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Abstract

We show that a point particle moving in space–time on entwined-pair paths generates
Schr€oodinger!s equation in a static potential in the appropriate continuum limit. This provides
a new realist context for the Schr€oodinger equation within the domain of classical stochastic
processes. It also suggests that "self-quantizing! systems may provide considerable insight into
conventional quantum mechanics.
! 2003 Published by Elsevier Inc.

1. Introduction

Historically, there have been many interpretations of quantum mechanics and
these have ranged through a spectrum of "pictures! regarding the basic equations
themselves. At one end of the spectrum, Bohr and Heisenberg viewed the mathemat-
ics of quantum mechanics as no more than an algorithm for calculation. In Bohr!s
words [1]:

There is no quantum world. There is only an abstract quantum physical description. It is
wrong to think that the task of physics is to find out how nature is. Physics concerns what
we can say about nature.

At this end of the spectrum, quantum mechanics is primarily about "epistemology,!
a study of how we obtain knowledge of the world. Although Bohr!s position may
seem rather extreme, it is fairly close to what might be called the "mainstream
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attitude! towards quantum mechanics. At the other end of the spectrum, and less
conventional, are more "ontological! approaches which consider the possibility that
the mathematics of quantum mechanics reflects a genuine external reality. The most
well-known of these approaches is due to Bohm [2]. In Bohm!s approach, quantum
mechanics describes an external reality which, as in classical physics, contains parti-
cles that move on real space–time trajectories. The peculiarities of quantum mechan-
ics enter Bohm!s theory through the "quantum potential! which provides non-local
and interference effects. Through the quantum potential, Bohm is able to mix the
wave and particle paradigms to construct a complete ontology for quantum mechan-
ics. It may well be an accident of history that has favoured epistemological theories
over Bohm!s theory. However, the mixing of paradigms in Bohm!s approach does
leave open the question of a physical mechanism linking the particle to its associated
wavefunction. All things considered, there is little real consensus on the connection
of the wavefunction to the outside world, even though there is general consensus on
how we use the wavefunction.

This paper shows that in the context of a new kind of random walk, denoted en-
twined path random walks (EPRW) the propagator for the Schr€oodinger equation for
a particle in a smooth bounded potential in one dimension can be obtained com-
pletely within the single-particle-continuous-trajectory paradigm, without the use
of any analytic continuation, either forced or explicit.

To put this result in context with previous work, one of us (G.N.O.) has discussed
simple classical statistical mechanical systems which have, as part of their descrip-
tion, either the Schr€oodinger or Dirac equations.

The focus of this program of study is the formal analytic continuation (FAC) that
brings about wave-particle duality in conventional quantum mechanics. For exam-
ple, if we compare the solutions of o/=ot ¼ Dðo2/=ox2Þ to the solutions of
o/=ot ¼ iDðo2/=ox2Þ we see that the FAC (the replacement of D by iD)
changes the diffusion equation with its known ontology (Brownian motion) into
Schr€oodinger!s equation where wave-particle duality has discouraged an interpreta-
tion based completely within the single-particle paradigm. The question we address
is then ‘‘Is there a context within the single-particle paradigm that yields the quan-
tum equations as part of its description?’’ Thus far previous work has uncovered
three distinct contexts for the equations of quantum mechanics. The first model,
subsequently called the "Spiral model! [3,4], showed that it was possible to obtain
the Dirac propagator in one dimension, from a particle path that formed a spiral
in space–time. The interesting feature of this model was that it showed that the
FAC that is usually used to make the transition to quantum mechanics could have
a physical origin in the presence of time-reversed portions of a classical continuous
space–time trajectory. It was the existence of classical anti-particles in this model
that resulted in the analog of quantum phase.

There were a number of limitations to the Spiral model. The derivation provided
could produce the Dirac propagator only in a continuum limit. From the point of
view of the statistical mechanics involved, this continuum limit was also a mean field
calculation and ignored the statistical fluctuations expected in a random sample of
Spiral paths. It became apparent that the Spiral model was sufficiently ill-conditioned
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that the Dirac propagator would not emerge in the continuum limit of a series
of such discrete models unless these natural fluctuations could be severely sup-
pressed. Furthermore, the Spiral model was technically difficult to work with and re-
sisted generalization. The model did however suggest that the origin of "quantum
phase! could be the time-reversed portions of a space–time trajectory, and that
one could simulate quantum propagators in ensembles of classical random walks
by colouring them with just two colours, and then extracting the propagators using
projection [5–8]. These "colouring models! avoided the formal analytic continuation
used to obtain quantum propagators and put the propagators themselves in a clas-
sical context. However, the new context was explicitly not quantum mechanics be-
cause the "wave properties! were only statistical features of ensembles of particles.
They were not intrinsic features of single-particle trajectories themselves. All paths
in the colouring models were traversed in the þt-direction, so, like Feynman!s
path-integral, an entire sum-over-histories was required to describe a single-particle!s
propagator. Put another way, colouring models showed how we can extract the "in-
formation of the Dirac propagator! from ensembles of simple classical random
walks. . . in Bohm!s terminology the focus of the colouring models is largely episte-
mological.

The most recent model involving entwined paths (EP) is the subject of the present
paper. It combines elements of both the spiral and colouring models. Like the Spiral
model, the origin of phase in the propagator is the existence of time-reversed por-
tions of a single-particle!s trajectory. However, at the level of difference equations,
the colouring and EP models share the same mathematical description, but the latter
does not require the mean field limit of the Spiral model. In spite of their similarity at
the level of difference equations, the statistical mechanics underlying the EP model
differs from that of the colouring models in two important respects. The new statis-
tical mechanics involves entwined path random walks which are "self-quantizing! and
use only space–time geometry to provide the quantum interference effects usually
produced by FAC or a colouring [9,10]. How self-quantization works will be dis-
cussed in the next section. However, from a historical perspective EPRW is (to
our knowledge) the first constructive example of a "reversible diffusion.! The connec-
tion between reversible diffusion and Schr€oodinger !s equation was first investigated
by Fenyes [11] and Nelson [12] and subsequently studied by many authors [13,14].
The other important distinction between the EPRW model and colouring models
is that EPRW replaces the ensemble of paths of the colouring models with a single
path. In other words, we regard the entwined path as a coherent physical entity. This
is important in that it means that the EP model is potentially an ontology for quan-
tum mechanics itself. This was not the case for the colouring models which relied on
ensemble averages of particle paths to provide the propagator of a single particle. If
colouring models show us how to extract the information of the Dirac propagator
from ensembles of classical random walks, EPRW!s show us how Nature could en-
code that information in a single space–time path. Colouring models are primarily
about epistemology—the EP model is completely about ontology.

In this sense the entwined model is a major advance over previous models. It
shows that the Dirac equation in one dimension, apart from being the fundamental
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equation for the propagation of a "physical! particle like an electron, is also a phe-
nomenological equation describing "mathematical! particles that move on entwined
space–time paths. This has been verified numerically by stochastically constructing
the Dirac propagator using only a single path [10]. Having such a "hands on! model
means that questions that cannot be asked directly of conventional quantum me-
chanics can be asked in the context of entwined paths. Thus we may ask: What is
the origin of phase? What causes zitterbewegung? How does superposition work?
What is the origin of the uncertainty principle? EPRW provides a framework in
which these "unspeakable! [22] questions may, in principle, be answered.

At this point in timewe cannot saywhether the ontology provided byEPRWapplies
beyond the equations of quantum mechanics. The measurement postulates and the
reduction of wave-packets onmeasurement ("R-process!) are outside the unitary prop-
agation ("U-process!) we consider. However, because we are dealing with a specific,
well-defined model, we expect to be able to test whether there is any relation between
the stochastic evolution of the propagator formed by EP, and the stochastic element
in quantum mechanics that is typically brought in by the R-process. This will be the
subject of another paper; in the present work we consider only the U-process.

Although the Schr€oodinger equation is more familiar than its more fundamental
Dirac counterpart, the latter equation is the natural setting of the entwined paths ap-
proach. The reason for this is that, like the diffusion equation, the Schr€oodinger equa-
tion has no "inner scale!: the "mean free path! of particles (Compton wavelength) is
effectively zero, and the signal velocity is infinite. This is of course an idealization
that is convenient when the mean free path is much smaller than the scale of interest,
and the mean free speed (c) is much greater than the speed of interest. Since entwined
paths are entwined on the scale of the mean free path, the non-relativistic limit has to
be taken explicitly.

In this paper we demonstrate the connection between the entwined model and
Schr€oodinger!s equation in two ways. First we use a technique developed in [15] to ob-
tain Schr€oodinger!s equation for a particle in a static potential, as the direct contin-
uum limit of a colouring model. This method mimics the usual transition from a
symmetric random walk to the diffusion equation. However, the use of entwined
paths ensures that the resulting phenomenology is reversible, and the result is
Schr€oodinger!s equation.

In the second method we take the continuum limit maintaining both a finite char-
acteristic length (mean free path) and a finite characteristic speed. This version mim-
ics Kac!s derivation of the Telegraph equations [16,17]. Here the entwined paths
again ensure reversibility and the result is a particular representation of the Dirac
equation. The subsequent limit in which the mean free speed (i.e., the signal velocity)
goes to infinity yields Schr€oodinger!s equation.

2. Entwined pairs: a classical Stochastic model

Consider the following stochastic process (Fig. 1). A single particle is constrained
to move in discrete time on a lattice with lattice spacing d. The time steps are of
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length !. At each step the particle moves one lattice spacing in z and one in t. For a
point source, the particle starts at the origin at ð0; 0Þ and steps to the first lattice
point at ðd; !Þ. The particle then steps to ð2d; 2!Þ with probability b or changes direc-
tion and steps to ð0; 2!Þ with probability a. Once it is moving in the %z-direction the
particle first drops a marker with probability a and then at the second indication of
the stochastic process changes direction again. This alternating sequence of changing
direction and dropping markers is continued until the first marker after some spec-
ified return time tR. At that marker the particle maintains its direction in space but
reverses direction in time. Subsequent steps of the process follow the light cones of
the markers back to the origin. The resulting closed loop we call an entwined path.
At the origin the process begins again.

In the figure, suppose the portion of the trajectory traversed forward in time is
coloured blue, with the backward portion coloured red. Whereas the colours chosen
are arbitrary, the fact that we distinguish the direction of traversal in time is not.
Since a particle that reverses its direction in time will be seen to be anihilated
by an "antiparticle! which is really the same particle reversing its direction in time,
we shall define a "charge! associated with the traversal of a trajectory. Forward

Fig. 1. Forming entwined paths in space–time: z is horizontal, t is vertical. The particle travels at constant
speed but occasionally reverses direction in response to a stochastic process. (a) A stutter is introduced into
the stochastic process. At every other indication from the stochastic process, a marker is dropped instead
of a direction change (disks in the figure). After some specified time tR, the process stops at the next mar-
ker. (b) Reverse direction in time but not in space. Follow the "light-cone! paths through the markers back
to the origin. (c) The entwined path formed in (b) can be regarded as two osculating paths which we call
envelopes. These are separated in (c) for clarity. The geometry of the envelopes is the same as if the paths
were generated by the stochastic process without a stutter. The "colouring! denoting direction of traversal
mimicks the Chessboard colouring.

482 G.N. Ord, R.B. Mann / Annals of Physics 308 (2003) 478–492



traversals will correspond to a charge of þ1, reversed traversals will correspond to a
charge of %1. In the figure, blue portions of the trajectory correspond to a charge of
þ1 and red portions correspond to %1. Note that although each complete entwined
path yields a net charge of zero at any value of t, entwined paths do separate charge
and we shall see that the charge separation builds up a charge field in space–time that
is oscillatory in nature. We can then imagine counting the net charge which enters a
site. Regarding the entwined pair as a coherent physical entity we will have a four-
component object to consider, since there are two paths to each entwined pair, and
each member of the pair has two possible directions to move in space Fig. 2a.

We have generated the entwined pair in a way which allows us to see how it is
equivalent to a single closed loop in space–time. However, the method of generation
is tuned to counting the paths based on their outer envelopes. That is, both the left
and right "corners! in the outer envelopes are generated statistically by the same sto-
chastic process. When we dropped markers at every other call from the random pro-
cess, and then passed through the markers on the return path, we ensured that we
could equally well have generated the outer envelopes by an alternating colouring
of an independently generated outer envelope. For example, the left envelope in
Fig. 2b may be obtained by starting on the red path at the origin and alternating blue
and red sections at every second envelope corner. All left envelope paths have this
colouring rule, which itself is a consequence by the geometry of entwined pairs. Note
that on both envelopes, the probability of a corner is always a regardless of whether
it is a right- or left-handed corner.

Regarding the left envelope, if/0
1ðz; t þ !Þ is the net charge entering the lattice points

ðz; t þ !Þ from the þz direction and /0
2ðz; t þ !Þ is the net charge entering from the

%z-direction then the difference equation expressing conservation of charge is easily
found. Regarding Fig. 3 we see that for the charge on the left envelope we have:

/0
1ðz; t þ !Þ ¼ b/0

1ðzþ d; tÞ % a/0
2ðz% d; tÞ;

/0
2ðz; t þ !Þ ¼ b/0

2ðz% d; tÞ þ a/0
1ðzþ d; tÞ:

ð1Þ

Note that as /0
2 scatters into /0

1 it changes sign so the contribution to /0
1 is negative.

Fig. 2. (a) A sample entwined path with the corresponding velocity 4-vector. Note the change in sign of
the two envelopes when the paths cross. (b) A left envelope path. Note that the left envelope path would
change colour at every left-hand corner.
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Similarly, for the right envelope, if /0
3ðz; t þ !Þ is the net number entering the lat-

tice points ðz; t þ !Þ from the þz-direction and /0
4ðz; t þ !Þ is the net number entering

from the %z-direction we may write:

/0
3ðz; t þ !Þ ¼ b/0

3ðzþ d; tÞ þ a/0
4ðz% d; tÞ;

/0
4ðz; t þ !Þ ¼ b/0

4ðz% d; tÞ % a/0
3ðzþ d; tÞ:

ð2Þ

Note the alternating signs in the "scattering! terms in these equations. These arise be-
cause of the fact that every other "corner! in an envelope is actually an exchange with an
antiparticle. The two envelopes naturally partition the states into two block diagonal
systems coupled only by their initial conditions. Versions of these equations have been
obtained and numerically verified for the underlying stochastic process in [10].

3. Entwined pairs and diffusive scaling

Symmetric binary random walks have a well-known scaling that allows a descrip-
tion in the continuum limit. This scaling is termed diffusive scaling and corresponds to

ðdÞ2=ð2!Þ ! D as ! ! 0; ð3Þ

where D > 0 is a diffusion constant. The reason that this scaling "works! is simply
because the mean-square end-to-end length of a symmetric binary random walk in-
creases as the number of steps n, so (3) is the natural scaling for such walks. Notice
also that this scaling is the basis of the uncertainty principle in this model. d is a
measure of the uncertainty in the position of a particle when we compare the lattice
model to the continuum. d=! is the speed of the particle on the lattice, which would
be proportional to the uncertainty in the momentum. (3) then states that the product
of the uncertainties in the position and momentum of a particle is asymptotically
constant. The origin of the uncertainty principle here is simply the geometry of the
underlying paths.

In the entwined-pair model above, if we choose a and b to be asymptotically 1=2
then the underlying envelopes are asymptotically symmetric binary random walks.
However, the entwining of paths makes each envelope with its orthogonal twin
a reversible path. The result is that a phenomenology that would otherwise be

Fig. 3. /0
1 and /0

2 on the left envelope receive contributions from the previous time step. Note that /0
1

changes colour at a left-hand corner. /0
2 does not change colour at a right-hand corner.
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described by the diffusion equation is instead described by the Schr€oodinger equation,
reflecting the change from an entropy-dominated to an entropyless system. The new
system is entropyless because each time-reversed path essentially undoes the disorder
from its original partner.

To proceed, we scale system (1) diffusively. That is, we shall let a and b approach
1=2 as the lattice spacing gets small. The potential will then enter through the limit-
ing process in just how the terms a and b approach 1=2.

Consider the left envelope densities /0
1 and /0

2. We will write (1) in matrix
form using shift operators E&

z and Et where E&
z /

0ðz; tÞ ¼ /0ðz& d; tÞ and Et/
0ðz; tÞ ¼

/0ðz; t þ !Þ. Writing U0 ¼ /0
1

/0
2

! "
, (1) may be written as

EtU0ðz; tÞ ¼ bEþ
z %aE%

z
aEþ

z bE%
z

# $
U0ðz; tÞ: ð4Þ

Now suppose the particle chooses its next step according to a canonical ensemble in
which a smooth bounded potential vðzÞ! acts like an energy. That is, suppose the
particle associates a relative energy of þvðzÞ! to continue the direction of travel, and
an energy of %vðzÞ! for a direction reversal. For large positive values of vðxÞ reversals
are favoured. This means that the reversal probability is

a ¼ evðzÞ!

e%vðzÞ! þ evðzÞ!
ð5Þ

so that

a ¼ 1

2
ð1þ vðzÞ!Þ þOð!2Þ; b ¼ 1

2
ð1% vðzÞ!Þ þOð!2Þ: ð6Þ

Note that the effect of the field is to alter the local mean free path of the particle. If
vðzÞ is negative the particle tends to stay moving in the same direction for longer
periods. Conversely, if vðzÞ is positive the particle changes direction more frequently.

Now we wish to approximate solutions of (4) for small d by solutions of a partial
differential equation. To do this we expand the shift operators

E&1
z ¼ 1& d

o
oz

þ 1

2
d2

o2

oz2
þOðd3Þ ð7Þ

and

Et ¼ 1þ !
o
ot

þOð!2Þ: ð8Þ

The matrix in (4) may then be written as

bEþ
z %aE%

z

aEþ
z bE%

z

# $
¼ 1

2
ð1% vðzÞ!Þ I

#
þ rzd

o
oz

þ I
1

2
d2

o2

oz2

$
ð9Þ

þ 1

2
ð1þ vðzÞ!Þ rq

#
þ rxd

o
oz

þ rq
1

2
d2

o2

oz2

$
þOðd3Þ; ð10Þ

whererx and rz are the usual Paulimatrices,rq is%iry and I is the 2' 2 identitymatrix.
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Keeping only the lowest order terms this is

bEþ
z %aE%

z

aEþ
z bE%

z

# $
¼ 1

2
ðI þ rqÞ þ

1

2
ðrz þ rxÞd

o
oz

þ ( ( (

þ 1

2
ðI þ rqÞ d2

o2

oz2

# $
% 1

2
ðI % rqÞvðzÞ!: ð11Þ

The term in (11) that is independent of both d and ! is an unnormalized finite ro-
tation. If we are going to match solutions of the difference equation to that of a
differential equation we must correct the normalization and the finite rotation. To
correct the normalization we write Uðz; tÞ ¼ ð

ffiffiffi
2

p
Þt=!U0ðz; tÞ, and to avoid the finite

rotation we note that ðð1=
ffiffiffi
2

p
ÞðI þ rqÞÞ8 ¼ I . As long as we restrict our comparison

of the difference equation and the differential equation so that steps in the t-direction
are integer multiples of 8!, we will avoid the finite rotations, which are in any case an
artifact of the diffusive (non-relativistic) limit. The difference equation we are con-
sidering is then

E8
t Uðz; tÞ ¼ 24

bEþ %aE%
aEþ bE%

# $8

Uðz; tÞ: ð12Þ

This is the original difference equation, transformed to remove a decaying expo-
nential, and viewed eight steps at a time. Expanding Eq. (12), keeping lowest order
terms and using (3), we get, after some algebra

o
ot

/1

/2

& '
¼ 0 D o2

oz2 % vðzÞ
%D o2

oz2 þ vðzÞ 0

" #
/1

/2

& '
þOðdÞ; ð13Þ

where the / are real. We may express this in complex form as

i
o
ot
ð/2 þ i/1Þ ¼

#
% D

o2

oz2
þ vðzÞ

$
ð/2 þ i/1Þ þOðdÞ: ð14Þ

Thus solutions of Schr€oodinger!s equation (14) approximate solutions of the en-
twined-pair difference equation (12) for small d. Note that /1 and /2 here are real
functions which are themselves just limits of ensemble averages of the net charge
accumulated via entwined paths. They are not components of wave functions in the
sense of quantum mechanics, since there has been no FAC or quantization involved.
The / are strictly real classical objects representing an expected net flow of charge in
the %z- and þz-directions, respectively.

We also note that the potential energy vðzÞ that affected the particle!s mean free
path in (5) enters the Schr€oodinger equation as a potential term in the Hamiltonian.
Although vðzÞ does not favour either direction explicitly in the actual walk, as
the particle moves it tends to reverse direction more frequently when moving in
a region of high potential energy, and less frequently when moving in a region
of low potential. The net effect at the level of the Schr€oodinger equation is that
regions of maximum vðzÞ tend to repel the particle and regions of minimum vðzÞ
tend to attract it.
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The remaining two densities satisfy the time-reversed version of (13) and are rem-
nants of the four component description of entwined pairs. The two PDE!s are con-
nected by their initial conditions and their solutions, in complex form, are conjugates
of each other, so their product, integrated over all space is a time-independent posi-
tive constant. This fact potentially opens the door to the Born postulate which would
associate a probability density with the product of the two wavefunctions. However,
at this point we have no justification for invoking such a postulate. In future work we
shall examine the microscopic dynamics to see if the postulate is implied by any rea-
sonable measurement scheme.

Although in the above calculation we were forced to look at the densities only every
eight steps because of the finite rotation at each step, there is an alternative approach.
We could define a new set of densities which rotated by p=4 with every step as the
ensemble of walks actually does. This would allow us to avoid the "stroboscope!
approach above, and we could take the continuum limit as an approximation of a
single step. In the next section we avoid the problem entirely by taking the continuum
limit with a finite signal velocity. This in turn changes the finite rotation at each step
into an infinitesimal rotation which admits a continuum limit directly.

4. Entwined pairs with fixed signal velocity

In the previous section the asymptotic scaling was diffusive. In the absence of a
potential field, at each lattice scale ðd; !Þ, the probability that the envelope walk turns
left or right is exactly 1=2. This symmetry reflects the paradigm that the walk is ac-
tually random and symmetric on all scales below a given detector resolution, what-
ever the current scale. As detector resolution increases, more and more detail is
revealed of the random walk which is statistically a self-similar fractal (of dimension
two) on all scales. There is no inner characteristic scale in this picture — the mean
free path of the particle is 0 in the continuum limit. Similarly the mean free time
is also zero, and the diffusive scaling implies an infinite signal velocity in the contin-
uum limit. All of these features are evident in the resulting phenomenologies (the dif-
fusion equation and the Schr€oodinger equation) for symmetric random walks and
entwined pairs alike.

In real physical diffusive systems, inner characteristic lengths, times, and veloc-
ities are all finite, and are determined by the density, composition, and tempera-
ture of the surrounding fluid. Three such measures are l, s, and c. l is a mean
free path and is roughly the average distance the diffusing particle moves before
being scattered by particles from the surrounding medium. s is roughly the ex-
pected time between scattering, c is the ratio of these two and is roughly the
speed of sound in the system. For real physical systems then the scaling relation
(3) is a convenient mathematical fiction which allows us to replace a sequence of
difference equations with a limiting partial differential equation. The PDE itself is
then only a useful description on scales where the scaling relation (3) is valid. For
example, the diffusion equation is only useful on space scales greater than l and
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time scales greater than s. Below these scales, a diffusing particle moves on a
piecewise smooth path rather than a Fractal trajectory, and the differential equa-
tion is no longer a sensible description.

In quantum mechanics, there is a formal parallel to this in the transition from
Schr€oodinger dynamics to the relativistic equations. The analog of the characteris-
tic speed of sound is of course the speed of light. The analog of the mean free
path is the Compton length. The analog of the mean free time is the Compton
time. All of this is well-known, and easily seen, particularly in the path-integral
formulation of quantum mechanics. However, the reason for mentioning it here
is that, for example, the relation between kC, the Compton length, and l the mean
free path is purely formal. l is physically a measurable feature of a real classical
system and mathematically an ensemble average. In contrast, in quantum me-
chanics kC is a characteristic length at the level of the wavefunction equations
only. It is a physical parameter which is not directly measurable as a distance be-
tween collisions, neither is it an ensemble average over any known microscopic
dynamic. The analogy between the two sets of parameters, quantum and classical,
is interesting but formal.

In this section we shall see that entwined pairs generate the Dirac and Schr€oodinger
equations in such a way that the analogy between classical and "quantum! character-
istic lengths is no longer formal. kC in the context of entwined pairs is precisely a
mean free path generated as an ensemble average. The other characteristic constants
are either prescribed constants, ensemble averages, or, in the case of the "diffusion
constant! "h=ð2mÞ an assumption on how space and time scale, as is the case for
the usual diffusion constant D.

Since Eqs. (1) and (2) are very similar and are coupled only by the initial condi-
tions, we shall work with the first system only. We use the scaling

a ¼ a!;

b ¼ ð1% aÞ;
d
!
¼ c

ð15Þ

where a and c are both fixed parameters. a is the inverse of the mean free time of the
system and c is the fixed mean free speed. Substitution of these into (1) gives

/0
1ðz; t þ !Þ ¼ ð1% a!Þ/0

1ðzþ d; tÞ % a!/0
2ðz% d; tÞ;

/0
2ðz; t þ !Þ ¼ a!/0

1ðzþ d; tÞ þ ð1% a!Þ/0
2ðz% d; tÞ:

ð16Þ

Notice that as ! ! 0, the likelihood of a direction change goes down as !. Small steps
are correlated in the same direction, giving a finite mean free path.

Using the expansions of the shift operators (7) and (8) and truncating these to first
order give:

1

#
þ !

o
ot

$
/0

1 ¼ ð1% a!Þ 1

#
þ d

o
oz

$
/0

1 % a! 1

#
% d

o
oz

$
/0

2 þOðd2Þ;

1

#
þ d

o
ot

$
/0

2 ¼ a! 1

#
% d

o
oz

$
/0

1 þ ð1% a!Þ 1

#
þ d

o
oz

$
/0

2 þOðd2Þ:
ð17Þ
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Matching first order terms and using d ¼ !c gives:

o/0
1

ot
¼ c

o/0
1

oz
% a/0

2;

o/0
2

ot
¼ %c

o/0
2

oz
þ a/0

1:

ð18Þ

Examining (18) we can see that the / are real, but oscillatory. The oscillatory
character arises through the two different signs in the scattering terms on the right of
the equation. The alternating signs in these terms are a result of the entwining of the
paths and the resulting "colouring! of the envelopes (see Fig. 1). This is the origin of
"phase! in this system. Note that if we start with initial conditions such that the /0 are
constant in space, the spatial derivatives are zero and the system reduces to

o/0
1

ot
¼ %a/0

2;

o/0
2

ot
¼ a/0

1:

ð19Þ

A suggestive solution of (19) is

/0
1 ¼ A cosðatÞ;

/0
2 ¼ A sinðatÞ:

ð20Þ

The trigonometric functions signal the implicit presence of phase in the system.
Notice that were we only counting paths without the return path present, the sign of
the scattering terms in (18) would both be positive and the solutions of (19) would be
hyperbolic, not trigonometric.

With the appropriate numerical constant for a (i.e., a ¼ mc2="h), Eq. (18) is a form
of the Dirac equation in one dimension which admits real solutions. Note in passing
that zitterbewegung in this model is built in by entwined paths. The eigenvalues of
the "velocity operator! in Eq. (18) is &c. This is simply because entwined paths move
on the "light cones! of the lattice. Since in this context the constant c is the speed of
the particle on the lattice, which has been fixed in the continuum limit, we should be
able to recover the "non-relativistic! limit by letting c ! 1. To do this we shall re-
write Eq. (18) in a more convenient form. First we change variables to:

w1 ¼ i/0
1e

%iat;

w2 ¼ /0
2e

%iat:
ð21Þ

The i!s in (21) are not FAC!s. They simply give a convenient linear combination of
the two densities /0. Eq. (18) then becomes

owþ

ot
¼ c

ow%

oz
; ð22Þ

ow%

ot
¼ c

owþ

oz
þ 2iaw%: ð23Þ
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Now eliminate one of the w. For example we may eliminate wþ by differentiating (22)
with respect to z and (23) with respect to t and combine to get

1

c2
o2w%

ot2
¼ 2ia

c2

# $
ow%

ot
þ o2w%

oz2
; ð24Þ

wþ may be shown to satisfy the same equation.
In this form, contact with the Schr€oodinger equation is easily made. The choice of a

which identifies (18) with the usual Dirac equation is a ¼ mc2="h. So a depends on c.
If we substitute this into (24) we get

i
ow%

ot
¼ % "h

2m

# $
o2w%

oz2

#
% 1

c2
o2w%

ot2

$
; ð25Þ

where now the only term that depends on c is the last one. Here, as expected, limc!1
gives the free particle Schr€oodinger equation. Furthermore, if we take m to the left-
hand side of (25) we see that in the limit as m ! 0, w% obeys the wave equation. This
makes sense from the original model in that when m ¼ 0, the particles never scatter,
so they stay on the same light-cone and hence they obey the wave equation. By
writing the solutions of (25) in the form w% ¼ expðimc2tÞv it is seen that (25) is
equivalent to the Klein–Gordon equation for a particle of mass m.

Note that the above route to the Schr€oodinger equation did not include a potential;
we arrived only at the free particle equation. To include a potential in this case would
require us to put field interactions into the entwined model that are not real. This may
be done, but would be difficult to interpret in terms of the original stochastic model.
Instead, in a subsequent paper we shall show how to include a field, itself generated
by a classical stochastic process, which will allow us to avoid this second FAC.

The two approaches above represent two different methods of taking a continuum
limit. In the first approach we took a single continuum limit in which, as the lattice
spacing went to zero, the speed of the particle on the lattice increased without bound.
This can be seen from the diffusive scaling in (3) which can also be written as

ðdÞ=ð!Þ ! 2D=d as !; d ! 0; ð26Þ

where d=! is just the hopping speed of the particle on the lattice. This is the ap-
propriate scaling for symmetric random walks and reflects their intrinsic fractal di-
mension. In the context of Schr€oodinger!s equation it is this scaling that supports the
uncertainty principle. Note that if we call the lattice speed as a function of the lattice
scale vðdÞ, (26) may be suggestively written as

vðdÞ ' d ) 2D: ð27Þ

The apparent speed of a particle increases as the scale of measurement goes down in
such a way that the product of the length scale and speed is asymptotically constant.
This in turn would put a lower bound on the product of the uncertainties in the
spatial resolution and speed which would depend only on D.

In the second route to Schr€oodinger!s equation we acknowledged that there should
be a finite signal velocity c. This meant that the above scaling could only hold down
to some characteristic length which in our model was 1=a. Below that scale, particle
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speeds had to be constant and as a result the continuum limit was taken with the
scaling (15). This scaling yields trajectories in the continuum which look like the
paths in Fig. 1, except there is no lattice, and the lengths of the line segments between
corners is governed by a Poisson process, with an expected length of 1=a. When the
continuum limit is taken in this fashion, the ultimate particle speed c remains a pa-
rameter in the resulting PDE. By expressing the PDE in a convenient form we then
let c ! 1 to recover "the non-relativistic! form of the equation. The conceptual link
with the first continuum limit is that our broken line paths look like ordinary sym-
metric random walks if the scale of measurement in space and time has a natural
"speed! much less than the ultimate speed c. By sending c ! 1 you ensure that this
is always the case, and the resulting PDE is the same for both cases.

5. Discussion

In the above, we showed that in 1 + 1 dimensions, the Schr€oodinger equation arises
as the continuum limit of a classical stochastic model by taking the limit of a discrete
system in two separate ways: (a) by assuming that the stochastic behaviour of en-
twined paths had no inner scale, and (b) by first taking the continuum limit at fixed
signal velocity, which is then sent to infinity. The first method allows the insertion of
a potential. The second shows how relativistic corrections can be brought in.

In qualitative terms, the above calculations replaced the Brownian motion under-
lying the diffusion equation by the Brownian motion of entwined paths. This replace-
ment has then changed the macroscopic phenomenology from the diffusion equation
to the Schr€oodinger equation. The "anti-particle! current of the entwined paths
provides the interference effects and reversibility characteristic of Schr€oodinger!s
equation.

The idea that Schr€oodinger !s equation somehow involves time-reversed "fluids! has
been the source of many alternative approaches to quantum mechanics [12,13,18–
20]. Our work can be understood as a modification of Brownian/Poisson motion that
provides a microscopic basis (and resulting statistical mechanics) for a time-symmet-
ric "diffusion.! It thus provides a new context for the Schr€oodinger equation as a legit-
imate phenomenological equation for entwined paths. This is in marked contrast to
quantum mechanics where the Schr€oodinger equation is the fundamental equation of
the theory.

In terms of conventional single-particle quantum mechanics in one dimension, the
above model imitates it exactly, up to the measurement postulates, in a realistic con-
text. In terms of the Penrose [21] partition of quantum mechanics into "U! (unitary)-
processes and "R! (reduction)-processes, entwined pairs provide a microscopic model
for the U-process.

It is tempting to classify the model as a "hidden variables model.! If we graft the
measurement postulates onto the "wavefunctions! generated by entwined paths, then
we would indeed have a type of (non-local) hidden variables theory. It would differ
from earlier reversible diffusion models such as stochastic quantum mechanics pri-
marily in the fact that it is constructive. Our time-reversed paths tell us exactly
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how to construct a reversible diffusion. However, we do not advocate postulating re-
sponses to measurement at this point. Just as we do not need measurement postu-
lates for diffusive systems, we should not need such postulates for entwined paths.
Instead, the task ahead is to see if any reasonable measurement schemes verify or
contradict the postulates of quantum mechanics within the new context of entwined
paths. By such tests we stand to gain insight into how wave-particle duality might, or
might not, be produced in Nature.
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