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Program

Sunday, November 6
17:00 - 17:30 Check-in
17:30 - 19:30 Dinner
20:00 - 22:00 Informal gathering

Monday, November 7
7:00 - (9:00 - ε) Breakfast (ε ≈ 15 mins)
(9:00 - ε) - 9:00 Welcome by BIRS Station Manager and Organizers
9:00 - 10:00 Mathew Penrose, University of Bath, UK

Long talk: Random Bipartite geometric graphs
10:00 - 10:30 Coffee Break
10:30 - 11:00 Abbas Mehrabian, University of British Columbia

Short talk: Rumour spreading in the SPA model
11:00 - 11:30 Jane Gao, Monash University, Australia

Short talk: Packing edge-disjoint spanning trees in random geometric graphs
11:30 - 13:00 Lunch
13:00 - 14:00 Guided Tour of The Banff Centre
14:00 - 14:20 Group Photo
14:20 - 15:00 Problem Session / Progress Report
15:00 - 15:30 Coffee Break
15:30 - 17:30 Hard Work
17:30 - 19:30 Dinner
19:30 - (19:30 + δ) More Hard Work
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Tuesday, November 8
7:00 - 9:00 Breakfast
9:00 - 10:00 Dmitri Krioukov, Northeastern University, USA

Long talk: Clustering Implies Geometry in Networks
10:00 - 10:30 Coffee Break
10:30 - 11:00 Nikolaos Fountoulakis, University of Birmingham, UK

Short talk: The emergence of the giant component in random graphs
on the hyperbolic plane

11:00 - 11:30 Yuval Peres, Microsoft Research, USA
Short talk: Random Geometric Graphs beyond the Poisson process

11:30 - 12:00 Jeannette Janssen, Dalhousie University, Canada
Short talk: Recognizing graphs with linear random structure

12:00 - 13:30 Lunch
13:30 - 15:00 Problem Session / Progress Report
15:00 - 15:30 Coffee Break
15:30 - 17:30 Hard Work
17:30 - 19:30 Dinner
19:30 - (19:30 + δ) More Hard Work

Wednesday, November 9
7:00 - 9:00 Breakfast
9:00 - 10:00 Dieter Mitsche, Universite de Nice Sophia-Antipolis, France

Long talk: On the spectral gap of random hyperbolic graphs
10:00 - 10:30 Coffee Break
10:30 - 11:00 Carl Dettmann, University of Bristol, UK

Short talk: Random connection models
11:00 - 11:30 Anthony Bonato, Ryerson University, Canada

Short talk: Isomorphism results for infinite random geometric graphs
11:30 - 12:00 Problem Session / Progress Report
12:00 - 13:30 Lunch
13:30 - 17:30 Excursion / Hard Work
17:30 - 19:30 Dinner
19:30 - (19:30 + δ) More Hard Work
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Thursday, November 10
7:00 - 9:00 Breakfast
9:00 - 10:00 Joseph Yukich, Lehigh University, USA

Long talk: Statistics of random graphs on clustering point sets
10:00 - 10:30 Coffee Break
10:30 - 11:00 Matthias Schulte, University of Bern, Switzerland

Short talk: Limit theorems for edge length statistics of random geometric graphs
11:00 - 11:30 Guillem Perarnau, McGill University, Canada

Short talk: Random graphs from bridge-addable classes
11:30 - 12:00 Ewa Infeld, Ryerson University, Canada

Short talk: The Total Acquisition Number of Random Geometric Graphs
12:00 - 13:30 Lunch
13:30 - 15:00 Problem Session / Progress Report
15:00 - 15:30 Coffee Break
15:30 - 17:30 Hard Work
17:30 - 19:30 Dinner
19:30 - (19:30 + δ) More Hard Work

Friday, November 11
7:00 - 9:00 Breakfast
9:00 - 10:00 Laurent Menard, Universit Paris Ouest, France

Long talk: Percolation by cumulative merging and phase transition
for the contact process on random graphs

10:00 - 10:30 Coffee Break
10:30 - 11:00 Guenter Last, Karlsruhe Institute of Technology, Germany

Short talk: Second order properties and asymptotic normality of cluster sizes
in the random connection model

11:00 - 11:30 Kiril Solovey, Tel Aviv University, Israel
Short talk: Applications of Random Geometric Graphs in Robot Motion Planning

11:30 - 12:00 Checking out
12:00 - 13:30 Lunch
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Abstracts of Talks

Mathew Penrose, University of Bath, UK Mon 9:00
45 minRandom Bipartite geometric graphs

Consider a bipartite random geometric graph (RGG) on the union of two independent ho-
mogeneous Poisson point processes in Euclidean d-space, with fixed distance parameter r and
intensities λ, µ. Given λ > 0, let µc(λ) be the infimum of those µ for which this RGG perco-
lates (or infinity if there is no such µ). Also, let λc be the critical value of λ for percolation
of the one-type RGG with distance parameter 2r. If λ > λc then µc(λ) < ∞. Conversely,
limλ↓λc

µc(λ) =∞, and hence µc(λc) =∞.

Consider also the restriction of this graph to points in the unit square. We describe a strong
law of large numbers as λ→∞ with µ/λ fixed, for the connectvity threshold, i.e. the smallest
value of r such that the graph is connected.

Abbas Mehrabian, University of British Columbia Mon 10:30
25 minRumour spreading in the SPA model

The Spatial Preferential Attachment model is a spatial random graph used to model social
networks. Nodes live in a metric space, and edges are formed based on the metric distance and
degree of the nodes. Rumour spreading is a protocol for the spread of information through a
graph. In each time step nodes can pass the rumour to only one of their neighbours. The spread
time is the expected time when all nodes have the rumour. We analyze rumour spreading on
the SPA model, and show that the spread time differs substantially from the diameter. Joint
work with Jeannette Janssen.

Jane Gao, Monash University, Australia Mon 11:00
25 minPacking edge-disjoint spanning trees in random geometric graphs

It was recently proved that G(n, p) contains exactly min(bm/(n− 1)c, δ) edge-disjoint spanning
trees, where m is the number of edges in G(n, p) and delta is the minimum degree of G(n, p).
This result holds for any p ∈ [0, 1]. We investigate this problem in random geometric graphs
G(n, r) and prove similar results, except for r in a critical range, which is left as a problem
for the open problem session in the BIRS workshop. This is collaborated work with Xavier
Perez-Gimenez and Cristiane Sato.
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Dmitri Krioukov, Northeastern University, USA Tue 9:00
45 minClustering Implies Geometry in Networks

Two common features of many large real networks are that they are sparse and that they have
strong clustering, i.e., large number of triangles homogeneously distributed across all nodes. In
many growing real networks for which historical data is available, the average degree and clus-
tering are roughly independent of the growing network size. Recently, (soft) random geometric
graphs, also known as latent-space network models, with hyperbolic and de Sitter latent geome-
tries have been used successfully to model these features of real networks, to predict missing and
future links in them, and to study their navigability, with applications ranging from designing
optimal routing in the Internet, to identification of the information-transmission skeleton in the
human brain. Yet it remains unclear if latent-space models are indeed adequate models of real
networks, as random graphs in these models may have structural properties that real networks
do not have, or vice versa.

We show that the canonical maximum-entropy ensemble of random graphs in which the expected
numbers of edges and triangles at every node are fixed to constants, are approximately soft
random geometric graphs on the real line. The approximation is exact in the limit of standard
random geometric graphs with a sharp connectivity threshold and strongest clustering. This
result implies that a large number of triangles homogeneously distributed across all vertices is
not only necessary but also a sufficient condition for the presence of a latent/effective metric
space in large sparse networks. Strong clustering, ubiquitously observed in real networks, is thus
a reflection of their latent geometry.

Nikolaos Fountoulakis, University of Birmingham, UK Tue 10:30
25 minThe emergence of the giant component in random graphs on the hyperbolic plane

We consider a recent model of random geometric graphs on the hyperbolic plane developed by
Krioukov et al. (Phys. Rev. E 2010). This may be also viewed as a geometric version of the well-
known Chung-Lu model of inhomogeneous random graphs and turns out to have basic properties
that are ubiquitous in complex networks. We consider the size of the largest component of this
random graph and show that a giant component emerges when the basic parameters of the
model cross certain values. We also show that the fraction of vertices that are contained there
converges in probability to a certain constant, which is related to a continuum percolation model
on the upper-half plane. This is joint work with Tobias Müller and Michel Bode.

Yuval Peres, Microsoft Research, USA Tue 11:00
25 minRandom Geometric Graphs beyond the Poisson process

Abstract: Random Geometric graphs have traditionally been considered on the nodes of a
Poisson process, but recently there has been enhanced interest in more rigid point processes.
We study continuum percolation for the Ginibre ensemble and the planar Gaussian zero process,
which are the primary models of translation invariant point processes in the plane exhibiting
local repulsion. For the Ginibre ensemble, we establish the uniqueness of infinite cluster in the
supercritical phase. For the Gaussian zero process, we establish that a non-trivial critical radius
exists, and we prove the uniqueness of the infinite cluster in the supercritical regime. Finding
suitable replacements for insertion and deletion tolerance is a crucial step. Joint work with
Manju Krishnapur and Subhro Ghosh.
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Jeannette Janssen, Dalhousie University, Canada Tue 11:30
25 minRecognizing graphs with linear random structure

Abstract: In many real life applications, network formation can be modelled using a spatial
random graph model: vertices are embedded in a metric space S, and pairs of vertices are more
likely to be connected if they are closer together in the space. A general geometric graph model
that captures this concept is G(n,w), where w : S×S → [0, 1] is a symmetric “link probability”
function with the property that, for fixed x ∈ S,w(x, y) decreases as y is moved further away
from x. he function w can be seen as the graph limit of the sequence G(n,w) as n→∞.

We consider the question: given a large graph or sequence of graphs, how can we determine
if they are likely the results of such a general geometric random graph process? Focusing on
the one-dimensional (linear) case where S = [0, 1], we define a graph parameter Γ and use the
theory of graph limits to show that this parameter indeed measures the compatibility of the
graph with a linear model.
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Dieter Mitsche, Universite de Nice Sophia-Antipolis, France Wed 9:00
45 minOn the spectral gap of random hyperbolic graphs

Random hyperbolic graphs have been suggested as a promising model of social networks. A
few of their fundamental parameters have been studied. However, none of them concerns their
spectra. We consider the random hyperbolic graph model as formalized by Gugelmann et al. and
essentially determine the spectral gap of their normalized Laplacian. Specifically, we establish
that with high probability the second smallest eigenvalue of the normalized Laplacian of the
giant component of an n-vertex random hyperbolic graph is at least n−(2α−1)/(D log n)1+o(1),
where 1

2 < α < 1 is a model parameter and D is the network diameter (which is known to be
at most polylogarithmic in n). We also show a matching (up to a polylogarithmic factor) upper
bound of n−(2α−1)(log n)1+o(1).

As a byproduct we conclude that the conductance upper bound on the eigenvalue gap obtained
via Cheeger’s inequality is essentially tight. We also provide a more detailed picture of the
collection of vertices on which the bound on the conductance is attained, in particular showing
that for all subsets whose volume is O(nε) for 0 < ε < 1, the obtained conductance is with high
probability Ω(n−(2α−1)ε+o(1)). Finally, we also show consequences of our result for the minimum
and maximum bisection of the giant component.

Joint work with Marcos Kiwi.

Carl Dettmann, University of Bristol, UK Wed 10:30
25 minRandom connection models

Recent work has considered a generalization of the random geometric graph, in which pairs of
points are linked with a probability depending on their mutual distance through a ”connection
function.” Such models arise in the study of wireless networks and many other spatial networks.
Calculations show that the connection probability for the whole graph can be estimated from just
a few moments of the connection function for a wide variety of domain geometries. Furthermore,
there are qualitative differences as a result of the random connections, for example, the more
realistic random connection model allows a more accurate estimation of k-connectivity than
the original random geometric graph. Anisotropy can improve connectivity only for sufficiently
slowly decaying connection functions. These results have practical application in the design of
wireless ad-hoc networks.

Anthony Bonato, Ryerson University, Canada Wed 11:00
25 minIsomorphism results for infinite random geometric graphs

Recent work with Jeannette Janssen proved the existence of a family of random geometric
graphs with unique countable limits. These graphs arise in the normed space `n∞, which consists
of Rn equipped with the L∞-norm. Using tools from functional analysis, Balister, Bollobás,
Gunderson, Leader, and Walters proved that these unique limit graphs are deeply tied to the
L∞-norm. Precisely, a random geometric graph on any normed, finite-dimensional space not
isometric `n∞ gives non-isomorphic limits with probability 1. We survey properties of these
infinite random geometric graphs, and discuss new results for the infinite dimensional case.
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Joseph Yukich, Lehigh University, USA Thu 9:00
45 minStatistics of random graphs on clustering point sets

Statistics of graphs on vertex sets X ⊂ Rd often consist of sums of spatially dependent terms
admitting the representation ∑

x∈X
ξ(x,X ), (1)

where the R-valued score function ξ, defined on pairs (x,X ), x ∈ X , represents the interaction
of x with respect to X . Statistics having the representation (1) include number of components,
clique counts, and total edge length. If the vertex set X is the realization of a clustering point
process and if ξ is ‘locally determined’ (i.e., stabilizing), then we establish general expectation
and variance asymptotics as well as central limit theorems for the suitably scaled and centered
sums ∑

x∈X∩Wn

ξ(x,X ∩Wn), Wn ↑ Rd. (2)

We deduce the limit theory for clique counts and for the total edge length of the random geomet-
ric graph as well as for general proximity graphs on clustering input, including determinantal
and permanental point processes with a fast decreasing kernel (e.g. the Ginibre ensemble), the
zero set of a Gaussian entire function, and rarified Gibbsian input. The talk is based on joint
work with B. B laszczyszyn and D. Yogeshwaran.

Matthias Schulte, University of Bern, Switzerland Thu 10:30
25 minLimit theorems for edge length statistics of random geometric graphs

A random geometric graph is constructed by connecting two points of a Poisson process in a
compact convex set whenever their distance does not exceed a prescribed distance. The aim of
this talk is to investigate the asymptotic behaviour of the total edge length or, more general,
sums of powers of the edge lengths of this random graph as the intensity of the underlying
Poisson process is increased and the threshold for connecting points is adjusted. Depending on
the interplay of these two parameters as well as the power of the edge lengths one obtains limit
theorems where the limiting distribution can be Gaussian, compound Poisson or stable. This
talk is based on joint work with Laurent Decreusefond, Matthias Reitzner and Christoph Thäle.

Guillem Perarnau, McGill University, Canada Thu 11:00
25 minRandom graphs from bridge-addable classes

A class of graphs is bridge-addable if given a graph G in the class, any graph obtained by adding
an edge between two connected components of G is also in the class. Examples of bridge-addable
classes are forests, planar graphs, triangle-free graphs or graphs with bounded treewidth. It has
been recently proved that a uniform random graph in a bridge-addable class is connected with
probability at least (1 + o(1)) exp(−1/2). The constant exp(−1/2) is best possible since it is
reached for uniform random forests. Here, we will present a form of uniqueness in this statement:
if a random graph in a bridge-addable class is connected with probability close to exp(−1/2),
then it is asymptotically close to a random forest in some local sense. For example, such random
graph converges in the sense of Benjamini-Schramm to the uniform infinite random forest. This
is joint work with Guillaume Chapuy.
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Ewa Infeld, Ryerson University, Canada Thu 11:30
25 minThe Total Acquisition Number of Random Geometric Graphs

Let G be a graph in which each vertex initially has weight 1. In each step, the weight from
a vertex u to a neighbouring vertex v can be moved, provided that the weight on v is at
least as large as the weight on u. The total acquisition number of G, denoted by at(G), is
the minimum cardinality of the set of vertices with positive weight at the end of the process.
We investigate random geometric graphs G(n, r) and show that asymptotically almost surely
at(G(n, r)) = Θ(max{n/(r lg r)2, 1}) for the whole range of r = rn.
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Laurent Menard, Universit Paris Ouest, France Fri 9:00
45 minPercolation by cumulative merging and phase transition for the contact process on random graphs

Given a weighted graph, we introduce a partition of its vertex set such that the distance between
any two clusters is bounded from below by the minimum weight of both clusters. This partition
is obtained by recursively merging smaller clusters and cumulating their weights. For several
classical random weighted graphs, we show that there exists a phase transition regarding the
existence of an infinite cluster.

The motivation for introducing this partition arises from a connection with the contact process
as it roughly describes the geometry of the sets where the process survives for a long time. We
give a sufficient condition on a graph to ensure that the contact process has a non trivial phase
transition in terms of the existence of an infinite cluster. As an application, we prove that the
contact process admits a sub-critical phase on random geometric graphs and random Delaunay
triangulations. (Joint work with Arvind Singh)

Guenter Last, Karlsruhe Institute of Technology, Germany Fri 10:30
25 minSecond order properties and asymptotic normality of cluster sizes in the random connection

model

The random connection model is a random graph whose vertices are given by the points of a
stationary Poisson process and whose edges are obtained by connecting pairs of Poisson points
at random. The connection decisions are allowed to depend on the positions of the two involved
vertices but are otherwise independent for different pairs and independent of the other Poisson
points. We shall discuss first and second order properties of the number of clusters isomorphic
to a given graph. We also present a multivariate central limit theorem whose proof is based
on some new Berry-Esseen bounds for the normal approximation of functionals of a pairwise
marked Poisson process. This is joint work with Franz Nestmann (Karlsruhe) and Matthias
Schulte (Bern).

Kiril Solovey, Tel Aviv University, Israel Fri 11:00
25 minApplications of Random Geometric Graphs in Robot Motion Planning

Robot motion planning is a fundamental research area in robotics with applications in diverse
domains such as graphical animation, surgical planning, computational biology and computer
games. In its basic form, motion planning is concerned with finding a collision-free path for
a robot in a workspace cluttered with static obstacles. The high computational complexity of
exact solutions to motion planning have led to the development of sampling-based planners.
These algorithms aim to capture the connectivity of the free space—the set of collision-free
robot configurations—in a graph data structure, whose vertices consist of randomly-sampled
configurations. Interestingly, roadmaps constructed by many sampling-based planners coincide,
in the absence of obstacles, with standard models of random geometric graphs (RGGs).

In this talk I will provide a brief introduction to sampling-based motion planning and survey
several theoretical results concerning their behavior, including a recently-introduced framework
that facilitates the extension of properties of RGGs to sampling-based techniques in motion
planning.
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Open Problems

Laurent Menard, Universit Paris Ouest, France
Does cumulative merging on trees have a phase transition?

Let T be an infinite (rooted) binary tree, or any infinite (random) tree. The vertices of T are
assigned iid Bernoulli weights with parameter p. By recursively grouping vertices, one constructs
a partition of V (T ) such that, for any two clusters A and B of the partition, the graph distance
between A and B is larger than the minimum of the total weights of A and B. The resulting
partition does not depend on the grouping order.

Show that this process has a phase transition: there exists pc ∈ (0, 1) such that for p < pc the
partition has no infinite cluster and for p > pc the partition has an infinite cluster.

Ross Kang, Radboud University Nijmegen, The Netherlands
The chromatic number of high dimensional random geometric graphs

Consider n random points i.i.d. on the unit sphere in Rd. Devroye, György, Lugosi and Udina
(2011) showed that, holding n fixed (but large) and letting d grow very rapidly like d � 2n

2

,
then a suitable random geometric graph on these points is close in total variation distance to
a binomial random graph. They also showed that for d rather smaller, say, d � log3 n, the
clique number of the random geometric graph is close to the clique number of the corresponding
binomial random graph.

Question: what about the chromatic number? Can a polylogarithmic lower bound on d still be
sufficient for the chromatic number of the random geometric graph to be close to that of the
corresponding binomial random graph? Note that the chromatic number of a random geometric
graph is typically not too far from the clique number, while the same is not true for a binomial
random graph, and so there should be a ”jump” in behaviour.

Jeannette Janssen, Dalhousie University, Canada
Nested geometric graphs

The familiar geometric graph RG(n, d) can be described as follows: each vertex has a “sphere
of influence” centered at the vertex with radius d. Vertices u and v are connected if u falls
inside the sphere of influence of v, or vice versa. We are interested in the sparse case, where
d = Θ(1/n). A natural generalization is to consider spheres of different size. The power law
geometric graph PRG(n,A1, A2) is the following. Vertices v1, . . . , vn are chosen u.a.r. from the

unit square (seen as a torus). Vertex vi has sphere of influence with area
(
A2

n

) (
n
i

)A1
. (A2 > 0,

0 ≤ A1 < 1.) Note that, if A1 = 0, this reverts to the sparse geometric graph. By coupling with
this graph, we see that, by choosing A2 large enough, we can guarantee that this graph has a
giant component.

First question: what is the diameter of the giant component? What is the threshold for its
appearance?

Second question: Let v1, v2, . . . vn be chosen u.a.r from the unit square. Let Vt = {v1, . . . , vt}.
Let {Rt} be a sequence of graphs, where Rt has vertex set Vt and edges formed according to
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PRG(t, A1, A2). Now define the union of these graphs: G =
⋃n
t=1Rt. What is the diameter of

the giant component of G?

Some partial results on the second question for the special case where A1 = 0, can be found in:
https://arxiv.org/abs/1608.01697

See also:
C. Cooper, A. Frieze, and P. Pralat, Some typical properties of the Spatial Preferred Attachment
model, Internet Mathematics 10 (2014), 27-47.

Kiril Solovey, Tel Aviv University, Israel
Connectivity of RRGs for fixed n and monotonicity constraints

Let Gn = G(Xn; rn) be a random geometric graph, where Xn is a collection of n random points

i.i.d. in [0, 1]d for some fixed d ≥ 2, and rn = γ
(

logn
n

)1/d
.

Question 1: Given the parameter p ∈ (0, 1), can we find γ = γ(p) independent of n, such that
Pr[Gnis connected] = p. Notice that we are interested in a non-asymptotic analysis.

This problem is crucial to robotics. Existing algorithms for robot motion planning use various
types of RGGs, as main ingredients. Currently, such algorithms can only guarantee that a
solution to the problem will be found eventually. An affirmative answer to Q1 may lead to a
better analysis of those algorithms for a fixed number of samples. Some partial progress was
made in this respect: http://ieeexplore.ieee.org/document/7139775/.

Question 2: Let x, y be two points in [0, 1]d, where x = (x1, . . . , xd), y = (y1, . . . , yd), and
suppose that there exists some constant δ ∈ (0, 1) for which xi < yi − δ for every 1 ≤ i ≤ d.
Namely, x and y are monotone by at least δ in each coordinate. Can we find a γ independent of
n such that G(Xn ∪ {x, y}; rn) the following holds almost surely: the RGG contains a strictly-
monotone path connecting x to y.

A partial answer to this question: there exists γ for which there is a path connecting x to y
that is almost-entirely monotone, i.e., at least 1 − o(1) portion of the path is monotone. See
Theorem 1 in https://arxiv.org/abs/1608.00261. In the same paper there is a motivation for
this problem, where RGGs are employed for finding a Frechet parametrization between several
curves.
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