wj of equal sizes, that is, |Uj | = |Wj | = n/(2s). For each e ∈M we find the first appearance
of e in W , say (ij , ij+1). Let Pe be a longest red path in the bipartite graph G[Uj , Uj+1]. Since Vij
and Vij+1 are (ε, p)-regular with p-density at least 1/6, Lemma 3.2 implies that Pe covers at least
(1 − 4ε)n/s vertices of G[Uj , Uj+1] for each 1 ≤ j ≤ ` − 1. Similarly, for the second appearance
of e in W we will obtain a red path P ′e that covers at least (1− 4ε)n/s vertices of G[Wj+1,Wj ].
Clearly, ∑

e∈M
(|Pe|+ |P ′e|) ≥ 2|M | · (1− 4ε)n/s = (1/2− 5ε1/7)(1− 4ε)n ≥ (1/2− α/2)n

for sufficiently small ε.
Finally using elementary properties of (ε, p)-regular pairs we glue all Pe’s and P ′e’s (following

the order in W ) loosing only O(ε)n ≤ αn/2 vertices. This completes the proof. �

5. Large monochromatic components in G(n, p)

It is easy to see that in every 2-colouring of the edges of Kn there is a monochromatic connected
subgraph on n vertices. For three colours the analogue problem was first solved by Gerencsér
and Gyárfás [22] (see also [1, 6]). The generalization of this result to any number of colours was
proved by Gyárfás [23] and it also follows from a more general result of Füredi [21].

Theorem 5.1 ([23, 21]). Let r ≥ 2. Suppose that the edges of Kn are coloured with r colours.
Then, there is a monochromatic component with at least n/(r − 1) vertices. This result is sharp
if r − 1 is a prime power and (r − 1)2 divides n.

In this section we consider a similar problem for G(n, p). The following was proven by Spöhel,
Steger and Thomas [35] and also independently by Bohman, Frieze, Krivelevich, Loh and Su-
dakov [7]. Recall that a graph is r-orientable if it is possible to direct all of its edges so that the
resulting digraph has maximum in-degree at most r.

Theorem 5.2 ([35, 7]). Let r ≥ 2 and let τr denote the constant which determines the threshold
for r-orientability of the random graph G(n, rc/n). Then, for any constant c > 0 the following
holds a.a.s.

(i) If c < τr, then there exists an r-colouring of the edges of G(n, rc/n) in which all monochro-
matic components have o(n) vertices.

(ii) If c > τr, then every r-colouring of the edges of G(n, rc/n) contains a monochromatic
component with Θ(n) vertices.
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Here we complement this result considering the case when the average degree tends to infinity
(as n→∞). This time, we are interested in the following constant:

dr = sup{d ∈ [0, 1] : G(n, p) has a monochromatic component

on at least dn vertices a.a.s., provided np→∞}.
Clearly dr ≥ cr, where cr is defined as in the previous section (cf. (1)).

Theorem 5.3. Let r ≥ 2, α > 0 be an arbitrarily small constant, and p = p(n) be such that
pn → ∞. Then, a.a.s. for any r-colouring of the edges of G(n, p) there is a monochromatic
component on at least (1/(r − 1)− α)n vertices. This implies that dr ≥ 1/(r − 1).

The above theorem together with the sharpness statement of Theorem 5.1 yield that dr = 1/(r−1)
for infinitely many r.

First we derive a perturbed version of Theorem 5.1.

Lemma 5.4. Let r ≥ 2 and 0 < ε ≤ 1/r2. Let G be a graph of order n with at least (1 − ε)
(
n
2

)
edges. Then, for any r-colouring of the edges of G there is a monochromatic component on at
least (1/(r − 1)− εr2)n vertices.

Let us note that a special case of this result for r = 3 was obtained by Figaj and  Luczak [19].
Our proof is different; we will use the following result of Liu, Morris and Prince [31].

Lemma 5.5 (Lemma 9 in [31]). Let H = (V1, V2, E) be a bipartite graph. Assume that |E| ≥
η|V1||V2| for some η > 0. Then, H has a component on at least η(|V1|+ |V2|) vertices.

Proof of Lemma 5.4. Let G = (V,E) be a graph of order n with at least (1−ε)
(
n
2

)
≥
(
n
2

)
−(ε/2)n2

edges. For a contradiction, suppose that there is a colouring of the edges of G with r colours so
that C, a largest monochromatic component in G, satisfies |V (C)| < (1/(r − 1)− εr2)n. On the
other hand, a simple corollary of the Erdős and Gallai result [17] implies that |V (C)| ≥ (1/r−ε)n.

Consider the bipartite graph F induced by the edges of G between V (C) and V (G) \ V (C).
Clearly, the edges of F are coloured with at most r − 1 colours (as the colour of C is not used).
First observe that

(ε/2)n2 = |V (C)||V (G) \ V (C)| · εn2

2|V (C)||V (G) \ V (C)|

≤ |V (C)||V (G) \ V (C)| · εn2

2(1/r − ε)n · (1− (1/r − ε))n
.

Since ε ≤ 1/r2 and r ≥ 2, we get 1/r − ε = (1− εr)/r ≥ (1− 1/r)/r ≥ 1/(2r). Thus,

(ε/2)n2 ≤ |V (C)||V (G) \ V (C)| · ε

2 · 1/(2r) · (r − 1)/r
≤ |V (C)||V (G) \ V (C)| · εr2.

Consequently,

|E(F )| ≥ |V (C)||V (G) \ V (C)| − (ε/2)n2 ≥ (1− εr2)|V (C)||V (G) \ V (C)|.
Let H be a subgraph of F induced by the majority colour. Thus,

|E(H)| ≥ 1

r − 1
(1− εr2)|V (C)||V (G) \ V (C)|,

and so Lemma 5.5 implies that there is a monochromatic component of order

1

r − 1
(1− εr2)n ≥

(
1

r − 1
− εr2

)
n,

that is larger than |C|, a largest monochromatic component in G. We get the desired contradiction
and the proof is finished. �
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Finally, we are ready to sketch the proof of the main result of this section.

Sketch of the proof of Theorem 5.3. This is basically the proof of Theorem 4.1 with Theorem 4.3
replaced by Lemma 5.4. We find a monochromatic spanning tree on (1/(r− 1)− εr2)s vertices in
the cluster graph, and then we replace each edge by a long path (in a bipartite graph). The union
of all the paths forms a connected graph. The sharpness follows immediately from the sharpness
of Theorem 5.1. �

6. Concluding remarks

We finish the paper with a few remarks and possible questions for future work. In this paper,
we improved both a lower and an upper bound for R̂(Pn) and showed that 5n/2 − O(1) ≤
R̂(Pn) ≤ 74n, but clearly there is still a lot of work that is waiting to be done. Closing the
gap is a natural question. However, it seems that in order to obtain a substantial improvement,
one needs to develop a new approach to attack this question. For more colours, we proved that
(r+3)r

4 n − O(r2) ≤ R̂(Pn, r) ≤ 33r4rn. Very recently Krivelevich [29] showed that R̂(Pn, r) is

nearly quadratic in r by showing that R̂(Pn, r) ≤ r2+or(1)n. In the same paper he also derived a

new lower bound by proving that R̂(Pn, r) ≥ (r − 2)2n−Or(
√
n) assuming that r ≥ 3 and r − 2

is a prime power. Observe that for r ≥ 6 the leading constant (r − 2)2 is better than our (r+3)r
4 .

In this paper, we are also concerned with monochromatic paths and components in G(n, p),
provided that pn → ∞. Exactly the same question can be asked for Gn,d. It is known, due

to a result of Kim and Vu [26], that if d � log n and d � n1/3/ log2 n, then there exists a

coupling of G(n, p) with p = d
n(1− (log n/d)1/3), and Gn,d, such that a.a.s. G(n, p) is a subgraph

of Gn,d. A recent result of Dudek, Frieze, Ruciński, and Šileikis [14] (see also Section 10.3 in [20])
extends that for denser graphs. Consequently, our results for G(n, p) model imply immediately
the counterpart results for Gn,d, provided d � log n. It would be interesting to investigate the
behaviour for Ω(1) = d = O(log n).

Finally, determining the value of cr (which is the largest constant c such that a.a.s. G(n, p)→
(Pcn)r for pn → ∞) might be of some interest (cf. (1)). Letzter [30] showed that c2 = 2/3 and
in this paper we showed that c3 = 1/2. For r ≥ 4 it is known that 1/r ≤ cr ≤ 1/(r − 1) but
the exact value of cr still remains unknown. The main barrier in determining cr is most likely in
determining the Ramsey number of Pn.
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