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Abstract

We study a scale-free random graph process in which the number of edges added at
each step increases. This differs from the standard model in which a fixed number, m,
of edges are added at each step.

Let f(t) be the number of edges added at step t. In the standard scale-free model,
f(t) = m constant, whereas in this paper we consider f(t) = [tc], c > 0. Such a graph
process, in which the number of edges grows non-linearly with the number of vertices is
said to have accelerating growth.

We analyze both an undirected and a directed process. The power law of the degree
sequence of these processes exhibits widely differing behaviour.

For the undirected process, the terminal vertex of each edge is chosen by preferential
attachment based on vertex degree. When f(t) = m constant, this is the standard scale-
free model, and the power law of the degree sequence is 3. When f(t) = [tc], c < 1, the
degree sequence of the process exhibits a power law with parameter x = (3− c)/(1− c).
As c → 0, x → 3, which gives a value of x = 3, as in standard scale-free model. Thus
no more slowly growing monotone function f(t) alters the power law of this model away
from x = 3. When c = 1, so that f(t) = t, the expected degree of all vertices is t, the
vertex degree is concentrated, and the degree sequence does not have a power law.

For the directed process, the terminal vertex is chosen proportional to in-degree plus
an additive constant, to allow the selection of vertices of in-degree zero. For this process
when f(t) = m is constant, the power law of the degree sequence is x = 2 + 1/m. When
f(t) = [tc], c > 0, the power law becomes x = 1 + 1/(1+ c), which naturally extends the
power law to (1, 2].
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1 Introduction

Discrete random graph processes exhibiting power law properties have been studied by many
authors and in many contexts. The study of such processes dates back at least, to Yule [31]
in 1924. Recent interest in preferential attachment models follows from the work of Barabási
and Albert [1] who observed a power law degree sequence for a subgraph of the World Wide
Web, and of Faloutsos, Faloutsos and Faloutsos [15] who observed power law behaviour for
the internet graph. Many models of such process exist. For details see, for example, the
surveys [3, 24] and the monograph [5].

A graph process is said to have accelerating growth if the number of edges grows non-linearly
with the number of vertices. In this paper, we consider a model of accelerating growth in
which the number of edges f(t) added at step t is an increasing function of t. Thus the model
supposes that vertices are in some sense greedy, and that, as each newly added vertex has
more existing vertices to join to, the number of edges added also increases.

The concept of accelerating growth was studied by Dorogovtsev and Mendes [12, 13, 14].
The papers distinguish between two types of power law degree distribution, stationary and
non-stationary. In the stationary case, the proportion P (k, t) of vertices of degree k at step t,
satisfies P (k, t) ∝ k−γ, whereas in the non-stationary case P (k, t) ∝ tzk−γ. The authors make
two types of analysis. (i) From an assumption of a power law degree sequence, they infer the
(average) number of edges added at a given step, by using feasibility arguments. (ii) From a
general condition that ta edges are added preferentially but arbitrarily at step t, they infer the
power law, by using average case differential equation arguments in a continuous model. In
this way, they derive relationships between the parameters for the undirected (non-stationary)
and directed (stationary) processes considered in this paper, and a wide range of other models
besides.

Dorogovtsev and Mendes assume the proportion of vertices of degree k satisfies P (k, t) ∝
tzk−γ, and use the notation k(t) = ta for average degree. They obtain an expression for the
average degree parameter a as a function of γ. We note that this backward approach is also
considered in [19]. The results of [12, 13, 14] correspond to those of this paper as follows: For
the processes we describe, f(t) = tc edges are added at each step. Thus the average degree
k(t) ∝ tc. If γ > 2 then γ = 1 + z/a, which agrees with (5) for the undirected process. To see
this put z = (1 + c)/(1 − c) − 1 and a = c. If 1 < γ ≤ 2 then γ = 1 + (z + 1)/(a + 1), and
when z = 0 (stationary process) this agrees with (6) for the directed process.

Dorogovtsev and Mendes also present substantial empirical results for many networks, whose
relevance is as follows. For certain directed processes, e.g. the one studied in this paper, the
power law for in-degree is above 2 when f(t) = m constant, and below 2 when f(t) → ∞.
The power law for in-degree of the World Wide Web in 1999 was estimated at 2.1 ([6]). As
this is close to 2, the authors of [13] ponder the evidence for accelerating growth in the Web.
The paper [13] generated interest in models of accelerating growth [28, 30], and in evidence
for accelerating growth in real life networks [23].
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Another approach to networks where the edge density changes over time is taken by Leskovec,
Kleinberg and Faloutsos [18, 19]. They look for evidence of increasing edge density (densifi-
cation) and decreasing diameter in existing networks. Among networks found by the authors
to exhibit increasing average out-degree over time were: ArXiv citation, patent citation and
autonomous systems (internet routers). The authors are concerned to find causal models of
densification, and propose explanatory mechanisms for this, such as community guided attach-
ment, and the forest fire model. Simulations of the forest fire model show that densification
itself does not necessarily cause the diameter to shrink. It is observed empirically that the
densification of graphs which evolve over time often follows a relation1 e(t) = n(t)a. The au-
thors of [18] mention that “while one could clearly define a graph model in which e(t) = n(t)a

by simply having each node, when it arrives at time t, generate n(t)a−1 out-links, [...] Such
a model would not provide any insight into the origin of the exponent a as the exponent is
unrelated to the operational details by which the network is being constructed”. Although
this is undeniably true, we maintain that scale-free graph process are of independent interest
as simple models of network growth, and that it is useful to formally determine the degree
sequence as a function of the rate at which edges are added.

In this paper we are concerned with studying the limiting behaviour of scale-free processes
when the degree of newly added vertices increases over time. We address the following ques-
tions:
(i) How fast does the number of edges f(t) added to a scale-free process have to grow in order
to escape from power law 3 for the degree sequence.
(ii) What is the effect of accelerating growth on the degree sequence of the process.

Before answering these questions, we discuss some existing models in which a constant number,
m, of edges are added at each step.

In the simplest scale-free model, at each time step t, the graph grows by the addition of a
new vertex vt which directs an edge et = (vt, u) towards the existing graph G(t − 1). The
terminal vertex u of this edge is chosen preferentially, that is, with probability proportional
to its degree d(u, t) at the start of step t + 1. In this model

Pr(vt+1 chooses u as the terminal vertex of edge e) =
d(u, t)

2t + 1
, (1)

where d(vt+1, t) = 1 so that a loop can occur at vt+1.

The simplest generalization of the process G(t) = G1(t) is the model Gm(t) where a constant
number m ≥ 2 edges are added at each step. The easiest way to achieve this, is to allow a
step to consist of m steps in the one edge model G(t) = G1(t), so that Gm(t) = G1(mt) where
vertex ut of Gm(t) consists of vertices vm(t−1)+1, . . . , vmt of G1(mt). The scale-free model was
studied using this approach by Bollobas, Riordan, Spencer, and Tusnady [2], see also Bollobas
and Riordan [4].

It is well known that preferential attachment processes such as these have a degree sequence

1edges e(t), vertices n(t), parameter a > 0
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which exhibits a power law. As k → ∞ the expected number ENk of vertices of degree k
satisfies

ENk ∼ tCk−x.

For the model Gm(t) described above, the power law parameter is x = 3. It is known precisely
from [2] that

ENk ∼ t
2m(m + 1)

k(k + 1)(k + 2)
, (2)

and thus
ENk ∼ t(2m(m + 1))k−3(1 + O(1/k)),

giving C ∼ 2m(m + 1) in the asymptotic formula.

It is curious that the power law parameter x in the above model exhibits no dependence
whatsoever on the number of edges added at each step, however large but constant the value
of m. With this in mind, a reasonable question is the following. Suppose we make m is a
non-decreasing function of t, that is, m(t) = f(t). How fast does f(t) have to grow before
the dependence on m(t) becomes apparent in the power law parameter x? For example is
f(t) ∼ log t large enough, or f(t) ∼ tc, c < 1, or f(t) = t? Moreover, is there a value of f(t)
growing with t for which the graph no longer exhibits a power law degree sequence? The
growth rate we consider is f(t) = [tc], (where [y] denotes the rounding of y to the nearest
integer). Indeed, for the undirected model we show that no slower growth rate alters the
power law away from x = 3.

Turning to directed processes, perhaps the simplest model is one where initially, at t = 0 the
graph is an isolated vertex, and at each step t = 1, 2, 3, . . . each new vertex adds m edges,
where

Pr(vt+1 chooses u as the terminal vertex of edge e) =
d−(u, t) + 1

(m + 1)t + 1
. (3)

The factor of 1 in the numerator allows vertices of in-degree zero to be chosen. A similar but
more general model is given by

Pr(vt+1 chooses u as the terminal vertex of edge e) = α
d−(u, t)

|E(t)| + (1− α)
1

|V (t)| , (4)

where 0 < α ≤ 1 is a parameter. Choosing α = m/(m + 1) we recover (3) (asymptotically).
This model has been studied by, for example, [9, 16, 17]. The in-degree sequence for the
process (4) has power law x = 1 + 1/α. The model given in (3) is thus equivalent to choosing
α = m/(m + 1) in (4), and the model (3) has power law x = 2 + 1/m. In contrast to the
undirected scale-free model, the process now exhibits a dependence on m, the number of edges
added. As m →∞ and x → 2, and this dependency appears to vanish.

The simplest generalization of the undirected scale-free model equivalent to (4), also chooses
a terminal vertex proportional to vertex degree with probability α. This model has power law
x = 1 + 2/α for the degree sequence (see, for example, [9] or [11]). Thus a dependence on m
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in the undirected case can be introduced by using the generalized model with α = m/(m+1).
Our main interest in this paper, however, is to move the scale-free model (α = 1) away from
power law x = 3 by using a growth rate tc.

To summarize, when m edges are added at each step, the power laws for the models given
above are:

(i) Scale free model, x = 3,

(ii) Generalized undirected model, x = 1 + 2/α,

(iii) Generalized directed model, x = 1 + 1/α.

We next state the main properties of the scale-free and directed models, on the assumption
that f(t) = [tc], and highlight the differences in power law properties of their degree sequences.

1.1 Undirected Scale Free Model

The model Gf (t) used in this paper is a variant on the scale-free model. We refer to Gf (t) as an
f -process, where f(t) = (f(v1), f(v2), . . . , f(vt), . . . ) and f(vj) is the number of edges directed
from vj to G(vj − 1). Thus in our notation Gm(t) is an m-process m = (m, . . . , m, . . . ).

The process (Gf (t))t≥0 is constructed as follows: Let Gf (t) = (V (t), E(t)), where Gf (0) is
a single vertex with a loop, V (t) = V (t − 1) ∪ {vt}, and E(t) = E(t − 1) ∪ {e1, . . . , ef(t)}.
The vertex vt, t ≥ 1, (which is usually referred to by its step label t), directs the f(t) edges
ei, i = 1, . . . , f(t) to Gf (t− 1) ∪ {e1, . . . , ei−1} and

Pr(vt chooses u as terminal vertex of edge ei) =
d(u, t, i− 1)

2|E(t, i− 1)| ,

where |E(t, i− 1)| is the number of edges in the graph after ei−1 has been added to vt, so that
E(t, i − 1) = E(t − 1) ∪ {e1, . . . , ei−1}, and d(vt, t, 0) = 0. The first edge e1 of vt chooses its
terminal vertex in Gf (t− 1) ensuring that the graph is connected. For i > 1 the edge ei can
choose vt preferentially as its terminal vertex u. This follows as d(vt, t, i − 1) ≥ i − 1. Thus
the model allows loops and parallel edges. The model differs from the scale-free one of (1), in
that an edge cannot ‘choose itself’ to form a self loop.

For positive y let [y] denote the rounding of y to the nearest integer. We consider the model
where f(t) = [tc] edges are added at each step. We prove that for 0 < c < 1, constant, there
is a power law degree sequence, whereas if c = 1, all vertices have expected degree close to t
and the vertex degree is sharply concentrated about this value. Essentially, for 0 < c < 1, the
number Nk,t of vertices of degree k at step t has expectation ENk,t ∼ nk where

nk =
2
√

1− ξ(k)

1− c

(
t1+c

k3−c

) 1
1−c

,
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and ξ(k) → 0 for large enough k. This gives a power law parameter of x = (3 − c)/(1 − c).
If c → 0 the power law parameter x → 3. Thus we need to add at least m(t) = [tc] (c > 0
constant) edges at each step, to move the power law parameter x away from the value x = 3
which is obtained when m is constant. The value (1 + c)/(1 − c) exponent of t in nk is a
consequence of the total degree of the graph (Θ(t1+c)) when tc edges are added at each step.
The same value for the exponent of t is obtained in [13] using purely heuristic normalizing
arguments.

Let
ω = log t,

a notation we preserve throughout this paper. The following theorem summarizes properties
of the degree sequence.

Theorem 1. Let 0 < c < 1, and let A = max(5, 2/(1− c)). For integer k, let

nk =
2
√

1− ξ(k)

1− c

(
t1+c

k3−c

) 1
1−c

, (5)

where ξ(k) = (s0/t)
(1+c)/2 and s0 is the real solution to k = sc

0(t/s0)
(1+c)/2.

Let f(t) = [tc], then the following results hold for the undirected f -process Gf (t):

(i) Let Nk,t be the number of vertices of degree k at step t. Let k1 = tc(1 + ϕ/ω), where
ϕ → ∞ arbitrarily slowly and ϕ = o(ω). Let k2 = t(1+c)/(3−c)/ωA. For k integer,
k1 ≤ k ≤ k2 then

ENk = (1 + o(1))nk.

(ii) All but O(ωA) vertices have degree at least tc −O(ω) whp.

For vertex vs added at step s, the degree d(s, t) of vs at step t has an expected value Ed(s, t) ∼
sc(t/s)(1+c)/2, (see Lemma 1(i)). Thus the expected minimum degree ∼ tc and the expected
maximum degree ∼ t(1+c)/2. To see this, note that as c < 1, c < (1 + c)/2, the function
h(s) = sc(t/s)(1+c)/2 is monotone decreasing in s.

The explanation of s0 is as follows: Choosing an integer k we can find a real s0 for which k
acts as the equivalent expected degree. Vertices of degree d(s, t) = k should have been added
at values of s close to s0. When s0 = o(t), the value ξ(k) is o(1). When s0 = Ω(t) then ξ
corrects the power law for the ‘low degree’vertices, in the same way as (2) above. Essentially,
the theorem characterizes the degree sequence of vertices added between steps t(1+c)/(3−c)+o(1)

and t− o(t). The value k1 = tc(1 + ϕ/ω) in the theorem corresponds (approximately) to the
degree of vertices added around step t(1 − Θ(ϕ/ω)), i.e. t − o(t) or earlier. The value k2 is
somewhat arbitrary, and has been chosen so that nk2 → ∞ faster than ωA, the order of the
error term in the proof of Theorem 1(i).
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We remark that in the range [k1, k2] given in Theorem 1 above, Nk is concentrated about
the mean nk. We do not include a full proof of this, but briefly explain how this can be
obtained. For any c it can be proved, using the methods of [11], that the vertex degrees are
asymptotically independent, i.e.,

Pr(d(v, t) = a, d(w, t) = b) = (1 + o(1)) Pr(d(v, t) = a) Pr(d(w, t) = b).

The Chebychev inequality then gives concentration of Nk within the stated range.

Turning to the case c = 1 we have:

Theorem 2. Let c = 1, so that f(t) = t. The following hold for Gt(t):

(i) Ed(v, t) = t(1 + O(1/v)),

(ii) All but O(ω5) vertices v have degree d(v, t) in [t−O(ω2), t + O(ω2)] whp.

1.2 Directed Model.

The following theorem summarizes properties of the degree sequence.

Theorem 3. Let c > 0. Let Nk,t be the number of vertices of in-degree k at step t. Let
f(t) = [tc]. The following results hold for the directed f -process Gf (t):

(i) Expected degree sequence:

E(Nk,t) = ckt(1 + o(1)), k ≥ 0,

where,

ck =
k! Γ(1 + 1/(1 + c))

(1 + c) Γ(k + 2 + 1/(1 + c))
.

(ii) Power law for degree sequence:

E(Nk,t) ∼ B(1 + O(1/k))tk−(1+ 1
1+c), (6)

where B is a positive constant.

(iii) Concentration of degree sequence:

For k integer, 0 ≤ k ≤ (
n/log8 n

) 1+c
6+4c whp

Nk,t = E(Nk,t)(1 + o(1)) .

Directed models of this type were used by Dorogovtsev and Mendes [13] to model networks
where growth in the number of links accelerates as the network evolves. Their analysis has a
different approach, that of mean field theory, but their results are the same as those reported
here.
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1.3 Comparison of results.

As can be seen from the above theorems, the power law behaviour of the models is as different
as it could possibly be. In terms of the notation of [12] the degree distribution of the directed
model is stationary (P (k, t) ∝ k−γ) whereas the undirected model is non-stationary (P (k, t) ∝
tzk−γ).

For the directed model, when f(t) = m constant, we have (as k →∞) that

E(Nk,t) ∼ tk−(2+ 1
m),

giving a power law in (2, 3] for the in-degree, which tends to 2 as m → ∞. For the corre-
sponding f(t) = [tc]-process, c > 0, we have

E(Nk,t) ∼ tk−(1+ 1
1+c),

as k → ∞. This gives a power law x ∈ (1, 2) for the in-degree which tends to 1 as c → ∞,
and thus extending the range of the constant m-process. The fact that the directed model is
stationary arises from the presence, in the long run, of a constant proportion of vertices of
in-degree zero. The structure of the digraph G(T ) at some much earlier time T does not whp
strongly influence the structure of G(t).

For the undirected scale-free model, when f(t) = m constant, the power law is invariant at
x = 3. For the corresponding f(t) = [tc]-process, 0 < c < 1, for a suitable range of k we have

E(Nk,t) ∼ 2

1− c

(
t1+c

k3−c

) 1
1−c

,

giving a power law of the form x = (3 − c)/(1 − c). As c → 0 the power law coefficient x
tends to 3, from above, and we have x > 3 in contrast to the directed model where x tends
to 2 from below.

For the undirected model, we see from Lemma 1(i) that for any c > 0 the expected degree
Ed(v, t) ∼ vc(t/v)(1+c)/2. Thus for c < 1, the oldest vertices have the highest expected degree
t(1+c)/2. When c = 1, the degree distribution is concentrated about ∼ t. Thus power laws only
occur for 0 < c < 1 in the undirected model, in contrast to the directed case where power
laws persists for all c > 0. For c > 1, the most recently added vertices have highest expected
degree, ∼ tc.

For the directed model, it can easily be proved that for any c > 0 the expected in-degree
Ed−(v, t) ∼ (t/v)1+c+o(1). Thus the oldest vertices have highest expected in-degree t1+c+o(1),
which is much higher than the value in the undirected case (t(1+c)/2). The out-degree of
vertex v is [vc], so the expected total degree Ed(v, t) ∼ vc + (t/v)1+c+o(1). The value of
Ed(v, t) is minimum when v = t(1+c)/(1+2c)+o(1), and the process is similar to the Protean
Process [22, 27, 26, 21].
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Finally, for the purpose of comparison, we state, without proof, the results for the generalized
undirected model. These follow directly by applying the proof method of Section 2 to the
results for the single edge undirected process with parameter α (see [11] for details).

Let η = α(1 + c)/2, and suppose that η − c > 0. The minimum degree is effectively tc, and
for k > tc, the expected number of vertices of degree k (in a suitable range) is given by,

nk ∼ 1

η−c
t1+ c

η−c k−(1+ 1
η−c).

Putting α = 1, as in the scale-free model, we obtain (5). When c → η, i.e. when α → 2c/(1+c)
from above, all vertices have (approximately) the same degree, which is of order tc, and there
is no power law degree sequence. Thus choosing α < 1 (i.e. allowing edges to choose terminal
vertices u.a.r.) reduces the value of c below which a power law holds, from c = 1 for the
scale-free model, to c = α(2− α) < 1.

As a closing remark, it seems reasonable to wonder if the degree sequence power law parameter,
x, is the right quantity to measure experimentally in accelerating growth networks. The fact
that x < 2 for directed and x > 3 for undirected processes seems uninformative, and gives
limited insight.

2 Undirected model: Proof of results

Let Gf (t) be a f -process, and let df (s, t) denote the degree of vertex vs at the end of step t
in the process.

An important observation is the following:
Equivalence of Processes. Suppose vertex ν has degree df (ν, σ) = φ at the end of step σ
in the f -process Gf (σ) when F (σ) edges have been added. Then the evolution of degree of ν
at step τ ≥ σ when F (τ) edges have been added is equivalent to the evolution of degree of a
vertex v in the 1-process G1(t), at step t = F (τ), when at step s = F (σ) vertex v has degree
d1(v, s) = φ. Thus

Prf (df (ν, τ) = φ + ` | df (ν, σ) = φ) = Pr1(d1(v, F (τ)) = φ + ` | d1(v, F (σ)) = φ). (7)

Using this, the proofs of Theorems 1 and 2 are obtained as follows:

In Lemma 8, we derive precise results for the degree distribution of G1(t). In particular, we
obtain

Pr(d1(v, t) = a + l | d1(v, s) = a)

for suitable a, l and v ≤ s < t. This is done using the methods of [11], and is included here as
an appendix, for completeness, as a special case of the proofs in that paper.

Using (7), we convert back from the 1-process to the equivalent f -process. to obtain Lemma 1
of Section 2.1. Theorems 1 and 2 follow in Section 2.2, by summing the distribution of vertices
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of given degree to obtain

ENk =
∑
a,σ,τ

Pr(df (σ, τ) = k, df (σ, σ) = a),

and deriving an asymptotic approximation.

The distribution of df (σ, τ) is obtained in Section 2.1, and the asymptotics for ENk in Section
2.2. Between them they complete the proof of Theorem 1(i).

2.1 Distribution of vertex degree

Where there is no ambiguity, we write d(v, t) for df (v, t). In the Appendix we make an
asymptotic estimate of the degree distribution of the tree process which underlies Gf (t). We
use the following shorthand notation. Let

π(φ, l, v, t) =

(
φ + l − 1

l

)(
v(1 + O(v−c))

t

)(φ 1+c
2 )

(
1−

(
v(1 + δ(v))

t

) 1+c
2

)l

, (8)

where ω = log t as usual, and δ(v) = O(min(φ + l, φω4)/v1+c). Thus the precise value of
π(φ, l, v, t) lies in an interval which can be determined by inserting the minimum/maximum
values of O(v−c), δ(v) arising in the proof given in the Appendix.

Lemma 1. Let f(t) = [tc]. Let K > 0 and A = max(5, 2/(1− c)). The following results hold
for the f -process Gf (t) at step t:

(i) Expected degree. For v ≥ 1 and any c > 0

E(d(v, t)) = vc

(
t

v

) 1+c
2

(1 + O(v−c)).

(ii) Upper bound on vertex degree. For v ≥ 1, and any c > 0

Pr

(
d(v, t) ≥ vc

(
t

v

) 1+c
2

K log4 t

)
≤ t−K .

(iii) Occurrence of loops. For l ≥ 1, Pr(d(v, v) = [vc] + l) = O
(

1
lv1−c

)l
.

(iv) Distribution of vertex degree for 0 < c < 1.
If ωA ≤ v ≤ t(1− δ∗), where δ∗ = o(ω5/t(1−c)/2), then

Pr(d(v, t) = φ + l | d(v, v) = φ) = π(φ, l, v, t) (1 + O(1/ω)) + O(v−K+1). (9)
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(v) Upper bound on distribution of vertex degree.
(a) For 0 < c < 1, and ωA ≤ v ≤ t,

Pr(d(v, t) = φ + l | d(v, v) = φ) ≤ π(φ, l, v, t) (1 + O(1/ω)) + O(v−K+1).

(b) For c = 1, and ω5 ≤ v ≤ t,

Pr(d(v, t) = φ + l | d(v, v) = φ) ≤ π(φ, l, v, t) (1 + O(1)) + O(v−K+1).

Proof Using Gf (t) = (V (t), E(t)), |V (0)| = 1, |E(0)| = 1 let F (τ) = |E(0)|+∑τ
ν=1 f(ν).

Thus |V (τ)| = τ + 1 and |E(τ)| = F (τ). If f(t) = [tc] and F (t) = 1 +
∑t

s=1 f(s) then from

Lemma 10 F (t) = t1+c

1+c
(1 + O(t−c)).

To convert the results of the Appendix for the 1-process, to the f -process, we use the notation
σ, τ for vertices of Gf (τ) and v, s, t for vertices of G1(t).

Proof of (i), (ii). Use Lemma 7(i), (ii) with s = F (σ) etc. We have e.g.

Edf (σ, τ) = (1 + O(ωσ−c))f(σ)

(
F (τ)

F (σ)

)1
2

. (10)

Proof of (iii). The degree of vertex σ immediately after its addition is φ(σ) = f(σ)+g(σ) where
g(σ) is the number of loops arising at σ during the addition of the edges ei, i = 1, . . . , [sc].
The probability of ei forming a loop is at most 2(i − 1)/2F (σ − 1) ≤ 3/s. Thus the number
of loops is stochastically dominated by Binomial B([sc], 3/s), and (iii) follows.

Proof of (iv), (v). For the proof of (iv) below, we assume whp that for c < 1, the number of
loops g(σ) ≤ L = K/(1− c); and for c = 1, g(s) ≤ log t. In both cases the probability of this
not occurring is O(t−K).

If s = F (σ) ∼ σ1+c then d(σ, σ) = φ(σ) ∼ σc and a = φ2 = O(s). Thus we can apply Lemma 8
to the 1-process, with θ = min(φ + l, φK(log F (τ))4). Using (7), this gives

Pr(df (σ, τ) =φ(σ) + l | df (σ, σ) = φ) = O(σ−(c+1)(K−1)) (11)

+ (1 + ε)

(
φ + l − 1

l

) (
F (σ)

F (τ)

)φ
2
(

1−
(

F (σ)
F (τ)

) 1
2 (

1+O( θ
F (σ))

))l

, (12)

and

ε = O

(
φ2

F (σ)

)
− l2

∣∣∣∣∣O
( (

log
F (τ)
F (σ)

+ θ
F (σ)

)

(
√

F (τ)−
√

F (σ))2

)∣∣∣∣∣ . (13)

Given that σ ≥ log5 t then
(

θ
F (σ)

)
= O(1/ω) which deals with the error term in line (12).

The first term in (13) is O(σ−(1−c)/2) = O(1/ω) for σ ≥ ω2/(1−c). We note that the second
error term on line (13) is negative, and thus provided σ ≥ ωA ignoring it gives an upper bound
on the required probability for part (v).

11



For part (iv), we argue as follows: Let σ = τ(1 − δ). For 0 ≤ δ ≤ 1, and 0 < a ≤ 1,
(1− δ)a ≤ 1− aδ, so (

√
F (τ)−

√
F (σ))2 ≥ (1 + o(1))τ 1+cδ2(1 + c)/4.

Let L be the whp maximum degree given by part (ii). Thus l ≤ L = σc(t/σ)(1+c)/2Kω4. We
require the error term in (13) to be ε = O(1/ω), i.e. that L2/(

√
F (τ)−

√
F (σ))2 = 1/ω. We

find this is satisfied by δ = Bω9/2/τ (1−c)/2 for some constant B > 0. As δ∗ > δ part (iv) holds.
2

We next determine the (whp) minimum degree of vertices of the f -process added after step
ωA.

Lemma 2. Let K be a large constant. Let f(t) = [tc]. The following results hold for the
f -process Gf (t) at step t:

(i) Case 0 < c < 1: There are at most ωA vertices v such that d(v, t) ≤ tc −Kω, whp.

(ii) Case c = 1: At most ω5 vertices v do not satisfy (t−Kω2 ≤ d(v, t) ≤ t + Kω2), whp.

Proof To find Pr(df (v, t) ≤ (1−ε)tc) we proceed as follows. Referring to Lemma 1(v) and
(8) we see that the upper bound for the probability distribution of vertex degree decreases from
its central term near the mean, given in Lemma 1(i). Thus we can upper bound Pr(df (v, t) =
(1− ε)tc), and then multiply this by tc to include lower values. If the formula (8) is expanded
using Stirling’s approximation we have the following cases.

Case (i) (c < 1). We condition on the number of loops at v being at most a constant L.
Using π(φ, `, v, t) from (8) with vc ≤ φ ≤ vc + L, φ + ` = (1− ε)tc where ε = Kω/tc. Assume
v ≥ ωA, and v ≤ (1− δ)t where δ ≥ 2ε/(1− c). Let b = (1 + c)/2 and v′ = v(1 + o(1)). Then

π(φ, `, v, t) = o(tcL)
((1− ε)tc)(1−ε)tc

vcvc((1− ε)tc − vc)(1−ε)tc−vc

(
v′

t

)bvc
(

1−
(

v′

t

)b
)(1−ε)tc−vc

≤ o(tcL)

(
(1+o(1))

(1− ε)1−ε

(1− δ)c(1−δ)(δ − ε)δ−ε
(1− δ)b(1−δ)(1− (1− δ(1+o(1)))b)δ−ε

)tc

≤ o(tcL)

(
(1+o(1))(1− ε)1−ε(1− δ)

1−c
2

(1−δ)

(
bδ

δ − ε

)δ−ε
)tc

≤ o(tcL) exp−tc(1+o(1))

(
ε(1− ε) +

1− c

2
δ(1− δ)

)

≤ o(tcL) exp (−εtc) = O(t−K).

Part (i) now follows.

Case (ii) (c = 1). The proof is similar. Let |ε| = 2Kω2/t, δ ≥ ωε and let L = log t. Then
from the above expression

π(φ, `, v, t) = O(tL)

(
(1− ε)1−ε

(
δ

δ − ε

)δ−ε
)t

. (14)

12



Note that log(1 + x) ≤ x− x2/2 + max(0, x3/3) for |x| < 1. Let Ψ be given by

Ψ =(1− ε) log(1− ε) + (δ − ε) log

(
1 +

ε

δ − ε

)

=(1− ε)(−ε−O(ε2)) + (δ − ε)

(
ε

δ − ε
− 1

2

(
ε

δ − ε

)2

+ O

(
ε

δ − ε

)3
)

=− 1

2

(
ε2

δ − ε

)
+ O(ε2) + O

(
ε3

δ2

)

≥− 1

2

ε

ω

(
1−O

(
1

ω

))
.

Thus
Pr(df (v, t) ≤ (1− ε)tc) = O(tL) exp−O(tε/ω) = O(t−K).

For ε ≥ 1, Ψ becomes

Ψ = (1 + ε) log(1 + ε) + (δ + ε) log

(
1− ε

δ + ε

)

giving the same result, and thus Pr(df (v, t) ≤ (1 + ε)t) ≤ O(t−K) as before. 2

Finally, we use the following notation and concentration results in the proofs of the next
section. Let b = (1 + c)/2 and let

θ(v) =

((
t

v

)
(1 + δ(v))

)b

, (15)

where δ(v) = O(min(φ + l, φω4)/v1+c).

Lemma 3. Let ωA ≤ v ≤ (1− ε)t and π(φ, l, v, t) given by (8). Provided h = o(ε),

π(φ, l, v, t) = O(1) exp

(
− φθ

2(θ − 1)
h2(1 + O(h))

)
,

Proof Expanding (8) using Stirlings approximation, we have

π = O(1)
(φ + l)φ+l

ll φφ

1

θφ

(
1− 1

θ

)l

.

Let φ + l = aφθ, let

f(a) =
(aθ)aθ

(aθ − 1)aθ−1

1

θ

(
1− 1

θ

)aθ−1

,

and let
y(a) = θ log aθ + θ log(θ − 1)− θ log θ − θ log(aθ − 1).

13



The derivatives of f(a) are

f ′(a) = f(a) · y(a)

f ′′(a) = f ′(a) · y(a) + f(a) ·
( −θ

a(aθ − 1)

)

f ′′′(a) = f ′′(a) · y(a) + 2f ′(a) ·
( −θ

a(aθ − 1)

)
+ f(a) ·

(
θ(2aθ − 1)

a2(aθ − 1)2

)
,

and y(1) = 0, f(1) = 1, f ′(1) = 0, f ′′(1) = −θ/(θ − 1), f ′′′(1) = θ(2θ − 1)/(θ − 1)2. When
a = 1 + h, and ζ ∈ [0, 1] we have

f ′′′(1 + ζh) = O

(
θ2

(θ(1− h)− 1)2

)
.

Thus provided v ≤ t(1− ε), then θ− 1 ≥ bε and as h = o(ε) f ′′′(1 + ζh) = f ′′′(1)(1 + o(1)). It
follows that

f(1 + h) = 1− h2θ

2(θ − 1)
− h3

6

θ(2θ − 1)

(θ − 1)2
(1+o(1)).

Using h = o(ε) again (i.e. h/(θ − 1) = o(1)), the lemma follows. 2

The concentration of vertex degree will follow from:

Lemma 4. Let

h(v) =

√
(θ(v)− 1)2K log t

θ(v)φ
, µ = φ[(t/v)(1 + δ(v)]b.

Then whp, for v ≤ t(1− ϕ/ω)

Pr(d(v, t) 6∈ [(1− h)µ, (1 + h)µ]) = O(t−K+1).

Proof As h(v) = o(ε) = ϕ/ω in Lemma 3, we have

π(φ, µ(1 + h), v, t) = O(1) exp

(
− φθ

2(θ − 1)
h2(1 + O(h))

)
∼ O(t−K).

As π is monotone decreasing about the mode ∼ µ, the result follows. 2

2.2 Proof of Theorem 1

Theorem 1(ii) is proved in Lemma 2. For the proof of Theorem 1(i) we proceed as follows.

Let s0 = s0(k) be the unique real solution of

k = sc
0

(
t

s0

) 1+c
2

, (16)
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then nk = 2
√

1−ξ
1−c

s0

k
. By Lemma 1(i), for integer s0, the expected degree of vertex s0 is

approximately k at time t, so intuitively we might expect most vertices of degree k to have
labels s close to s0.

Let

h(s0) =

√
(θ(s0)− 1)

θ(s0)

2K log t

sc
0

, (17)

for some large constant K, and θ(v) given by (15). It follows from Lemma 4 with that with

s1 = s0(1− h)2/(1−c), s2 = s0(1 + h)2/(1−c),

the interval [s1, . . . , s2] contains all vertices v with d(v, t) = k simultaneously for all v, k with
probability 1 − O(t−K+2). Conditional on this, define an interval I(k) for vertices of degree
k by I(k) = [(1− ε)s0, . . . , (1 + ε)s0] where ε = max((1± h)2/(1−c) − 1). Note that, for some
a > 0 constant, ε = ah.

For k1 ≤ k ≤ k2, we write

ENk =
∑

s>ωA

Pr(df (s, t) = k) + O(ωA).

We prove the first term on the right hand side is asymptotic to nk.

Let L be a large constant. From Lemma 1(iii), the probability that φ(v) ≥ vc+L is O(v−L(1−c)).
Thus we can have φ(v) = vc(1 + O(v−c)) with probability 1−O(v−L(1−c)).

Let b = (1 + c)/2, let s′ = s(1 + O(δ(s)), let s′′ = s(1 + O(s−c)) then from (8)

Pr(df (s, t) = k | df (s, s) = φ(s)) = (1+o(1))

(
k − 1

k − φ(s)

)(
s′′

t

)bφ(s)
(

1−
(

s′

t

)b
)k−φ(s)

+O(s−K+1).

From Sterling’s formula we have, for k > φ, that

(
k − 1

k − φ

)
=

(
1+O( 1

k
+ 1

φ
+ 1

(k−φ)
)
) √

φ√
2πk(k − φ)

(
k

φ

)φ (
1− φ

k

)φ−k

.

Thus

Pr(df (s, t) = k | φ) =
(
1+O( 1

k
+ 1

φ
+ 1

(k−φ)
)
) √

φ

k
√

2π

(
eO(1/k) k

φ

(
s′′

t

)b
)φ (

1− (
s′
t

)b

1− φ
k

)k−φ

.

From (16) define ξ ≤ 1 by

ξ =
s0

c

k
=

(s0

t

)b

.
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From the choice of k1, ξ ≤ 1 − ϕ/ω. We see from (17) that h(s0) = o(1 − ξ), a condition we
require below. Let s = λs0 where (1− ε) ≤ λ ≤ (1 + ε), and where ε = O(h(s0)) comes from
I(k) above. Substitute (s/t)b = λbξ, φ(s) = sc(1 + o(1)) and sc/k = λcξ to obtain

Pr(df (s, t) = k | φ(s)) = (1+o(1))
s

c/2
0

k

1√
2π


λ(b−c)λc

(
1− λbξ

1− λcξ

) 1−λcξ
ξ

(1+o(1))




sc
0(1+o(1))

. (18)

Let

g(λ) = (b− c)λc log λ +
1− λcξ

ξ
log

(
1− λbξ

1− λcξ

)
,

and let

G(λ) =
1√
2π

exp(sc
0 g(λ)(1 + o(1))).

Thus ∑

s≥ωA

Pr(df (s, t) = k) = (1 + o(1))
s
1+c/2
0

k

∫ 1+ε

1−ε

G(λ) dλ. (19)

We prove that ∫
G(λ) dλ = (1 + o(1))

√
1− ξ

(b− c)s
c/2
0

(20)

and thus ENk = (1 + o(1))nk which completes the proof of Theorem 1.

Note that2

g(1) = 0, g′(1) = 0, g′′(1) = −(b− c)2

1− ξ
, g′′′(1) = −(b− c)2(ξb + b− 3 + 3ξ − cξ + 2c)

(1− ξ)2
,

and provided h = o(1− ξ), g′′′(1 + ζh) = O((1− ξ)−2) for ζ ∈ [0, 1]. As 1− ξ = Ω(ϕ/ω), then
as remarked before h = o(1− ξ), and so

g(1 + h) = −h2

2

(b− c)2

1− ξ
(1 + o(1)).

Thus

G(1 + h) =
1√
2π

exp

(
−sc

0h
2(b− c)2

2(1− ξ)
(1 + o(1))

)
.

As long as s0 ≤ t(1− bϕ/ω) where ϕ →∞ slowly, and ω = log t, we have θ(s0)− 1 ≥ b′ϕ/ω.

Let λ = 1 + h, and x = s
c/2
0 (b− c)h/

√
1− ξ. When h = ε, and the upper and lower limits of

integration of the standardized normal integral are at least x = (b − c)
√

ϕ → ∞. This gives
the required result (and explains our choice of k1). 2

2The values of g′(λ), . . . , g′′′(λ) have been checked in Maple
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3 Directed model: Proof of results

The model produces a sequence {G(t)}∞t=1 = {(V (t), E(t))}∞t=1 of directed graphs, where t
denotes time. The model has one parameter: c > 0. Let G1 = (V (1), E(1)) = ({v1}, ∅) be a
fixed initial graph with a single isolated vertex. For t > 1, form G(t) from G(t−1) by adding a
new vertex vt together with f(t) = [tc] edges from vt directed towards existing vertices chosen
randomly with weighted probabilities as follows:
The edges, ei, i = 1, . . . , [tc], are added in [tc] independent sub-steps. In each sub-step, one
edge is added, and the probability that u is chosen as its endpoint (the link probability), given
by

Pr(vt chooses u as terminal vertex of edge ei) =
d−(u, t− 1) + 1

|E(t− 1)|+ |V (t− 1)| . (21)

Our model allows multiple edges; there seems no reason to exclude them. Indeed, for c > 1
multiple edges cannot be avoided. The expected number of parallel edges added to a vertex
of in-degree d at step t is O(d2/t2). Thus modifying the model to exclude them (for small c)
will not to significantly affect the results of Theorem 3.

We approximate (21) as follows. For any c > 0, define the function gc : N→ R:

gc(t) = |V (t)|+ |E(t)| = t +
t∑

j=2

[jc] = t +
t1+c

1 + c
+ O(1) =

t1+c

1 + c
(1 + O(t−c)) . (22)

See Lemma 10 for a proof of this.

Let Ni,t denote the number of vertices of in-degree i in G(t). The equations relating the
random variables Ni,t are described as follows. As G1 consists of one isolated vertex, N0,1 = 1,
and Ni,1 = 0 for i > 0. At time t + 1 > 0, we add a new vertex vt+1 which initially has
in-degree zero and [(t+1)c] edges. The expected number of these edges which choose a vertex
of in-degree zero (at time t) as their endpoint is [(t+1)c]N0,t/gc(t). Some of those vertices can
be chosen more then once during the [(t + 1)c] sub-steps. The expected number of vertices
that are chosen exactly k times is O(([(t + 1)c])kN0,t/gc(t)

k) = O(N0,t/t
k). Therefore, we get

E(N0,t+1 −N0,t | Gt) = 1−N0,t
1

gc(t)
[(t + 1)c] + O(N0,t/t

2)

= 1−N0,t
1 + c

t
(1 + O(t−min{c,1})). (23)

Similarly, one can analyze the expected change in Ni,t for i > 0. The fact that some of these
vertices can be chosen more than once affects the formula as before. Note that vertices of
degree i−k can receive k parallel edges so all vertices of degree at most i have to be considered.
The function h(i, t) = h(t, N0,t, N1,t, . . . , Ni,t) introduced below takes care of vertices that are
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chosen at least twice.

E(Ni,t+1 −Ni,t | Gt) = Ni−1,t
(i− 1) + 1

gc(t)
[(t + 1)c]−Ni,t

i + 1

gc(t)
[(t + 1)c] + h(i, t)

=

(
Ni−1,t

i(1 + c)

t
−Ni,t

(i + 1)(1 + c)

t

)
(1 + O(t−min{c,1})) + h(i, t).

It can be seen that

h(i, t) = O

(
([(t + 1)c])2Ni,t

(
i + 1

gc(t)

)2
)

+ O

(
([(t + 1)c])2Ni−1,t

(
i

gc(t)

)2
)

+O

(
i∑

k=2

([(t + 1)c])kNi−k,t

(
i− k + 1

gc(t)

)k
)

= O

(
(Ni,t + Ni−1,t)

(
i

t

)2
)

+ O

(
i∑

k=2

Ni−k,t

(
i(1 + c)

t

)k
)

.

We show below (inductively) that whp Ni−k,t = Θ(Ni−k−1,t) (1 ≤ k ≤ i − 1) which implies
that h(i, t) = O(Ni,ti

2/t2) and thus

E(Ni,t+1 −Ni,t | Gt) =

(
Ni−1,t

i(1 + c)

t
−Ni,t

(i + 1)(1 + c)

t

)
(1 + O(it−min{c,1})). (24)

To do this we first establish the expected value of N0,t using Lemma 5, and then prove the
variable N0,t is concentrated using Theorem 4. Assuming this, we then use Lemma 5 and
Corollary 5, to establish the same result for N1,t and so on.

Assuming h(i, t) = O(Ni,ti
2/t2), recurrence relations for the expected values of Ni,t are ob-

tained by taking the expectation of the above equations. To solve these relations, we use the
following lemma on real sequences, which is Lemma 3.1 from [7].

Lemma 5. If (αt), (βt) and (γt) are real sequences satisfying the relation

αt+1 =

(
1− βt

t

)
αt + γt,

where limt→∞ βt = β > 0 and limt→∞ γt = γ, then limt→∞ αt

t
exists and equals γ

1+β
.

Taking expectations again, from (23) it follows that

E(N0,t+1) =

(
1− 1 + c

t
(1 + O(t−min{c,1}))

)
E(N0,t) + 1.

Applying Lemma 5 with αt = E(N0,t), βt = (1 + c)(1 + o(1)), and γt = 1 gives that E(N0,t) =
c0t(1 + o(1)) with

c0 =
1

2 + c
.
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For i > 0, the lemma can be inductively applied with αt = E(Ni,t), βt = (i + 1)(1 + c), and

γt = E(Ni−1,t)
i(1+c)

t
to show that E(Ni,t) = cit(1 + o(1)), where

ci = ci−1
i(1 + c)

1 + (i + 1)(1 + c)
,

and thus for i ≥ 0,

ci =
i! Γ(1 + 1/(1 + c))

(1 + c) Γ(i + 2 + 1/(1 + c))
.

It follows that ci = (1+O(1/i))Ai−(1+ 1
1+c

), where A = Γ(1+1/(1+c))/(1+c). This shows that
for large i, the expected proportion E(Ni,n)/n has a power law with exponent x = 1 + 1

1+c
.

Let

if = if (n) =

(
n

log8 n

) 1+c
6+4c

.

We show that the random variables Ni,n, i < if , are whp well concentrated around their
mean. In order to sketch the technique that can be used, we consider N0,t, the number of
nodes of in-degree zero. We use the super-martingale method of Pittel et al. [25], as described
in [29]. We say that an event holds with extreme probability (wep) if it holds with probability
at least 1− exp(−Ω(log2 n)) as n →∞. In this section, we will often use the stronger notion
of wep in favor of the more commonly used whp, since it simplifies some of our proofs. If we
consider a polynomial number of events that each holds wep, then wep all these events hold.

Lemma 6. Let G0, G1, . . . , Gn be a random graph process and Xt a random variable deter-
mined by G0, G1, . . . , Gt, 0 ≤ t ≤ n. Suppose that for some real β and constants γt,

E(Xt −Xt−1|G0, G1, . . . , Gt−1) < β

and
|Xt −Xt−1 − β| ≤ γt

for 1 ≤ t ≤ n. Then for all α > 0,

Pr
(
For some t with 0 ≤ t ≤ n : Xt −X0 ≥ tβ + α

) ≤ exp
(
− α2

2
∑n

i=1 γ2
i

)
.

Theorem 4. Wep for every 1 ≤ t ≤ n, we have that

N0,t =
t

2 + c
+ O(n1/2 log3 n) = c0t + O(n1/2 log3 n) .

Proof. We first transform N0,t into something close to a martingale. It provides insight if we
define a real function f(x) to model the behaviour of the scaled random variable 1

n
N0,xn. If we
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presume that changes in the function correspond to the expected change of a random variable
(see (23)), we obtain the following differential equation

f ′(x) = 1− f(x)
1 + c

x

with the initial condition f(0) = 0. The general solution of this equation can be put in the
form

f(x)x1+c − x2+c

2 + c
= C.

Consider the following real-valued function

H(x, y) = x1+cy − x2+c

2 + c
(25)

(note that we expect H(t, N0,t) to be close to zero). Let wt = (t, N0,t), and consider the
sequence of random variables (H(wt) : 1 ≤ i ≤ n). The second-order partial derivatives of H
evaluated at wt are all O(tc). Therefore, we have

H(wt+1)−H(wt) = (wt+1 −wt) · grad H(wt) + O(tc), (26)

where “·” denotes the scalar product and grad H(wt) = (Hx(wt), Hy(wt)).

Observe that from our choice of H, we have that

E(wt+1 −wt | Gt) · grad H(wt)

=

(
1, 1−N0,t

1 + c

t
(1 + O(t−min{c,1}))

)
· ((1 + c)tcN0,t − t1+c, t1+c

)

= O(tc).

Hence, taking the expectation of (26) conditional on Gt, we obtain that

E(H(wt+1)−H(wt) | Gt) = O(tc).

In order to estimate the maximum change in H(wt) we need to bound the change in N0,t. It is
clear that for each t ∈ [n], |N0,t −N0,t−1| can be as big as [t]c (extreme case). However, using
Chernoff’s inequality (see, for instance Theorem 2.1 in [20]), we show that |N0,t − N0,t−1| <
log2 n wep. N0,t−N0,t−1 is a random variable that can be expressed as a sum of independent
random variables with expected value O(1).

Indeed, let X(t, j) be a random indicator variable for an event that vertex vt joins vertex of
in-degree zero (at the end of step t−1) at sub-step j of step t (t = 2, 3, . . . , n, j = 1, 2, . . . , [tc]).
It is clear that

Pr(X(t, j) = 1) = 1−Pr(X(t, j) = 0) = N0,t−1/gc(t− 1) = O(t−c)
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and

E(N0,t −N0,t−1|N0,t−1) ≤ 1 +

[tc]∑
j=1

Pr(X(t, j) = 1) = O(1).

Since Lemma 6 requires a deterministic bound, we introduce the stopping time

T = min{t ≥ 1 : (|N0,t −N0,t−1| ≥ log2 n) ∨ (t = n)} .

A stopping time is any random variable T with values in {0, 1, . . . } ∪ {∞} such that it is
determined whether T = t̂ for any time t̂ from knowledge of the process up to and including
time t̂.

From (26), with i ∧ T denoting min{i, T} and noting that

grad H(wt) =
(
(1 + c)tcN0,t − t1+c, t1+c

)
,

we have that

|H(w(t+1)∧T )−H(wt∧T )| ≤ O(t1+c) + O(t1+c log2 n) = O(t1+c log2 n).

If T < n, then the value of H(wt∧T ) remains the same from that point on, and the conditions
of Lemma 6 hold.

Recalling that wt = (t, N0,t) and choosing Xt = H(t ∧ T, N0,t∧T ), we apply Lemma 6, with
α = n3/2+c log3 n, β = O(tc) and γt = O(t1+c log2 n), to the sequence (H(wt∧T ) : 1 ≤ t ≤ n),
and also symmetrically to (−H(wt∧T ) : 1 ≤ t ≤ n). We obtain that wep

|H(wt∧T )−H(w0)| = O(n3/2+c log3 n)

for 1 ≤ t ≤ n. As H(w0) = 0, this implies from the definition (25) of the function H, that
wep

N0,t∧T =
t ∧ T

2 + c
+ O(n1/2 log3 n)

for 1 ≤ t ≤ n.

To complete the proof we need to show that wep, T = n but, as we already mentioned, this
follows immediately from the Chernoff bound.

Corollary 5. Let if (n) = (n/(log8 n))
1+c
6+4c . Wep for every 1 ≤ t ≤ n and 0 ≤ i ≤ if (n) we

have that
Ni,t = cit + O(in1/2 log3 n) .

Proof. We may repeat (recursively) the argument as in the proof of Theorem 4 for Ni,t with
i ≥ 1. Since the expected change for Ni,t is slightly different now (see (24)), we obtain our
result by considering the following function:

H(x, y) = x(i+1)(1+c)y − ci−1
i(1 + c)

1 + (i + 1)(1 + c)
x1+(i+1)(1+c).
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Using this function, we may show by similar arguments as in the case i = 0 that wep

Ni,n = cin + O(in1/2 log3 n).

Since

if n1/2 log3 n = n
4+3c
6+4c log

10+4c
6+4c n

= o(n1− 2+c
6+4c log

10+4c
6+4c

+1 n)

= o

(
i
−(1+ 1

1+c
)

f n

)
= o(cif n),

we obtain concentration for all degrees i up to if .
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4 Appendix

4.1 Degree distribution of the 1-process

We consider a 1-process (G1(t))t>s in which, at each step t = s + 1, . . . a new vertex vt = t is
added, together with an edge et from vt to G1(t− 1). The terminal vertex of edge et is chosen
preferentially using the following rule,

Pr(v chosen at step t + 1) =
d(v, t)

2t
.

The initial subgraph G(s) is an arbitrary graph with s edges. For our applications G(s) will
be Gf (σ) the existing subgraph of the f -process immediately after the addition of vertex σ,
and where s = F (σ) is the size of the edge set of Gf (σ).

The following approximation is used frequently in the subsequent proofs. If φ(x) is positive
and monotone decreasing then

n−1∑
j=1

φ(j) =

∫ n

1

φ(x) dx + aφ(1) 0 ≤ a < 1.

Lemma 7. For the 1-process (G1(t))t>s,

(i)

E (d(v, t) | d(v, s)) = d(v, s)

(
t

s

)1
2 (

1 + O
(

1
s

))
.
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(ii) Let K be a positive constant. For 1 ≤ v ≤ s ≤ t

Pr

(
d(v, t) ≥ d(v, s)

(
t

s

)1
2

K log3 t

)
= O(t−K).

This or similar results are given in, for example, [2, 8, 9, 10, 11].

The proof of the following lemma derives from [11].

Lemma 8. Let log t < s < t, a ≤ s and a2 = O(s). For the 1-process (G1(t))t>s,

Pr(d(v, t) =a + l | d(v, s) = a) (27)

= (1 + ε)

(
a + l − 1

l

) (s

t

)a
2

(
1−

(s

t

) 1
2
(
1 + O

(
θ(t)
s

)))l

+ O(s−K+1)

where

ε = O

(
a2

s

)
− l2

∣∣∣∣∣O
(

log(t/s) + θ(t)/s(√
t−√s

)2

)∣∣∣∣∣ , (28)

θ(t) = min(a + l, aK(log t)4), and K is a positive constant.

Proof Let τ = (τj : j = 1, . . . , l) where τj is the step occurring before the degree of
vertex v changes from a + j − 1 to a + j. Thus

Pr(d(v, t) =a + l | d(v, s) = a, τ )

=
(
1− a

2s

)
· · ·

(
1− a

2(τ1 − 1)

)
a

2τ1

(
1− a + 1

2(τ1 + 1)

)
· · ·

· · · a + j − 1

2τj

(
1− a + j

2(τj + 1)

)
· · ·

(
1− a + j

2(τj+1 − 1)

)
a + j

2τj+1

· · ·
(

1− a + l

2(t− 1)

)

=
a(a + 1) · · · (a + l − 1)

2l τ1 · · · τl

Φ(τ ),

where Φ(τ ) is given by

Φ(τ ) =
(
1− a

2s

) · · ·
(
1− a

2(τ1−1)

)(
1− a+1

2(τ1+1)

)
· · ·

(
1− a+j

2(τj+1)

)
· · ·

(
1− a+j

2(τj+1−1)

)
· · ·

(
1− a+l

2(t−1)

)
.

From Lemma 9, proved below,

Φ(τ ) =
(
1 + O

(
a2

s

)) (s

t

)a
2

l∏
j=1

(τj

t

) 1
2
(
1 + O

(
a+j
τj

))
. (29)

Note that (a + j)/τj ≤ 1 as required by Lemma 9, because τj = s + σ where s ≥ v − 1 + a
and σ ≥ j, as it takes at least j steps to add j edges to v.
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Thus

Pr(d(v, t) = a + l | d(v, s) = a) =

(
a + l − 1

l

)
l!

∑
τ

Φ(τ )

2l τ1...τl

, (30)

where

∑
τ

Φ(τ )

2l τ1 · · · τl

=
(
1 + O

(
a2

s

)) (s

t

)a
2

∑
τ1<···<τl

l∏
j=1

1

2
√

τjt

(
1 + O

(
a + j

τj

))
.

Provided bj ≥ 0 we have

(bs + · · ·+ bT )k− (bs
2 + · · ·+ bT

2)

(
k

2

)
(bs + · · ·+ bT )k−2 ≤ k!

∑
i1<···<ik

bi1 · · · bik ≤ (bs + · · ·+ bT )k.

Let

bτ =
1

2
√

tτ

(
1 + O

(
∆(τ)

τ

))
,

where ∆(τ) = min(a + l, a(τ/s)1/2K(log τ)3). The second term follows from Lemma 7(ii), as
the probability of the event E(τ) that the degree j exceeds a(τ/s)1/2K(log τ)3 at step τ is

O(τ−K). In the estimate of Φ(τ ) in (29) we can replace 1 + O
(

a + j
τj

)
by 1 + O

(
∆(τj)

τj

)

provided we add a term of O(s−K+1) to our estimate of Pr(d(v, t) = a + l | d(v, s) = a) to
account for the event E(τ) at some step s ≤ τ ≤ t. This explains the final term in (27).

We note that ∆(τ)/τ 3/2 is monotone decreasing, and so

t∑
τ=s

∆(τ)

τ 3/2
= O

(
min

(
a + l√

s
,
aK(log t)4

√
s

))
=

θ(t)√
s

.

Thus

bs + · · ·+ bt−1 =
O (1)

2
√

ts
+

∫ t

s

1

2
√

tx

(
1 + O

(
∆(x)

x

))
dx

= 1−
(s

t

) 1
2 (

1 + O
(

θ
s

))
,

and

bs
2 + · · ·+ bt−1

2 =
O (1)

4ts
+

∫ t

s

1

4tx

(
1 + O

(
∆(x)

x

))
dx

=
1

4t

(
log

t

s
+ O

(
θ

s

))
.

The expression for (27)-(28) follows from (30) using the estimates given above. 2
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Lemma 9. Let τ = (s, τ1, . . . , τl, t), let τ0 = s and

Φ(τ ) =
(
1− a

2s

) · · ·
(
1− a

2(τ1−1)

)(
1− a+1

2(τ1+1)

)
· · ·

(
1− a+j

2(τj+1)

)
· · ·

(
1− a+j

2(τj+1−1)

)
· · ·

(
1− a+l

2(t−1)

)
.

If (a + j)/τj ≤ 1 for j = 0, 1, . . . , l, and a2 = O(s) then

Φ(τ ) =
(
1 + O

(
a2

s

)) (s

t

)a
2

l∏
j=1

(τj

t

) 1
2
(
1 + O

(
a+j
τj

))
. (31)

Proof We note that for 0 ≤ x < 1

log(1− x) = −x−
∫ x

0

y

1− y
dy

= −x− x2

2
Rx,

where 1 ≤ Rx ≤ 1/(1− x). Thus

−
∑

x∈χ(τ )

x−
∑

x∈χ(τ )

x2 ≤ log Φ(τ) ≤ −
∑

x∈χ(τ )

x−
∑

x∈χ(τ )

x2

2
, (32)

where

χ(τ ) =

{
a

2s
, . . . ,

a

2(τ1 − 1)
,

a + 1

2(τ1 + 1)
, . . . ,

a + j

2(τj + 1)
, . . . ,

a + j

2(τj+1 − 1)
, . . . ,

a + l

2(t− 1)

}
.

The value of maxx∈χ(τ ){1/(1− x)} ≤ 2 because, by assumption (a + j)/τj ≤ 1 and from then
on, the sequence a+j

τj+1
, . . . , a+j

τj+1−1
is monotone decreasing.

Now

a

s
+ · · ·+ a

τ1 − 1
+

a + 1

τ1

+
a + 1

τ1 + 1
+ · · ·+ a + j − 1

τj−1 − 1
+

a + j

τj

+
a + j

τj + 1
+ · · ·+ a + l

t− 1

= a

t−1∑
T=s

1

T
+

t−1∑
T=τ1

1

T
+ · · ·+

t−1∑
T=τl

1

T

= a log
t

s
+ log

t

τ1

+ · · ·+ log
t

τj

+ · · ·+ log
t

τl

+ O
(a

s

)
+ O

(
1

τ1

)
+ · · ·+ O

(
1

τj

)
+ · · ·+ O

(
1

τl

)
.

Thus, as (a + j)/τj ≤ 1,

exp


−

∑

x∈χ(τ )

x


 =

(s

t

)a
2 (

1 + O
(

a
s

)) l∏
j=1

(τj

t

)1
2
(
1 + O

(
a+j
τj

))
. (33)
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We next consider the term
∑

x2. For j = 1, . . . , l we have (a+ j)2− (a+ j−1)2 = 2(a+ j)−1
and thus

(
a
s

)2
+ · · ·+

(
a

τ1−1

)2

+
(

a+1
τ1

)2

+
(

a+1
τ1+1

)2

+ · · ·+
(

a+j−1
τj−1

)2

+
(

a+j
τj

)2

+
(

a+j
τj+1

)2

+ · · ·+ (
a+l
t−1

)2

= a2

t−1∑
T=s

1
T 2 + (2(a + 1)− 1)

t−1∑
T=τ1

1
T 2 + · · ·+ (2(a + j)− 1)

t−1∑
T=τj

1
T 2 + · · ·+ (2(a + l)− 1)

t−1∑
T=τl

1
T 2

= a2
(

1
s
− 1

t

)
+ (2(a + 1)− 1)

(
1
τ1
− 1

t

)
+ · · ·+ (2(a + l)− 1)

(
1
τl
− 1

t

)
+ c

((
a
s

)2
+ · · ·+

(
a+l
τl

2

))

= O

(
a2

s

)
+ O

(
a + 1

τ1

)
· · ·+ O

(
a + l

τl

)
.

Thus for c > 0 constant,

exp


−c

∑

x∈χ(τ )

x2


 =

(
1 + O

(
a2

s

)) ∏

j=1,...,l

(
1 + O

(
a + j

τj

))
. (34)

The expression (31) follows from (32), (33), (34) and the definition of Φ(τ ). 2

4.2 Proof of Lemma 10

Lemma 10. Let f(t) = [tc] and let F (t) =
∑t

s=1 f(s) then F (t) = t1+c

1+c
(1 + O(t−c)).

Proof

t∑
i=1

[ic] =
t∑

i=1

(ic + O(1))

=
t∑

i=1

ic + O(t)

=
t1+c

1 + c
+ O(1) + O(t)

=
t1+c

1 + c
(1 + O(t−c)) .

2
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