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Abstract. The web graph is a real-world self-organizing network whose ver-
tices correspond to web pages, and whose edges correspond to links between
pages. Many stochastic models for the web graph have been recently proposed,
with the aim of reproducing one or more of its observed properties and param-
eters. Some of the most intensely studied parameters for the web graph are the
degree distribution and diameter.

A recent stochastic model of the web graph is the protean graph Pn(d, η). In
this model, vertices are renewed over time, and older vertices are more likely to
receive edges than younger ones. While previous work on the model focussed
on the power law degree distribution of protean graphs, in this note we study
its diameter. Since the protean graphs may be disconnected, we focus on the
diameter of the giant component. Our main result is that diameter of the giant
component of Pn(d, η) is equal to Θ(log n), which supports experimental data
observed in the actual web graph.

1. Introduction

Several new random graphs models have been introduced and analyzed in re-
cent years for certain features observed in large-scale real-world networks such
as the web graph W (see for example, the survey [5]). The graph W has ver-
tices representing web pages, and whose edges correspond to links between these
pages. Many graphical parameters have been studied in W , and several random
graph models for W have been introduced and rigorously analyzed. As described
in [5], some of these parameters include: degree distribution, diameter and average
distances, clustering, and the presence of many bipartite cliques.

The experimental results reported in [1, 6] provide strong evidence that the
diameter of the web graph is about the logarithm of its order, indicating that
the web forms a so-called small-world network ; see [14]. Several models for W
generate graphs with a comparable diameter (see Theorems 3, 4, and 8 in [5]).

In this note, we consider the diameter of protean web graph model, written
Pn(d, η), that was first introduced in [12] (see also a growing model [13]). It seems
that protean graphs become more and more interesting, both for math and CS
community, as a model based on ranking of vertices (see results of simulations [8]
and theoretical ones [11]). Note also that the definition of the protean process
allows us to study recovery time (see [12] for definition and results for connectivity);
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an interesting and very important property which does not have its counterpart
for the other models.

Both in experimental studies [9] and in theoretical analysis of preferential at-
tachment models, there is shown to be a strong correlation between age and degree.
This consideration led to the development of protean graphs, in [12, 13]. The prin-
ciple of protean graphs is that “the old get richer”, i.e. the link probability favours
older nodes. In the protean graph model the link probability is not directly related
to age, but rather to a ranking based on age: the oldest node has rank 1, etc. The
link probability is proportional to the rank raised to the power −η, where η is a
parameter of the model.

The reason for this choice is twofold. Firstly, rank-based models have very
attractive properties. They generally lead to a power law degree distribution where
the exponent of the power law can be controlled in a natural way by varying η [8].
They also capture the intuitive notion that the difference of being the oldest or
second-oldest node matters more than that of being the last and second-last born.
Secondly, in this model nodes are renewed constantly, so the ages of the nodes are
hard to track. For example, the oldest and second oldest node can vary widely in
age, and the normalizing factor, the sum of the ages of living nodes, is a random
variable that can be hard to trace.

We use a simplified version of the model; a more general version with a detailed
description may be found in [12]. There are infinitely many discrete time-steps.
We begin at time 0 with any fixed graph G with vertex set [n] = {1, 2, . . . n}
and any permutation σ : [n] → [n]. In each time-step t ≥ 1 we pick uniformly
at random one of the vertices j to be renewed and update a permutation σ, by
moving j to the end of the permutation, to reflect the order in which vertices
have been chosen. The vertex x for which σ(x) = 1 is the oldest one, while the
currently chosen vertex j satisfies σ(j) = n. For a vertex v, σ(v) is the rank of
v. We then delete from G all edges incident to j and generate d new edges (one
by one) incident to j. (The vertex j can be viewed as a node that establishes
connections with existing nodes in the network.) In each of these d independent
choices, each vertex v is chosen with probability proportional to σ(v)−η. The latter
condition is natural since old vertices of small ranks should be more attractive to
new vertices. To simplify notation, we assume that the ranks of the vertices of the
protean graph coincide with their labels; that is, σ is the identity permutation.

If each vertex of a graph is renewed at least once, the random graphs appearing
over time during the protean process are identical random objects whose properties
do not depend on the graph G and permutation σ we started with; more precisely,
the protean process is in stationary distribution. The random graph corresponding
to this distribution is a protean graph Pn(d, η). See [12] for additional details on
protean graphs.

Our main goal is to prove that Pn(d, η) contains a giant component whose
vertices comprise a positive fraction of all vertices, and whose diameter is equal to
Θ(log n). To simplify proofs, we assume that d ≥ 13 and 0.58 ≤ η ≤ 0.92 (Note
that these ranges of the parameters are enough to model the power law degree
distribution observed in W ; see [12].) However, we conjecture the theorem holds
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for a wider range of parameters d and η. The precise statement of our main result
is as follows.

Theorem 1. Let d ≥ 13, d ∈ N and 0.58 ≤ η ≤ 0.92. W.h.p. a protean graph
Pn(d, η) has one giant component, containing a positive fraction of all vertices,
whose diameter is equal to Θ(log n). The remaining components have O(log n)
vertices.

We deduce this result from Theorems 6 and 7 proved below, and by using
Lemma 2 proved in [12]. Throughout, we use the abbreviations w.h.p. to denote
that a statement holds with probability tending to 1 as n →∞. If A is an event,
then we denote P(A) for its probability; if X is a random variable, then we denote
EA for its expectation.

2. Proof of Theorem 1

In this section we give a proof of Theorem 1, by first proving the upper and
then lower bounds on the diameter. Before we begin, we state a technical lemma.
From now on we assume that d ≥ 13, d ∈ N and 0.58 ≤ η ≤ 0.92.

The lemma states roughly that Pn(d, η) is, in a way, related to a random graph
on the set of vertices [n], in which a pair of two vertices i, j, log3 n ≤ i < j ≤ n,
is adjacent with probability

p(i, j) = (1− η)
d

n

(j

i

)η

,

independently for each such pair. We prove that for the diameter of the protean
graph studied in the note, this is indeed the case. However, since we claim nothing
about edges between ‘small vertices’ i, 1 ≤ i < log3 n, we cannot show a general
theorem that relates, say, monotone properties of our model with the one with
independent edges (as is done, for instance, in [7]). For similar reasons we cannot
use the general theory of inhomogeneous sparse random graphs [4]. Nonetheless,
Lemma 2 is strong enough for our purposes.

Let

E1, E2 ⊆ {{i, j} : log3 n < i < j ≤ n}, E1 ∩ E2 = ∅ .

For every i, j ∈ [n], r = 1, 2, let

Vr(j) = {i : i < j and {i, j} ∈ Er} ,

w(i, j) = (1− η)
1

n

(j

i

)η

=
(
1 + O

(
nη−1

)) (i n/j)−η

∑n
s=1 s−η

(1)

and

wr(j) =
∑

i∈Vr(j)

w(i, j) .

For the proof of the following result, see [12].

Lemma 2. Let η ∈ (0, 1), d, E1, E2, V1(j), w(i, j), w1(j) and w2(j) be defined
as above, and let |V1(j)| ≤ d for every j ∈ [n]. Let Pn(E1, E2, d, η) denote the
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probability that all pairs from E1 are edges of Pn(d, η), and no pair from E2 is an
edge of Pn(d, η). There are functions

f(d, n, η, E1, E2) = o(exp(− log3/2 n))

+
n∏

j=1

[1− (1 + O(log−1/2 n))(w1(j) + w2(j))]
d−|V1(j)|

· d(d− 1) . . . (d− |V1(j)|+ 1)
∏

i∈V1(j)

(1 + O(log−1/2 n))w(i, j)

and

g(d, n, η, E1, E2) = o(exp(− log3/2 n)) +
n∏

j=1

(1− (1 + O(log−1/2 n))w2(j))
d−|V1(j)|

· d(d− 1) . . . (d− |V1(j)|+ 1)
∏

i∈V1(j)

(1 + O(log−1/2 n))w(i, j).

such that

f(d, n, η, E1, E2) ≤ Pn(E1, E2, d, η) ≤ g(d, n, η, E1, E2). (2)

2.1. Upper bound on the diameter. We now show that a protean graph
Pn(d, η) has one giant component, containing a positive fraction of all vertices,
whose diameter is equal to O(log n), while the remaining components have O(log n)
vertices. We reveal the component structure of Pn(d, η) step by step, using the
breadth-first search (BFS ) procedure or traversal. The main idea is to mark each
vertex when we first visit it and keep track of what we have not completely ex-
plored. Each vertex will always be in one of the following three states: undis-
covered, discovered, or completely-explored. For the BFS procedure we store the
vertices in a first in, first out queue, written Q; that is, we explore the oldest
unexplored vertices first. We initialize the procedure by adding vertex v0 we start
with to Q and by changing its state from undiscovered to discovered. In each
time-step k of the BFS process, we take a vertex vk from Q (unless Q is empty),
find all undiscovered neighbours of vk, add them to Q and change their state to
discovered. Finally, we mark vk as completely-explored.

Let mk denote the number of vertices that have already been discovered (both
vertices being in discovered and completely-explored states). The position of a
vertex is its rank in the last-renewed order. Note that the BFS process resembles a
branching process [2]. In our case, the distribution of the number Xk of vertices we
add to the queue Q in the k-th time-step, provided mk of its elements have already
been found, depends on the position of v1, . . . , vmk

in the protean graph Pn(d, η),
and mk. In the branching process the distribution of the immediate offspring of a
particle does not depend on the previous history of the process. Nonetheless, while
mk < n2/3, one can show (see Theorem 3) that P(Xk ≤ 1) ≤ 1/3. This means that
the random variable Xk can be bounded from below by the independent random
variable X with the following distribution

P(X = 0) = 1/3 , (3)

P(X = 2) = 2/3 .
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Thus, the probability that the vertex is contained in a component of size at least
n2/3 is bounded from below by a probability that the branching process defined
by a random variable X continues for a long time.

Theorem 3. Let k ∈ N, vk ∈ [n], mk < n2/3 and let Xk be the random variable
defined as above. Then

P(Xk ≤ 1) ≤ 1/3 . (4)

Proof. Note first that in order to estimate the random variable Xk one should
condition on the entire detailed history of the BFS exploration. Unfortunately,
we cannot use Lemma 2 directly to evaluate a conditional probability; the lemma
should be applied twice, with the set of edges found so far, which has size up
to n2/3, but then the error term is too large. However, since we refresh vertices
uniformly at random, it is known that with probability 1− o(exp(− log3/2 n)) for
every i, j, log3 n ≤ i < j ≤ n, the rank of i at the moment when j is refreshed for
the last time is well concentrated around its mean (see proof of Lemma 2 in [12]).
Thus, (2) holds for conditional probability as well.

Denote the parent of vertex vk (in the BFS tree) by p[vk]. Observe that w.h.p.
vertex vk, at the moment when it is renewed for the last time, has not chosen a
neighbour, except its parent p[vk], from the set of mk vertices that have already
been discovered. Indeed, the probability that vk has chosen a neighbour from any
set of mk < n2/3 vertices is bounded from above by

(
1 + o(1)

)
d
( n2/3∑

i=1

i−η
)/( n∑

i=1

i−η
)

=
(
1 + o(1)

)
dn−(1−η)/3 .

We first consider the probability that the random variable Xk is equal to zero.
This probability conditioning on the event that p[vk] < vk is larger than an anal-
ogous probability conditioning on the event that p[vk] > vk. Note that we cannot
apply Lemma 2 for early vertices, but we can easily show that for any vk < log3 n,
the probability that Xk = 0 is less than or equal to an analogous probability for
vertex dlog3 ne. Then, using notation as in (1), by Lemma 2 we have that

P(Xk = 0) (5)

≤ (
1 + o(1)

)
(

1−
vk−1∑

i=1,i 6=p[vk]

w(i, vk)

)d−1 n∏
j=vk+1

(
1− w(vk, j)

)d

=
(
1 + o(1)

)(
1− vk

n

)d−1

exp

(
− (

1 + o(1)
)
d

1− η

1 + η

((vk

n

)−η

− vk

n

))
.
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Using similar arguments and calculation as in (5), we can prove the following
inequality

P(Xk = 1) (6)

≤ (
1 + o(1)

)(
1− vk

n

)d−1

exp

(
− (

1 + o(1)
)
d

1− η

1 + η

((vk

n

)−η

− vk

n

))

· d
(

vk

n

(
1− vk

n

)
· 1− η

1 + η

((vk

n

)−η

− vk

n

))
.

From (5) and (6), by considering cases for the parameters d and η, we may derive
(4). (We omit this tedious though straightforward argument.) ¤

Theorem 3 states that random variables Xk are bounded from below by ran-
dom variables X̄k, where X̄k are independently and identically distributed random
variables with distribution X defined in (3). Because the expected value of X is
equal to 4/3, one should expect that the BFS process, starting from a given vertex
v, discovers a component of size at least n2/3.

Theorem 4. Consider the BFS traversal of a protean graph Pn(d, η), starting
from a given vertex v ∈ [n]. The probability that the BFS process discovers a
component of size at least n2/3 is not smaller than 1/2.

Proof. Let X be a random variable defined in (3). A basic fact about branching
process (see [2] or any textbook of probability theory) states that if EX > 1,
then with positive probability the process will continue forever. More precisely,
let fX : [0, 1] → R denote the probability-generating function of X, defined as
fX(x) =

∑
i≥0 xiP(X = i) = 1

3
+ 2

3
x2. If EX = 4/3 > 1 and P(X = 0) = 1/3 > 0,

then the probability of extinction of the branching process is equal to x0, where
x0 is the unique solution of the equation fX(x) = x that belongs to the interval
(0, 1). In our case, this root is equal to 1/2, which, based on Theorem 3, completes
the proof of the theorem. ¤

The next theorem states that a BFS process dies out quickly (thereby discov-
ering a component of size at most 150 log n), or finds a component of size at least
n2/3. Recall that mk denotes the number of vertices that have been discovered in
k steps of the process (both vertices being in discovered and completely-explored
states). Note also that in time-step k number of vertices being in completely-
explored states is equal exactly to k.

Theorem 5. Consider the BFS traversal of a protean graph Pn(d, η), starting
from a given vertex v ∈ [n]. In each time-step k of the process, the following
inequality holds

P
(
mk ≤ 7

6
k and 150 log n ≤ mk ≤ n2/3

)
< o(n−2) .

Proof. It is straightforward to see that 1 +
∑k−1

i=1 Xi = mk. Let X ′
1, X

′
2, . . . , X

′
k−1

be an independent random variables with the distribution defined by (3). Using
Theorem 3 it follows that the sequences {Xi}k−1

i=1 and {X ′
i}k−1

i=1 can be coupled so
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that Xi ≥ X ′
i holds until either the BFS exploration dies out (that is, mk = k) or

mk ≥ n2/3. Hence the probability we would like to estimate is less than or equal
to the probability that 1 +

∑k−1
i=1 X ′

i ≤ 7k/6. But

E
(
1 +

k−1∑
i=1

X ′
i

)
= 1 + (k − 1)EX ′

1 =
4

3
k − 1

3
,

and we can use the well-known method, going back at least to [3] (see also [10]

for more details), of applying Markov’s inequality to E exp
(
u

∑k−1
i=1 X ′

i

)
to show

that for large k we have a good concentration. Since we only need to consider
k ≥ 900 log n/7, the assertion holds. ¤

We now prove the main result of this subsection.

Theorem 6. W.h.p. a protean graph Pn(d, η) has one giant component contain-
ing a positive fraction of all vertices, whose diameter is equal to O(log n). The
remaining components have O(log n) vertices.

Proof. By Theorem 4 we conclude the existence of a component of size at least
n2/3. That there are no components of size l, 150 log n < l < n2/3, follows from
Theorem 5. Thus, in order to prove the theorem, we show that Pn(d, η) has
exactly one giant component containing a positive fraction of all vertices of small
diameter.

Consider a pair of vertices v′ and v′′ which belong to components of size at least
n2/3. We determine the probability that the pair belong to different components.
We run the BFS process of identifying vertices of the component containing v′. We
stop the process when the number of discovered vertices is equal to n2/3. According
to Theorem 5, at the end of this procedure we are left with some set V ′ of vertices
of the component containing v′, such that at least 1

7
n2/3 vertices from V ′ are in

discovered states (vertices from set V̂ ′ stored in the queue Q); that is, we do not
check out all their incident edges. We next run a similar process starting at the
vertex v′′. Then, either we join v′′ to some of the vertices which belong to V ′,
or end up with some set of vertices V ′′ of the component containing v′′, among
which at least 1

7
n2/3 vertices from set V̂ ′′ have not been completely explored yet.

Now, one can point out two subsets V̄ ′ ⊂ V̂ ′ and V̄ ′′ ⊂ V̂ ′′, each containing 1
14

n2/3

vertices, such that for every pair of vertices i ∈ V̄ ′ and j ∈ V̄ ′′ i < j (or for every
pair of vertices i ∈ V̄ ′ and j ∈ V̄ ′′ i > j). The probability that there are no edges
between vertices of V̄ ′ and V̄ ′′ is bounded from above by

(
1− n2/3

14

1− η

n

)n2/3

14
= o(n−2) .

Hence, the probability that Pn(d, η) contains two vertices v′ and v′′ which belong
to two different components both of size at least n2/3 tends to 0 as n →∞.

Thus, we have shown that w.h.p. the vertices of Pn(d, η) can be divided into two
classes: “small” ones, which belong to components of size at most O(log n), and
“large” ones, contained in one large component of size at least n2/3. Observe that
from Theorem 4 it follows that the probability that a vertex is small is bounded
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from above by 1/2. Hence the expectation of the number Y of small vertices is
smaller than n/2. Finally, estimating the variance and using Chebyshev’s inequal-
ity we find that w.h.p. the giant component of the protean graph contains at least
(1− o(1))n/2 vertices.

To complete the proof, we need to estimate the diameter of the giant component.
Theorem 5 states that, when we discover more than 150 log n of vertices, the BFS
process spreads quickly. More precisely, if we denote by Dk the number of vertices
at distance at most k, then w.h.p. Dk+1 ≥ 7

6
Dk. Then the diameter of the graph

induced by the set V ′ is bounded from above by 150 log n + log 7
6
n2/3 = O(log n),

which implies, according to the fact we have just proved, the diameter of the giant
component is equal to O(log n). ¤
2.2. Lower bound on the diameter. An isolated path P is an induced path
whose vertices are joined to no other vertices except ones in P , with the exception
of exactly one of its endpoints. To prove that the diameter of the giant component
of a protean graph Pn(d, η) is equal to Ω(log n), we show that w.h.p. there is
an isolated path of length Θ(log n) whose first vertex is connected to the giant
component. An isolated path P is special in Pn(d, η) if

(1) P has length k = k(n) = log n
4d−2 log(1−η)

,

(2) the first vertex x1 of P belonging to interval [1, n/2) is connected to the
giant component, and

(3) all vertices of P different than x1 belong to [n/2, 3n/4].

Let Y be random variable denoting the number of special paths in Pn(d, η). The
following theorem establishes the lower bound in Theorem 1, and hence, finishes
its proof.

Theorem 7. (1) EY ≥ n1/2.
(2) W.h.p., Y ≥ 1.

Proof. For item (1), let x1 ∈ [1, 1
2
n) and xi ∈ [1

2
n, 3

4
n] for every 2 ≤ i ≤ k + 1.

Let B(x1, x2, . . . , xk+1) denote the event that a protean graph Pn(d, η) contains
an isolated path (x1, x2, . . . , xk+1), and let C(x1) denote the event that vertex x1

belongs to the giant component. Finally, let

A(x1, x2, . . . , xk+1) = B(x1, x2, . . . , xk+1) ∩ C(x1) .

We can use Lemma 2 and calculation similar to (5) to show that the probability
that xi ∈ [1

2
n, 3

4
n) has no neighbours (excluding vertices xi−1 and xi+1) can be

bounded from below by

(
1 + o(1)

)(
1− xi

n

)d

exp

(
− (

1 + o(1)
)
d
1− η

1 + η

((xi

n

)−η

− xi

n

))

≥
(1

4

)d

exp

(
− d

1− η

1 + η

((1

2

)−η

− 1

2

))
≥

( 1

4
√

e

)d

.

Although the existence of an isolated path affects the probability that x1 is con-
nected to the giant component, this influence is not strong (note, that k = O(log n)
and x2 > x1). Then one can use the argument used in the proof of Theorem 4
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to show that path (x1, x2, . . . , xk+1) is connected to the giant component with
probability at least (1 + o(1))/2 > 1/3. Thus, the following inequality holds

P(A(x1, x2, . . . , xk+1)) ≥
(
1 + o(1)

)1

3

(1− η

n
d
)k(( 1

4
√

e

)d)k

.

Let Y (x1, x2, . . . , xk+1) be the indicator variable of the event A(x1, x2, . . . , xk+1).
Then

Y =
∑

1≤x1<1/2n

∑

1/2n≤x2,...,xk+1≤3/4n

Y (x1, x2, . . . , xk+1) .

Hence,

EY =
∑

1≤x1<1/2n

∑

1/2n≤x2,...,xk+1≤3/4n

P(A(x1, x2, . . . , xk+1))

≥ n

2

(
n/4

k

)
k!

(
1 + o(1)

)1

3

(1− η

n
d
)k[( 1

4
√

e

)d]k

≥ n
[
(1− η)

( 1

4
√

e

)d]k

≥ n1/2

which proves item (1) of the theorem.
For (2), we prove next that Y is concentrated around its mean; more precisely,

VarY = o
(
(EY )2

)
, where VarY is the variance of Y . By Chebyshev’s inequality,

w.h.p. Y ≥ 1, which proves item (2) and the theorem.
Let us consider two paths

x̂ = (x1, x2, . . . , xk+1), and ŷ = (y1, y2, . . . , yk+1).

These paths are vertex-disjoint or have exactly one common vertex, that is, z =
x1 = y1. (We consider such a pairs of paths only since these paths can occur
simultaneously. The contribution to the covariance from pairs of events which
cannot both occur is negative, and so do not affect our calculations.) Note that
the existence of one path affects the probability that the second path exists, but
one can use Lemma 2 to show that this influence is not strong (even when paths
have one common vertex z, because z < x2 and z < y2). Then we get

P(A(x̂) ∩ A(ŷ)) = (1 + o(1))P(B(x̂))P(B(ŷ))P(C(x1))P(C(y1))

= (1 + o(1))P(A(x̂))P(A(ŷ)) ,

when x̂ and ŷ are disjoint and

P(A(x̂) ∩ A(ŷ)) = (1 + o(1))P(B(x̂))P(B(ŷ))P(C(z))

= O(1)P(A(x̂))P(A(ŷ)) ,
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when paths have one common vertex z = x1 = x2. Let Cov(Z1, Z2) be the
covariance of the variables Z1, Z2. Then

∑

x̂,ŷ

Cov(Y (x̂), Y (ŷ)) =
∑

x̂,ŷ

[
P(A(x̂) ∩ A(ŷ))− P(A(x̂))P(A(ŷ))

]

=
∑

x̂

[
P(A(x̂))

∑

ŷ,y1 6=x1

o(1)P(A(ŷ)) +
∑

ŷ,y1=x1

O(1)P(A(ŷ))
]

= o
( ∑

x̂

P(A(x̂))
∑

ŷ

P(A(ŷ))
)

= o
(
(EY )2

)
. (7)

Because the random variables Y (x̂) have values either 0 and 1, it is straightforward
to see that ∑

x̂

VarY (x̂) ≤
∑

x̂

EY (x̂)2 =
∑

x̂

EY (x̂) = EY . (8)

From (7) and (8), we obtain that VarY = o
(
(EY )2

)
. ¤
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