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Abstract

In this paper, we study the vertex pursuit game of Cops and Robbers, in which cops
try to capture a robber on the vertices of a graph. The minimum number of cops required
to win on a given graph G is called the cop number of G. We focus on G(n,r,p), a per-
colated random geometric graph in which n vertices are chosen uniformly at random and
independently from [0, 1]2. Two vertices are adjacent with probability p if the Euclidean
distance between them is at most r. If the distance is bigger then r then they are never
adjacent. We present asymptotic results for the game of Cops and Robber played on
G(n,r,p) for a wide range of p = p(n) and r = r(n).

1 Introduction and Results

The game of Cops and Robbers, introduced independently by Nowakowski and Winkler [13]
and Quilliot [19] more than thirty years ago, is played on a fixed graph G. We will always
assume that G is undirected, simple, and finite. There are two players, a set of k cops, where
k > 1 is a fixed integer, and the robber. The cops begin the game by occupying any set of
k vertices (in fact, for a connected G, their initial position does not matter). The robber
then chooses a vertex. In each subsequent round, the cops first move and then the robber
moves. The players use edges to move from vertex to vertex. More than one cop is allowed
to occupy a vertex, and the players may remain on their current positions. The players know
each others current locations. The cops win and the game ends if at least one of the cops
eventually occupies the same vertex as the robber; otherwise, that is, if the robber can avoid
this indefinitely, she wins. As placing a cop on each vertex guarantees that the cops win, we
may define the cop number, written ¢(G), which is the minimum number of cops needed to
win on G. The cop number was introduced by Aigner and Fromme [1] who proved (among
other things) that if G is planar, then ¢(G) < 3. The most important open problem in this
area is Meyniel’s conjecture (communicated by Frankl [8]). It states that c¢(n) = O(y/n),
where ¢(n) is the maximum of ¢(G) over all n-vertex connected graphs. If true, the estimate
is best possible as one can construct a graph based on the finite projective plane with the
cop number of order at least Q(y/n). Up until recently, the best known upper bound of
O(nloglogn/logn) was given in [8]. This was improved to ¢(n) = O(n/logn) in [7]. Today
we know that the cop number is at most n2~(1Fe)vVIesan (which is still n!=°(M) for any
connected graph on n vertices (a result obtained independently by Lu and Peng [11] and
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Scott and Sudakov [20], see also [9] for some extensions). If one looks for counterexamples for
Meyniel’s conjecture it is natural to study first the cop number of random graphs. Recent years
have witnessed significant interest in the study of random graphs from that perspective [4, 6,
12, 16] confirming that, in fact, Meyniel’s conjecture holds asymptotically almost surely for
binomial random graphs [18] as well as for random d-regular graphs [17]. For more results on
vertex pursuit games such as Cops and Robbers, the reader is directed to the monograph [5].

In this paper, we consider a percolated random geometric graph G(n,r,p) which is defined
as a random graph with vertex set V' = {X;,Xs,...,X,,} in which the X;-s are chosen
uniformly at random and independently from the unit square [0,1]2?, and for each pair of
vertices within Euclidean distance at most r we flip a biased coin with success probability p to
determine whether there is an edge (independently for each such a pair, and pairs at distance
bigger than r never share an edge). In particular, for p = 1 we get a (classic) random geometric
graph G(n,r)—see, for example, the monograph [14]. Percolated random geometric graphs
were recently studied by Penrose [15] under the name soft random geometric graphs. In [15]
the connectivity of percolated random geometric graphs was considered, and in particular it
was shown that the probability of being connected is governed by the probability of having
no isolated vertices, much like in the case of the Erdds-Rényi model or the (unpercolated)
classical random geometric graph model.

As typical in random graph theory, in this paper we shall focus on asymptotic properties
of G(n,r,p) as n — oo, where p = p(n) and r = r(n) may and usually do depend on n.
We say that an event in a probability space holds asymptotically almost surely (a.a.s.) if its
probability tends to one as n goes to infinity.

The following result for classic random geometric graphs was obtained independently in [3]
and in [2].

Theorem 1.1 ([3, 2]) There exists an absolute constant ¢ > 0 so that if > > ck’% then
a.a.s. ¢(G(n,r)) = 1.

In [3], the known necessary and sufficient condition for a graph to be cop-win (see [13]
for more details) is used; that is, it is shown that the random geometric graph is what is
called dismantlable a.a.s. The proof in [2] is quite different, provides a tight O(1/7?) bound
for the number of rounds required to catch the robber, and can be generalized to higher
dimensions. In the proof an explicit strategy for the cop is introduced and it is shown that
it is a winning one a.a.s. Essentially the same proof also gives a generalization of the result
to higher dimensions. In [3] it was also shown that every (not necessarily random) connected
geometric graph has cop number at most nine, that a.a.s. ¢(G(n,r)) < 2 if 74 > clogn/n for
some absolute constant ¢, and that there are sequences r for which G(n,r) is a.a.s. connected
while its cop-number is strictly larger than one.

In this paper, we consider the cop number of percolated random geometric graphs. In
particular, we will prove the following result.

Theorem 1.2 For every ¢ > 0, and functions p = p(n) and r = r(n) so that p*r? > n=1+¢
logn
2

and p <1 —¢e we have that a.a.s. ¢(G(n,r,p)) = O (

We find this result quite surprising, since the asymptotics of the cop number for a large
range of the parameters does not depend on r but only on p. We conjecture that, under the
conditions of our theorem, a.a.s. the cop number is (1 + o(1)) logy /(1_p) 7



2 Proofs

For 0 < p <1 —¢ for some € > 0, it is convenient to define

L= L(n) = 10g1/(1*p) n,

and to state our intermediate results in terms of L. Note that L = © (k’%)

We will use the following version of Chernoff bound. (For more details, see, for exam-
ple, [10].) Suppose that X € Bin(n, p) is a binomial random variable with expectation p = np.
If0 <6 <1, then

52
PIX < (1=6)u] <exp <—2> )

and if § > 0,

2
P[X > (14 0)u] <exp (—25+M5> :

The lower and upper bounds are proved separately in the following two subsections.

2.1 Lower bound of Theorem 1.2

For the proof of the lower bound, we employ the following adjacency property that was used
for dense binomial random graphs [6]. For a fixed & > 0 an integer, we say that G is (1, k)-
existentially closed (or (1,k)-e.c.) if for each k-set S of vertices of G and vertex u ¢ S, there
is a vertex z ¢ S U {u} not joined to a vertex in S and joined to u. If G is (1, k)-e.c., then
¢(G) > k. (The robber may use the property to construct a wining strategy against k cops;
she escapes to a vertex not joined to any vertex occupied by a cop.) Hence, to prove the lower
bound in Theorem 1.2 it suffices to prove the following.

Lemma 2.1 Writing k := |elL/2| — where ¢ > 0 is as provided by the conditions of Theo-
rem 1.2 — we have that, a.a.s., G(n,r,p) is (1,k)-e.c. In particular, a.a.s. ¢(G(n,r,p)) > k.

Proof: Let s(u) be the number of vertices within Euclidean distance r from u. It follows
easily from Chernoff bound that there exists a function t = t(n) = Q(r?n) such that a.a.s.
for every vertex u € V(G), s(u) > t. Since our goal is to show a result that holds a.a.s. we
may assume that this property holds deterministically. More precisely, we think of revealing
the graph in two stages. In the first stage, we reveal only the locations of the points, in
the second we reveal the relevant coin flips. In the remainder of the proof all mention of
probability, expectation, etc., will be with respect to the situation where we have passed the
first stage and it turned out that s(u) >t for all u € V. In other words, the only randomness
we consider is in the coin flips deciding which pairs of points at Euclidean distance at most
r will become the edges of our graph.

Fix S, a k-subset of vertices and a vertex u not in S. For a vertex € V(G) \ (S U {u})
that is within distance r of w, the probability that z is joined to u and to no vertex of S is
at least p(1 — p)* (note that this is a lower bound only, since y € S is adjacent to z with
probability p, provided that the distance between them is at most r; otherwise, they are not
adjacent). Since edges are chosen independently, the probability that no suitable vertex can
be found for this particular .S and w is at most

(1—p(1 —p)F)=F=1 = (1 = p(1 — p)Fy 2™,



Let X be the random variable counting the number of S and u for which no suitable x
can be found. (Remember that this is after we have revealed the locations of the points.) We
then have that

E(X) < n(Z) (1-p01- p)’“>%2n)
< M lexp[-Q(p(1 — p)*nr?)]
= exp [(k; +1)logn — Q(n_E/Q 'pm"Q)}
< exp [O(log2 n/p) —Qn=? 'pmg)}

= o),

where in the third line we have used the definition of k and the last inequality follows from
p?r? > n~1*¢ (which implies that log?n/p < n=°/2 . pnr?). This concludes the proof of the
lemma. [

2.2 Upper bound of Theorem 1.2

In this section we show that, a.a.s., 21000 cops suffice to catch the robber. Before presenting
a winning strategy of the cops, we give some preparatory lemmas.

2.2.1 Preliminaries

We say that a set of vertices A C V dominates another set of vertices B C V if every
vertex of B is adjacent to some vertex of A. Throughout this paper we will denote by
B(z,s) := {y € R? : ||z — y|| < s} the ball of radius s around .

Lemma 2.2 A.a.s., for every v,w € V with ||v —w|| < 0.99 - r, there is a subset A C N(v)
with |A| < 1000L that dominates {w} U N(w).

Proof: We will consider the number of “bad” (ordered) pairs (v, w) € V2 such that |Jv—w|| <
0.99 - r, yet no set A as required by the lemma exists. We will compute the probability that
(X1, X2) form such a bad pair. To do this, we reveal the graph in three stages. In the first
stage we reveal V' (the positions of the points). In the second stage, we reveal all edges that
have X; as an endpoint (i.e. all coin flips that determine these edges). In the third stage, we
reveal all other edges (coin flips).

Let us condition on the event that || X; — Xs|| < 0.99 - r. (Note this does not affect the
locations of the other points nor the status of any of the coin flips). We now define, for
i, €{-1,+1}:

B;j = B(X2 +i(r/10%)e; + j(r/101%)ey, 7/109),
Uz‘,j = N(Xl) N Bz‘,j-

(Here, of course, e; = (1,0) and ep = (0, 1). See Figure 1 for a depiction.) The B; ; have been
chosen so that, no matter where in the unit square X» falls, for every z € B(Xa,r) N[0, 1]?
there is at least one pair (i,) € {—1,1}? such that B;; C B(z,7)N[0,1]%
Observe that, conditioning on the event that the position of X is such that B; ; C [0, 1%,
we have
U; ;| £ Bin(n — 2, pr(r/1010)2).
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Figure 1: The definition of the U; ;. (Not to scale.)

In particular, E|U; j| = Q(pnr?) = Q(n°/p) > L. Using Chernoff bound, it follows that
P(|Ui;] <E|Ui;1/2) < exp[-Q(n7)].

Note that, to find the U; ; we have to reveal the first two stages, but we do not need to reveal
the coin flips corresponding to potential edges not involving X;. Assuming that in the first
two stages we managed to find U; ;’s of size at least half of the expected size, we can now fix,
for each 4,5 € {—1,1} with B;; C [0,1)%, an arbitrary subset A; ; C U; ; with |A4; ;| = 250L.
We let A be the union of these A; ;’s. Since each z € B(Xa,7) N[0, 1]? satisfies A; ; C B(z,7)
for at least one pair (i,7) € {—1,1}?, the probability that there is a vertex X; € N(X2)U{X2}
not connected by an edge to any vertex of A is at most n(1 — p)?%L = n=249 It follows that

P((X1, X3) is a bad pair) < 4e~ ) 4 =249 < 9249

the last inequality holding for sufficiently large n. This shows that the expected number of
bad pairs is at most (5)2n~2* = o(1). The lemma follows by Markov’s inequality. [

Lemma 2.3 A.a.s., for every v € V and every z € B(v,7) N [0,1]? there is a vertex w €
N(v) N B(z,r/1000).

Proof: We dissect [0, 1] into squares of side s := 1/[%] (note s < r/10'Y and s = O(r)).
Observe that if v,z € [0,1]2 with ||v — 2| < r then there is at least one square of our
dissection contained in B(v,r)N B(z,7/1000). It thus suffices to count the number Z of “bad
pairs” consisting of a vertex v and a square S of the dissection contained in B(v,r) such that
N(v)NS =, and to show this number is zero a.a.s. Note that the number of squares is
O(1/r%) = O(n). Hence we have
EZ = O(n?)-(1—ps?)"L = O(n?) - exp|—Q(pnr?)]
= exp[O(logn) — Q(n°)] = o(1),

and the proof of the lemma is finished by Markov’s inequality. |



Lemma 2.4 A.a.s., for every v,w € V with ||[v —w|| < 1.99r there is a vertex u such that
wo,uw € E and |ju — (v + w) /2| < r/1000.

Proof: We use the same dissection into small squares of side s := 1/ [%1 as in the proof
of the previous lemma. Note that if v,w € [0,1]? then B((v +w)/2,7/1000) contains at least
one square of the dissection. It thus suffices to count the number Z of “bad triples” consisting
of two vertices v # w at distance at most 1.99r and one square S of the dissection that is
contained in B((v + w)/2,r/1000), such that N(v) N N(w) NS = (. We have

EZ < O@®) - (1—p%s?)" 2 =0(n?) -exp[-Q(p*nr?)]

= exp[O(logn) — Q(n°)] = o(1),

proving the lemma. n

The (easy) proof of the next, standard and elementary, observation is left to the reader.

Lemma 2.5 Suppose that x1, 72,1, y2 € R? are such that ||x1—x2||, ||[y1—y2|| < 7 and the line
segments [z1,22), [y1,y2] cross. Then |lz; — y;|| < 7/v/2 for at least one pair (i,7) € {1,2}2.

We say that a cop C controls a path P in a graph G if whenever the robber steps onto P,
then she either steps onto C' or is caught by C' on her responding move. Let diam(G) denote
the diameter of the graph. The terminology “shortest path” will always refer to the graph
distance (as opposed to say the sum of the edge-lengths). Aigner and Fromme in [1] proved
the following useful result.

Lemma 2.6 ([1]) Let G be any graph, u,v € V(G), u # v and P = {u = vg,v1,...vs = v}
a shortest path between u and v. A single cop C' can control P after at most diam(G) + s
moves.

2.2.2 The cop’s strategy

In the sequel, since we aim for a statement that holds a.a.s., we assume that we are given
a realization of G(n,p,r) that is connected (which is true a.a.s. for our choice of parameters
as, for instance, follows from the work of Penrose [15]) and for which the conclusions of
Lemmas 2.2, 2.3 and 2.4 hold. We will show that under these conditions, a team of 21000L
cops is able to catch the robber. This will clearly prove the upper bound of Theorem 1.2.

Our strategy is an adaptation of the strategy of Aigner and Fromme showing ¢(G) < 3
for connected planar graphs. We will have three teams 17,75, T35 of cops, each consisting of
7000L cops that are each charged with guarding a particular shortest path.

In more detail, a team T; that patrols a shortest path P = vgvy...v,, is divided into 7
subteams T; _3,7T; —2,T; —1,T;0,T;1,T;2,T; 3 of 1000L cops each. These subteams will move
in unison (i.e. the cops in a particular subteam will always be on the same vertex of P). The
team T; o moves exactly according to the strategy given by Lemma 2.6. That is, after an
initial period, the T; o-cops are able to move along P in such a way that, whenever the robber
steps onto a vertex vy € P then either the entire team T;( is already on vy or they are on
Ug—1 or V4. Team T;; will be j places along T (i.e. if T; o is on v; then T;; is on Ukt j)-
If this is not possible because T; is too close to the respective endpoint of P then T; ; just
stays on that endpoint (i.e. if T; ¢ is on v; and k + j > m then T} ; is on vy, and if k45 <0



then T; ; stays on vp). We now claim that the robber can not cross (in the sense that the edge
she uses crosses an edge of P when both are viewed as line segments) the path P without
getting caught by the cops of team 7T;.

Robber

Figure 2: The robber tries to cross a path guarded by team Tj;.

To see this, we first observe that if the robber moves along an edge that crosses some edge
of P, then either her position before the move or her position right after the move is within
distance at most 7//2 of some vertex of P by Lemma 2.5. Next, we remark that whenever the
robber stepw onto a vertex v within distance 0.99-r of some vertex v € P, then the cops can
catch her in at most two further moves. This is because from u, the robber could move to vy
in at most two moves (Lemma 2.4). As the cops of subteam T; o follow the strategy prescribed
by Lemma 2.6, they are guaranteed to be on one of vy_3, Vg_92, Vp—1, Uk, Vk+1, Vk+2, Vk+3 When
the robber arrives on u. But then there must be some team T; ; that inhabits the vertex v,
at the very moment when the robber arrived on u. This team now acts as follows: at the
time the robbers arrives on u, the subteam occupies the set A provided by Lemma 2.2 (this
one time the subteam do not all stay on the same vertex; instead they “spread” following the
strategy implied by the lemma) and in the next move the cops are able to catch the robber,
since they now dominate the closed neighbourhood of the vertex she inhabits. Thus, each of
our three teams can indeed prevent the robber from crossing a chosen path (after an initiation
phase). What is more, the robber can never get to within distance 0.99r of any vertex of such
a path.

We can now mimic the strategy that Aigner and Fromme [1] developed for catching the
robber on connected planar graphs using three cops. The idea is to confine the robber in
smaller and smaller subgraphs of our graph, until finally the cops apprehend her. We start
by taking two vertices u,v. We let P; be the shortest uv-path, and we let P» be the shortest
uv-path in the graph with all internal vertices of P;, and all edges that cross P; removed.
(Using Lemmas 2.3 and 2.4 it is easily seen that at least one such path exists.) Note that
Py U P, constitutes a Jordan curve and hence R?\ (P U P») consists of two connected regions,
the interior and the exterior. Once the game starts, we send 77 to patrol P; and T to patrol
P,. After an initial phase, the robber will either be trapped in the interior region or the
exterior region of R\ (P U P»). Let us denote the region she is trapped on by R. If it
happens that every vertex inside R is within distance 0.99r of some vertex of P; U P> then
we are done by the previous argument. Let us thus assume this is not the case. We then
proceed as follows: we remove all vertices not on P; U P or inside R, and we remove all edges
that cross P; or P,. (Conceivably there can be vertices that lie inside R but with an edge
between them that passes through P; U P».) We let P3 be a uv-path in the remaining graph
that is shortest among all uv-paths that are distinct from Pj, P>. (To see that at least one
such path exists, we first find a vertex u € R that has distance at least 0.997 to every vertex
of P UP,. Then we use Lemma 2.3 and 2.4 to construct vertex-disjoint paths between u and
two distinct vertices of Py U P».) See Figure 3 for a depiction.



Robber

Py

Figure 3: The adapted Aigner-Fromme strategy.

Note that P3 does not cross P; or P, (but it may share some edges with them). In
particular, R\ Ps consists of two or more connected parts, each of which is either bounded
by (parts of) P; and P3 or by (parts of) P, and Ps. We now send T3 to patrol Ps. After an
initial phase, the robber will be caught in one of the connected parts R’ of R\ Ps3. Without
loss of generality R’ is bounded by P», P3. Discarding unneeded parts of P, P3 (namely those
that do not bound R’) and relabelling we can also assume that P, P3 only meet in their
endpoints u,v. If every vertex inside R’ is within distance 0.997 of a vertex of P,, P; we are
again done. Otherwise, the team T} abandons guarding path P, we remove all vertices not
on P,, P3 or inside R’ and all edges that cross P, or P3, we find a uv-path Pj in the remaining
graph, shortest among all uv-paths different from P, P3, and we let T} patrol Ps. Now Py
will dissect R into two or more connected paths, and we repeat the procedure to either catch
the robber or restrict her to an even smaller region.

It is clear that in each iteration of this process, at least one edge is removed from the
subgraph under consideration. Hence the process must stop eventually. In other words,
the robber will get caught eventually. This concludes the proof of (the upper bound of)
Theorem 1.2.

2.3 Concluding remarks

As mentioned earlier, we conjecture that the ©(logn/p) in Theorem 1.2 can in fact be im-
proved to (1 + o(1))logy /q_p) 7.

We suspect that the p? term in the conditions for Theorem 1.2 is just an artefact of the
proof and that the result should in fact hold when pr? > n=14% p <1 —e.

Let us also remark that bounding p away from one is essential for our result, as can
be seen for instance from Theorem 1.1 or the result in [3] that connected geometric graphs
have bounded cop number. An interesting avenue of further investigation would thus be to
see what goes on when p — 1 as n — oo. Clearly some sort of phase change must occur,
depending on the speed at which p approaches one.

We remark that the proof of the lower bound in Theorem 1.2 readily generalizes to arbi-
trary dimensions (replacing r2 by 7% everywhere), but that the reasoning using in the upper
bound proof is essentially two-dimensional. We would be very interested to learn of a proof
technique that does work for all dimensions.
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