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Abstract. We study the vertex pursuit game of Cops and Robbers, in which cops
try to capture a robber on the vertices of the graph. The minimum number of cops
required to win on a given graph G is called the cop number of G. We focus on Gd(n, r),
a random geometric graph in which n vertices are chosen uniformly at random and
independently from [0, 1]d, and two vertices are adjacent if the Euclidean distance

between them is at most r. The main result is that if r3d−1 > cd
logn
n then the cop

number is 1 with probability that tends to 1 as n tends to infinity. The case d = 2
was proved earlier and independently in [4], using a different approach. Our method
provides a tight O(1/r2) upper bound for the number of rounds needed to catch the
robber.

1. Introduction

The game of Cops and Robbers, introduced independently by Nowakowski and Win-
kler [17] and Quilliot [22] almost thirty years ago, is played on a fixed graph G. We
will always assume that G is undirected, simple, and finite. There are two players, a
set of k cops, where k ≥ 1 is a fixed integer, and the robber. The cops begin the game
by occupying any set of k vertices (in fact, for a connected G, their initial position does
not matter). The robber then chooses a vertex, and the cops and robber move in alter-
nate rounds. The players use edges to move from vertex to vertex. More than one cop
is allowed to occupy a vertex, and the players may remain on their current positions.
The players know each others current locations. The cops win and the game ends if at
least one of the cops eventually occupies the same vertex as the robber; otherwise, that
is, if the robber can avoid this indefinitely, he wins. As placing a cop on each vertex
guarantees that the cops win, we may define the cop number, written c(G), which is
the minimum number of cops needed to win on G. The cop number was introduced
by Aigner and Fromme [1] who proved (among other things) that if G is planar, then
c(G) ≤ 3. For more results on vertex pursuit games such as Cops and Robbers, the
reader is directed to the surveys on the subject [3, 11, 13] and the monograph [7]. The
most important open problem in this area is Meyniel’s conjecture (communicated by
Frankl [10]). It states that c(n) = O(

√
n), where c(n) is the maximum of c(G) over

all n-vertex connected graphs. If true, the estimate is best possible as one can con-
struct a graph based on the finite projective plane with the cop number of order at
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least Ω(
√
n). Up until recently, the best known upper bound of O(n log log n/ log n)

was given in [10]. This was improved to c(n) = O(n/ log n) in [9]. Today we know that

the cop number is at most n2−(1+o(1))
√

log2 n (which is still n1−o(1)) for any connected
graph on n vertices (a result obtained independently by Lu and Peng [15] and Scott
and Sudakov [23], see also [2, 12] for some extensions). If one looks for counterex-
amples for Meyniel’s conjecture it is natural to study first the cop number of random
graphs. Recent years have witnessed significant interest in the study of random graphs
from that perspective [6, 8, 16, 19] confirming that, in fact, Meyniel’s conjecture holds
asymptotically almost surely for binomial random graphs [21] as well as for random
d-regular graphs [20].

In this note we consider a random geometric graph Gd(n, r) which is defined as a
random graph with vertex set [n] = {1, 2, . . . , n} in which n vertices are chosen uni-
formly at random and independently from [0, 1]d, and a pair of vertices within Euclidean
distance r appears as an edge—see, for example, the monograph [18].

As typical in random graph theory, we shall consider only asymptotic properties of
Gd(n, r) as n→∞, where r = r(n) may and usually does depend on n. We say that an
event in a probability space holds asymptotically almost surely (a.a.s.) if its probability
tends to one as n goes to infinity.

2. The result and its proof

We prove the following result.

Theorem 2.1. There exists an absolute constant c2 > 0 so that if r5 > c2
logn
n

then
a.a.s. c(G2(n, r)) = 1.

The same result was obtained earlier and independently in [4] but the proof presented
here is quite different, provides a tight O(1/r2) bound for the number of rounds required
to catch the robber, and can be generalized to higher dimensions. In the proof we
describe a strategy for the cop that is a winning one a.a.s. In [4], the known necessary
and sufficient condition for a graph to be cop-win (see [17] for more details) is used;
that is, it is shown that the random geometric graph is what is called dismantlable
a.a.s.

Essentially the same proof we provide here gives the following.

Theorem 2.2. For each fixed d > 1 there exists a constant cd > 0 so that if r3d−1 >
cd

logn
n

then a.a.s. c(Gd(n, r)) = 1.

In all dimensions the proof gives that a.a.s. the cop can win in O(1/r2) steps and, as
we mention below, this is tight; namely, a.a.s. the robber can ensure not to be caught
in less steps. Therefore, the capture time for this range of parameters is Θ(1/r2) a.a.s.
We make no attempt to optimize the absolute constants in all arguments below, aiming
to propose an argument which is as simple as possible.

In order to prove Theorem 2.1 it is convenient to describe first a cleaner proof of
the corresponding result for the continuous (infinite) graph G2(r) whose vertices are all
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of the points of [0, 1]2, where two of them are adjacent if and only if their distance is
at most r. This is a natural variant of the well-known problem of the Lion and the
Christian in which (perhaps surprisingly) the Christian (counterpart of the robber in
our game) has a winning strategy; see, for example, [5] for more details. In our game,
the cop (counterpart of the lion) has a winning strategy. This is a essentially a known
result [24, 14], but the proof described here differs from the known ones and, crucially
for us, can be easily modified to yield a proof of Theorem 2.1 and Theorem 2.2.

Theorem 2.3. c(G2(r)) = 1 for any r > 0.

Proof. We show that c(G2(r)) = 1 for any r > 0, by describing a winning strategy for
the cop. In the first step, the cop places himself at the center O of [0, 1]2. After each
move of the robber, when he is located at a point R, the cop catches him if he can (that
is, if the distance between him and the robber is at most r); otherwise, he moves to a
point C that lies on the segment OR, making sure his distance from the robber is at
least, say, r2/100. Moreover, we will show that the cop can do it and also ensure that
in each step the square of the distance between the location of the cop and O increases
by at least r2/5. As this square distance cannot be more than 1/2, this implies that
the cop catches the robber in at most O(1/r2) steps.

RR

R'Z'

Z

C C'

O

l

Figure 1. Catching the bad guy on G2(r).

Here is the proof showing that the cop can indeed achieve the above in each step
of the game. Suppose that the cop is located at C and the robber at R, where C lies
on OR (and the distance between C and R is at least r2/100). Trivially, the cop can
ensure this will be the case after his first move (unless the robber gives up prematurely
without fighting and starts the game too close to the cop). A step, now, consists of a
move of the robber from R to R′ followed by a move of the cop from C to C ′. Let Z
denote the midpoint of CR and let ` be the line through Z perpendicular to OZ—see
Figure 1. Without loss of generality, choose a coordinate system so that OR is a vertical
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line (and hence ` is a horizontal one), and assume R (as well as C and Z) are below O.
Note that R′, the new location of the robber, may be assumed to be below the line `,
since otherwise the distance between C and R′ is at most the distance between R and
R′, meaning that the cop can catch the robber, winning the game. Suppose then that
R′ is below ` and let C ′ be the intersection point of the horizontal line through C with
the line OR′. Let also Z ′ denote the intersection point of the horizontal line through
R′ with the line containing OR—see Figure 1 one more time. Now it is easy to see
that RR′ ≥ R′Z ′ > CC ′, as the triangle RR′Z ′ is a right-angle triangle and the two
triangles OCC ′ and OZ ′R′ are similar. Hence, the cop may move to C ′ if he decides to
do so, as CC ′ < RR′ ≤ r. Consider the following two possible cases.

Case 1: CC ′ > r/2. In this case if the cop moves to C ′ then its square distance to O
increases by CC ′2 > r2/4. If C ′ is too close to R′, we shift him towards O slightly (that
is, by less than r2/100) to ensure the distance between C ′ and R′ is at least r2/100. Note
that such a shift decreases the square distance from O by less than 2r2/100 = r2/50,
hence the square distance still increases by at least r2/4− r2/50 > r2/5. Thus, in this
case the cop can make a step as required.

Case 2: |CC ′| ≤ r/2. In this case the cop can move to C ′ and then walk along the line
OR′ at least distance r/2 towards R′ (without passing it, since otherwise the game ends
and the cop wins). As clearly OC ′ ≥ OC, in this case the cop increases its distance
from O by more than r/2 and hence its square distance by more than r2/4. As before,
it may be the case that he gets too close to R′ and then he backups slightly by less
than r2/100, which is still fine.

This shows that in G2(r) the cop can indeed increase its square distance from O by
at least r2/5 in each step (which is not a winning step ending the game), staying on
the segment connecting the center and the robber (and being closer to the center than
the robber). This implies that the game ends with a cop win in O(1/r2) steps. �

Modifying the above argument to get a winning strategy for G2(n, r) (a.a.s.) is not
too difficult. The cop will follow essentially the same strategy, but will always place
himself at a vertex of the graph which is sufficiently close to where he wants to be in
the continuous game.

More precisely, for each point X of the unit square whose distance from the center
O is at least r/2 (just to ensure that the triangle T (x) defined below will indeed be
well defined; in our argument this will always be the case) and whose distance from
the boundary is at least r2/103 (again, in our argument this will always be the case),
we define an isosceles triangle T (X) as follows. One vertex is X, and the segment of
length r2/100 on the line OX starting at X (and going towards O) is the height of
T (X). The base is orthogonal to it and of length r3/105. Despite the fact that there
are infinitely many triangles, it is not difficult to show that if the area of such a triangle
is large enough, then a.a.s. G2(n, r) contains a vertex inside each such triangle.

Lemma 2.4. There exists an absolute constant c > 0 so that a.a.s. every triangle T (X)
contains a vertex of G2(n, r), provided r5 > c logn

n
.

Proof. Let us start with a fixed collection F of O((1/r)6) rectangles, each of area Ω(r5),
so that every triangle T (X) fully contains at least one of these rectangles. To do so, for
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each point Y in an 106r3 by 106r3 grid in the unit square take the rectangle of width
r3/106 and height r2/106 in which Y is the midpoint of the edge of length 106r3 and
the other edge is in direction Y O. It is clear that every T (X) under consideration (X
not too close to O nor to the boundary) fully contains at least one such a rectangle.

In order to complete the proof it is enough to show that a.a.s. each rectangle in F
contains at least one vertex of G2(n, r). The area of each such rectangle is r5/1012, and
hence the probability it contains no vertex is(

1− r5

1012

)n

≤ e−c logn/10
12

.

Since there are O((1/r)6) = O(n2) rectangles, the desired result follows by the union
bound for, say, c = 1013, as needed. �

Now, let us come back to the main result of this section, since we have all necessary
ingredients.

Proof of Theorem 2.1. Since we aim for a statement that holds a.a.s., it follows from
Lemma 2.4 that we may assume that every triangle T (X) contains at least one vertex.
As we already mentioned, the cop plays the continuous strategy, but whenever he wants
to place himself at a point X, he chooses an arbitrary vertex x ∈ V of T (X) to go to.
The line R′x is now not necessarily identical to the line R′O, but the angle between
them is sufficiently small to ensure that in the computations above for the continuous
case we do not lose much. That was the reason we ensured that R′ and X are never too
close in the continuous algorithm, and as the triangle T (X) is thin, the angle between
these two lines is smaller than r/103. This completes the proof. �

As we already mentioned, essentially the same proof works for general dimension.
The continuous game in dimension d is nearly identical to the one in dimension 2. In
the first step, the cop places himself at the center O of [0, 1]d. After each move of the
robber, when he is located at a point R, the cop catches him if he can, otherwise, he
moves to a point C that lies on the segment OR, making sure his distance from the
robber is at least, say, r2/100. As in the planar case, the cop can do it and also ensure
that in each step the square of the distance between his location and O increases by at
least r2/5. Indeed, since in each round the center O, the location of the cop C, the old
location of the robber R and his new location R′ lie in a two dimensional plane (since
O, C and R lie on a line) the analysis is identical to the planar case. As the square
distance of the cop from the center cannot exceed d/4, this implies that the cop catches
the robber in at most O(d/r2) steps.

In the discrete game we let T (X) be a cone with height r2/100 on the line connecting
the center O to X, and basis of radius r3/105 centered at X. The probabilistic estimate
given in the proof of Lemma 2.4 shows that a.a.s. every such cone T (X) contains a
vertex of our graph, provided r3d−1 > cd

logn
n

. We can thus repeat the arguments in the
proof of the planar case to show that the assertion of Theorem 2.2 holds.

Finally, note that the robber can keep escaping for Ω(1/r2) steps a.a.s. For simplicity,
we describe the strategy for the robber for the plane but this also holds for any dimen-
sion, for the same reason. As before, we start with the continuous variant of the game.
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Initially, the robber places himself at distance bigger than r from the cop ensuring he is
not too far from the center O of the square. At each step, when the robber located at R
has to move, he moves distance r exactly in the direction perpendicular to RC, where
the choice of the direction (among the two options), is such that its square distance
from O increases by at most r2 (that is, the angle ORR′ is at most π/2). This suffices
for the continuous case, as it is clear that the distance from the cop will exceed r after
each such step. In the discrete case, the robber simply chooses a nearby point, making
sure his distance from the cop is at least what it would have been in the continuous
case.
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