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ÁGRIP 

Í skýrslunni er sett fram lýsing á aðferð til þess að reikna fallsgildi og afleiðu sennileikafalls fyrir vigurtímaröð af 
VARMA gerð (vector autoregressive moving average) þegar mæligögn vantar. Aðferðin byggist á að samtvinna 
svokallaða Cholesky-þáttunar-aðferð fyrir VARMA sennileikafall þegar gögn eru heil og Sherman-Morrison-
Woodbury formúluna. Lýst er hvernig ná má fram sparnaði þegar engir MA liðir eru í röðinni og ennfremur er 
útskýrt hvernig meta má gildi sem vantar og suðhluta raðarinnar. Skýrslunni lýkur með lýsingu á tölulegum 
tilraunum sem gerðar hafa verið með útfærslu á aðferðunum í Matlab-forritum. Forritin ásamt lýsingu á notkun 
þeirra eru í sérstakri skýrslu sem gefin er út samhliða þessari. Í viðaukum er síðan sagt frá diffrun með tilliti til 
fylkja, lausn vigur-Yule-Walker jafna, hermun VARMA líkana, og að lokum er sönnuð setning um fylkjaákveður. 

ABSTRACT 

A detailed description of an algorithm for the evaluation and differentiation of the likelihood function for 
VARMA processes in the general case of missing values is presented. The method is based on combining the 
Cholesky decomposition method for complete data VARMA likelihood evaluation and the Sherman-Morrison-
Woodbury formula. Potential saving for pure VAR processes is discussed and formulae for the estimation of 
missing values and shocks are provided. The report concludes with description of numerical results obtained with 
a Matlab implementation of the algorithm, which is in a companion report. Differentiation with respect to 
matrices, solution of vector-Yule-Walker equations, VARMA model simulation and the determinant of a low rank 
update are discussed in appendices. 
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1.  INTRODUCTION 

A key aspect for the numerical treatment of autoregressive moving average (ARMA) processes is the 
efficient evaluation of the likelihood function for the parameters. It is necessary to treat the case of vec-
tor-valued processes (VARMA) as they are the ones prevailing in practice. There has been a large num-
ber of publications dealing with this subject, and there are a number of related approaches, some of 
which will be mentioned in due time. 

In order to make the results more relevant to practical applications it is important to study the more gen-
eral case of missing values. Evaluation of the gradient of the likelihood function is also important for its 
maximization using traditional numerical optimization methods. This report’s main contribution is to 
present formulae for the calculation of the likelihood function and its gradient, both for the complete 
data case, and when there are missing values. We concentrate on the exact likelihood function, not the 
conditional likelihood (where the initial shocks are assumed to be zero), both because the latter is not 
easily applicable when values are missing or when the model has moving average terms, and also be-
cause the exact likelihood does in many practical give significantly better parameter estimates. 

Three different approaches for evaluating the exact likelihood function of univariate ARMA processes 
have been described in the literature: (A) one that we shall refer to as the presample method described 
by Siddiqui [1958] for pure MA processes, (B) the Cholesky decomposition method, first described by 
Phadke and Kedem [1978], and (C) a state space Kalman filter method described by Harvey and Phil-
lips [1979]. Several authors have described improvements and generalizations of the originally pro-
posed methods, in particular, all three approaches have been generalized to VARMA models and to 
ARMA models with missing values. An overview of the developments is given by Penzer and Shea 
[1997]. Among the papers discussed there are [Ljung and Box 1979] describing a computationally effi-
cient VARMA implementation of the presample method, and [Jones 1980] with a Kalman filter missing 
value ARMA method. In addition to the references in [Penzer and Shea 1997], Ljung [1989] discusses 
estimation of missing values for ARMA processes and Mauricio [2002] gives details of a VARMA im-
plementation of the Cholesky decomposition method. Two Fortran programs for VARMA likelihood 
evaluation in the complete data case have been published: the Kalman filter method is implemented by 
Shea [1989], and the presample method by Mauricio [1997]. In addition, pure VAR models (with com-
plete data) may be fitted using the Matlab package ARfit, described and published in the pair of papers 
by Neumaier and Schneider [2001]. 

In contrast to complete data VARMA and missing value ARMA, the case of VARMA processes with 
missing values has not been treated carefully in the literature. We only know of [Penzer and Shea 
1997], and in that article only a sketch of a technique is presented. Formulae for the efficient evaluation 
of the likelihood gradient are also lacking in the published literature. 

In this report we take the Cholesky approach. It is considerably simpler and more direct than the other 
two approaches, and with complete data it is also in general more efficient [Penzer and Shea 1997; 
Mauricio 2002]. The original article of Phadke and Kedem [1978] treats VMA models, extension to 
ARMA models is in [Ansley 1979], Brockwell and Davis [1987, Ch. 11] describe a VARMA imple-
mentation (they and some other authors refer to the method as the innovation method) and Penzer and 
Shea [1997] provide a way of handling missing values in the ARMA case, albeit not the same as our 
way.  

Consider equations (2.1) and (2.2) and the associated notation for the definition of a VARMA process. 
With the simple change of variables, wt = xt – µ for t ≤ p and wt = yt for t > p, wt and t k+w  are independ-
ent for max( , )k p q>  and thus the covariance matrix Ω of the combined w-vector has a block band 
structure. Since the likelihood function can be written solely in terms of Ω (c.f. ) it may be evaluated 
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efficiently through Cholesky decomposition of Ω [Golub and Van Loan 1983] and this is from where 
the method gets its name. Presence of missing values corresponds to crossing out rows and columns of 
the covariance matrix S of the combined x-vector, giving an expression for the likelihood of the ob-
served data (c.f. (2.4)). One of the novelties of the present work is to show how the Cholesky factors of 
Ω together with the Sherman-Morrison-Woodbury formula and other tools from numerical linear alge-
bra may be used to evaluate this missing value likelihood efficiently. 

We have included the mean of the series among the parameters, instead of assuming a zero-mean proc-
ess as is customary in the literature. This is not important when there are no missing values: one can 
simply subtract the mean of the series. When there are missing values, this might however cause a bias. 
Say a weather station was out of function during a cold spell. Then the mean of all observed tempera-
ture values would probably overestimate the true mean, but if other nearby stations were measuring dur-
ing the cold spell then maximizing the likelihood of a VARMA model with the mean as a free parame-
ter would avoid this bias. 

We refer to the companion report [Jonasson 2006] for a Matlab implementation of the new methods. 
The programs follow very closely the notation and algorithms of the present report. An implementation 
of the methods using the C programming language is also under way. 

The report is organized as follows. Section 2 introduces the basic notation and reviews the Cholesky 
decomposition method for the complete data case. Section 3, the main section of the report, describes 
our approach to dealing with the missing value case. Section 4 describes the main ideas and techniques 
used to compute the derivative of the likelihood function. Section 5 presents some numerical experi-
ments that complement the report. The appendices present technical material. Appendix A describes our 
approach to differentiation with respect to matrices, Appendix B describes our solution to the Yule-
Walker equations, Appendix C describes how to generate simulated time series, and, finally, Appendix 
D provides the proof of a result used in the report. 

2.   NOTATION AND THE CHOLESKY DECOMPOSITION METHOD 

2.1  Model notation 

A VARMA model describing a time series of values xt ∈ ℝr for integer t is given by: 

 
1

( )
p

t j t j t
j

A −
=

− = − +∑x µ x µ y  (2.1) 

where, 

 
1

q

t t j t j
j

B −
=

= +∑y ε ε , (2.2) 

µ is the expected value of xt, the Aj’s and the Bj’s are r × r matrices, and the εt’s are r-variate N(0, Σ) 
uncorrelated in time. Let θ denote the 2( ) ( 3) 2p q r r r+ + + -dimensional vector of all the parameters (the 
elements of the Aj’s, the Bj’s, Σ and µ; Σ being symmetric). If there are no missing values, observations 
xt for t = 1,…, n are given, and x denotes the nr-vector T T T

1( ,..., )nx x  of all these values. When there are 
missing values the observations are limited to a subvector xo ∈ ℝN of x, and xm ∈ ℝM is a vector of the 
missing values, say 

1m ( ,..., )
Mm mx x=x . If the time series is stationary then the complete data log-

likelihood function is given by 

 ( )1 T 1
2

( ) log2 logdet ( ) ( )l nr S Sθ π −= − + + − −x µ x µ  (2.3) 
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where cov ( )S θ= x  and T T TE ( ) ( , , )θ= =µ x µ µ… . The log-likelihood function for the observed data is 
given by 

 ( )1 T 1
o o o o o o o2
( ) log2 logdet ( ) ( )l N S Sθ π −= − + + − −x µ x µ  (2.4) 

where So = cov
θ (xo) is obtained from S by removing rows m1,…, mM and columns m1,…, mM and oµ  = 

oE ( )θ x  is obtained from µ by removing components m1,…, mM (see for example [Ljung 1989]).  

2.2  Likelihood evaluation for complete data 

We now turn attention to the evaluation of  (2.12) and proceed in a similar vein as Mauricio [2002] and 
Brockwell and Davis [1987] (and as briefly suggested in [Penzer and Shea 1997]). From (2.1),  

 yt = 1 ( )p
t j t jj A −=− − −Σx µ x µ  

for t > p. Let wt = t −x µ for t ≤ p and wt = yt for t > p and let w = T T T
1( ,..., )nw w . Then w = ( )Λ −x µ  where 

Λ is the nr × nr lower triangular block-band matrix given by 

 
1

1

p

p

I

I
A A I

A A I

 
 
 
 Λ = − − 
 
 − −  

⋱

⋯

⋱ ⋱ ⋱

⋯

. (2.5) 

Now let Cj = cov( , )t t j−x ε , cov( , )j t t jG −= y x , cov( , )j t t jW −= y y  and Sj = cov( , )t t j−x x ,  (all these are r × 
r matrices). Note that with this notation, 

 

T T
0 1 1

1 0
T
1

1 1 0

n

n

S S S
S S

S
S

S S S

−

−

 
 
 =
 
  

⋯

⋱ ⋮

⋮ ⋱ ⋱

⋯

. (2.6) 

Furthermore, let Ai and Bj be zero for i and j outside the ranges implied by (2.1). By multiplying through 
(2.1) from the right with Tt j−ε  for j = 0,…, q and taking expectations the following recurrence formulae 
for C0, C1, C2,… are obtained: 

 1 1 0j j j qC AC A C B−= + + + Σ… ,  for j = 0, 1,… (2.7) 

(so C0 = Σ). With B0 = I, we have by (2.1) and (2.2): 

 T T
0j j q q jG B C B C−= + +… ,  for j = 0,…, q, (2.8) 

 T T
0j j q q jW B B B B−= Σ + + Σ… ,  for j = 0,…, q. (2.9) 

For j < 0 or j > q, Cj, Gj and Wj are zero. By multiplying (2.1) from the right with T( )t j− −x µ  for j = 
0,…, p and taking expectations one gets the following linear system (the vector-Yule-Walker equations) 
for the 2( 1) 2r r pr+ +  elements of S0,…, Sp (note that S0 is symmetric): 
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T T
0 1 1 0

T T
1 1 0 2 1 1 1

T T
2 1 1 2 0 3 1 2 2

1 1 2 2 0

p p

p p

p p

p p p p p

S A S A S G

S A S A S A S G

S A S A S A S A S G

S A S A S A S G

−

−

− −

− − − =

− − − − =

− − − − − =

− − − − =

…

…

…

⋮

…

 (2.10) 

The solution of (2.10) is dealt with in Appendix B. If q ≤ p, the covariance matrix of w will be given by 
the nr × nr matrix: 

 

T T
0 1 1

T
1 0

T
1

T T
1 1 0 1

T T
1 0 1

T
1 0 1

T
1 0

T
1

T
1 0 1

1 0

p

q

p q

q q

q q

q

q

S S S

S S G

S

S S S G G

G G W W W

W W W
G W W W

W W

W W W
W W W

−

−

 
 
 
 
 
 
 

Ω =  
 
 
 
 
 
 
  

⋯

⋱ ⋮

⋮ ⋱ ⋱ ⋮ ⋱

⋯ ⋯

⋯ ⋯

⋱ ⋮ ⋱

⋮ ⋱

⋱ ⋱ ⋮

⋱

⋯

 (2.11) 

If q < p the depiction is slightly different, the pr × (n – p)r upper right partition of Ω will be 

 T T

T T T
1 2

p q

q

G G

G G G

 
 
 
  

⋯

⋮ ⋱

⋯ ⋯

, 

the lower left partition will be the transpose of this, but the upper left and lower right partitions are un-
altered. Since Λ has unit diagonal, one finds that 

 ( )1 T 1
2

( ) log 2 logdetl nrθ π −= − + Ω + Ωw w  (2.12) 

To evaluate (2.12) it is most economical to calculate the Cholesky-factorization Ω = LLT exploiting the 
block-band structure and subsequently determine z = L–1w using forward substitution. Then the log-
likelihood function will be given by  

 T1
2

( ) ( log 2 2 log )i iil nr lθ π= − + +Σ z z .  (2.13) 

We remark that the exposition in [Brockwell and Davis 1987] is significantly different from ours. They 
talk of the innovation algorithm but it turns out that the actual calculations are identical to the Cholesky 
decomposition described here. 

2.3  Operation count for complete data 

Let h = max(p, q) and assume that q > 0 (see Section 3.4 for the q = 0 case). Given x it takes 2 ( )r p n p−  
multiplications to calculate w. Determining the Cj’s for j ≤ q, Gj’s and Wi’s with (2.7), (2.8) and (2.9) 
costs about 3 2 2(min( , ) 2 )r p q q+  multiplications and solving the system (2.10) takes roughly r6p3/3 
multiplications. The cost of the Cholesky-factorization of Ω will be about 3( ) 6rh  multiplications for 
the upper left partition and 3 2( )( 2 7 6)r n h q− +  for the lower partition. Finally, the multiplication 
count for the forward substitution for z is about 2 2( 2 ( 2 )( ))r h p q n h+ + − . 
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To take an example of the savings obtained by using (2.13) rather than (2.12) let p = q = 3, r = 8 and n = 
1000. Then Cholesky-factorization of S will cost 80003/6 ≈ 8.5·1010 multiplications (and take about 7 
min. on a typical Intel computer) but calculation with (2.13), including all the steps leading to it, will 
take 4.0·106 multiplications (and take 0.02 s). 

3.   MISSING VALUE CASE 

3.1  Likelihood evaluation via the Sherman-Morrison-Woodbury formula 

We now consider the economical evaluation of (2.4) in the presence of some missing values. Consider 
first the term T 1

o o o o o( ) ( )S−− −x µ x µ . Let Ω, Λ and S be obtained from Ω, Λ and S by placing rows and 
columns m1,…, mM after the other rows and columns and partition them as follows (with Ωo, Λo and So 
being N × N, and Ωm, Λm and Sm being M × M): 

 o om o om o om

mo m mo m mo m

,  ,  and 
S S

S
S S

Ω Ω Λ Λ     Ω = Λ = =     Ω Ω Λ Λ     
. 

By the definition of w, Ω = ΛSΛT and therefore 

 T T T T
o o o o o om om om mo o om m omS S S SΩ = Λ Λ + Λ Λ + Λ Λ + Λ Λ . (3.1) 

Λo is obtained from Λ by removing rows and corresponding columns, and it is therefore an invertible 
lower band matrix with unit diagonal and bandwidth at most rp, and Ωo is obtained from Ω by removing 
rows and corresponding columns, so it is also a band matrix and its triangular factorization will be eco-
nomical. It is thus attractive to operate with these matrices rather than the full matrix So. Defining  

 T
o o o oSΩ = Λ Λɶ  (3.2) 

and o o o( )= Λ −w x µɶ  we have T 1 T 1
o o o o o o o o( ) ( )S− −− − = Ωx µ x µ w wɶɶ ɶ . Also, from (3.1) and (3.2) 

 T T T T
o o o om om om om o om m omS S SΩ = Ω − Λ Λ − Λ Λ − Λ Λɶ , (3.3) 

(keep in mind that S is symmetric). The matrices omS , omΛ  and o omS Λ   are N M× , so if the number of 
missing values, M, is (considerably) smaller than the number of observations, N, then (3.3) represents a 
low rank modification of Ωo. This invites the use of the Sherman-Morrison-Woodbury (SMW) formula 
[Sherman and Morrison 1950; Woodbury 1950; c.f. Golub and Van Loan 1983]. To retain symmetry of 
the matrices that need to be factorized, (3.3) may be rewritten as: 

 1 T 1 T
o o m mUS U VS V− −Ω = Ω + −ɶ  (3.4) 

where U = o omSΛ  and o om om mV S S= Λ + Λ . It turns out that U is generally a full matrix but V is sparse, 
and it will transpire that it is possible to avoid forming U.  

To obtain V economically, select the observed rows and missing columns from ΛS. From (2.5), (2.6) 
and proceeding as when deriving (2.10) the following block representation of ΛS for the case q > p is 
obtained: 
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T T
0 1 1

T T
1 0 1

1 0 1 1

1

0

n

p n p

p n p

q

q

S S S

S S S S

G G G G G
S

G

G
G G

−

− −

− − + +

−

 
 
 
 
 

Λ =  
 
 
 
 
  

⋯

⋮⋱⋮

⋯ ⋯

⋯ ⋯

⋮ ⋱ ⋮

⋮

⋱ ⋱

⋯

. 

For q ≤ p the upper partition is the same but the lower partition is: 

 

0 1

0

q n p

q

G G G

G G

− + + 
 
 
 
  

⋯ ⋯

⋱ ⋱ ⋮

⋱ ⋱ ⋮

⋯

. 

For 1 1,...,p nS S+ − , multiply (2.1) from the right with T( )t j− −x µ  for j = 1p + ,…, 1n −  and take expecta-
tions (as when deriving (2.10)), giving  

 1 1 2 2j j j p j p jS A S A S A S G− − −= + + + +…   (3.5) 

with Gp = 0 for p > q. The Gj for negative j may be obtained using: 

 T T T
1 1j j j q j qG C B C B C− + += + + +…  

where the Ci’s are given by the recurrence (2.7). 

From (2.10) and (3.5) it follows that blocks (i, j) with i > j + q of ΛS are zero, giving almost 50% spar-
sity. In practice the missing values will often occur near the beginning of the observation period and 
this implies that V will be sparser still. To take an example, if q = 1, r = 2, n = 6 and m = (2, 3, 4, 5, 9) 
then the sparsity pattern of V will be: 

 

× × × × × 
× × × × 

× × × × ×
 × 

 

The SMW formula applied to (3.4) gives 

 1 1 1 1 T 1
o o o o

ˆ ˆ ˆVQ V− − − − −Ω = Ω + Ω Ωɶ   

where 

 1 T
o o m

ˆ US U−Ω = Ω +  (3.6) 

and Q is the M × M matrix T 1
m o

ˆS V V−− Ω . Moreover, if R is the M × M matrix T 1
m oS U U−+ Ω  then (again 

by the SMW formula):  

 1 1 1 1 T 1
o o o o

ˆ UR U− − − − −Ω = Ω − Ω Ω .  

If LR is the Cholesky factor of R and K = 1 T 1
oRL U V− −Ω  it follows that Q = T 1 T

m oS V V K K−− Ω + . The first 
method that springs to mind to evaluate T 1

oV V−Ω  efficiently is to Cholesky factorize T
o LLΩ = , use for-

ward substitution to obtain ̂V  = 1L V−  and form Tˆ ˆV V . However, with this procedure V̂  will be full and 
the computation of Tˆ ˆV V  will cost ( 1) 2NM M +  multiplications. In contrast, if an LTL-factorization of 
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Ωo is employed instead of Cholesky factorization the sparsity of V will be carried over to ̂V  with large 
potential savings. This is a crucial observation because, with many missing values, multiplication with 
V̂  constitutes the bulk of the computation needed for the likelihood evaluation. 

Thus the proposed method is: LTL-factorize T
o o oL LΩ = , and back-substitute to get T

oV̂ L V−=  and 
T

om o om
ˆ L−Λ = Λ , making use of known sparsity for all calculations (the sparsity structure of omΛ̂  will be 
similar to that of ̂V). With VR  = Tˆ ˆV V , RΛ = T

om om
ˆ ˆΛ Λ  and P = T

om
ˆ V̂Λ  (again exploiting sparsity) we find 

that R = Sm + RV + SmRΛSm − SmP − PTSm (all matrices in this identity are full M × M), K = 1( )R VL R P− −  
and Q = T

m VS R K K− + . Let further LQ be the Cholesky factor of Q, 1
o o oˆ L−=w wɶ , u = 

1 T T
o m om o

ˆ ˆˆ ˆ( )RL V S− − Λw w  and 1 T T
o

ˆ ˆ( )QL V K−= −v w u . A little calculation then gives: 

 T 1 T T T
o o o o o o oˆ ˆ( ) ( )S−− − = − +x µ x µ w w u u v v. 

Now turn attention to the other nontrivial term in (2.4), ologdetS . From det( )I AB+  = det( )I BA+  (see 
Appendix D) we get 1 Tdet( )X AY A−±  = 1 T 1det det det( )X Y X A Y A− −± . From (3.3), (3.6) and the defi-
nition of LQ, odetΩɶ  = 1 T

m
ˆdet( )VS V−Ω −  = 1 T 1

o m m o
ˆ ˆdet det det( )S S V V− −Ω − Ω  = 1 2

o m
ˆdet det det( )QS L−Ω . 

Similarly, o
ˆdetΩ  = 1 T

o mdet( )US U−Ω +  = 1 T 1
o m m odet det det( )S S U U− −Ω + Ω  = 1 2

o mdet det det( )RS L−Ω . 
Since det Λo = 1 it now follows from (3.2) and the definition of Lo that 

 o o mlogdet 2(logdet logdet logdet logdet )R QS L L L S= + + −  

3.2  Estimating missing values and shocks 

An obvious estimate of the vector of missing values is its expected value, m m oE( | , )E θ=x x x , where θ  is 
the maximum likelihood estimate of the parameters (this is also the maximum likelihood estimate of 
xm). Since Smo = m ocov( , )x x  and So = var(xo), 

 1
m mo o o o m( )E S S−= − +x x µ µ . 

(where mµ  consists of missing components of µ). Similarly, the maximum likelihood estimate of the 
shocks εt is given by oE( | , )E

t t θ=ε ε x . For 0 ≤ j ≤ q, Tcov( , )t t j jC+ =ε x  and εt is independent of t j+x  for 
other j. It follows that εE = 1

o o o( )CS− −x µɶ  where εE is the column vector with 1 ,...,E E
nε ε  and Cɶ  is obtained 

by removing missing columns from the nr × nr matrix: 

 T T
0 1

0
T

T
0 1

0

q

q

C C C

C

C

C C
C

 
 
 
 
 
 
 
  

⋯

⋱

⋱

⋱ ⋮

. 

With some calculation one may verify that given the matrices and vectors defined in the previous sec-
tion, the estimates of xm and ε may be calculated economically using: 

 m m 2 m
E S= +x v µ , 

and 

 T T
o o o 1 2 om m 2

ˆ ˆˆ( ( ) )E C L V S−= Λ + − − Λε w v v vɶ  

where T
1 QL−=v v and T

2 1( )RL K−= +v u v . 

3.3  Simplification for pure autoregressive models 

If q is zero and there are no moving average terms considerable simplification results, and it is worth-
while to review this case. Since t t=y ε  for all t the Gj and Wj matrices will all be zero apart from G0 and 
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W0, which are both equal to Σ. The upper left S-partition of Ω in (2.11) will be unchanged, the G-
partition will be zero and the lower-right W-partition will be a block diagonal matrix where each block 
is equal to Σ. For the missing value case, Ωο needs to be Cholesky factorized. It is obtained by remov-
ing rows and corresponding columns from Ω, so that its upper left partition is the same as in the general 
ARMA case, but the lower right partition is a block diagonal matrix: 

 

o1

o

o,n p

2

−

Σ 
 Σ
 
 

Σ  

⋱
 

where Σoi contains rows and columns of Σ corresponding to the observed indices at time p + i. To obtain 
Lo it is therefore sufficient to Cholesky factorize Σοι for each missing pattern that occurs, which in all 
realistic cases will be much cheaper than Cholesky factorizing the entire Ωο-matrix. 

3.4  Operation count for missing value likelihood 

Finding the Cj’s, Gj’s and Wj’s and Sj’s will be identical to the complete data case. The Cholesky fac-
torization of Ωo costs at most 2 2( 2 7 6)r N q +  multiplications (unless the upper left partition is unusu-
ally big). Forming ΛS costs  about 3(2 )( )r p q n p+ −  multiplications. The cost of forming omΛ̂  and V̂  
using back substitution depends on the missing value pattern. In the worst case, when all the missing 
values are at the end of the observation period the cost is approximately rqNM multiplications for each, 
since the bandwidth of both is ≤ rq, but typically the missing values will be concentrated near the be-
ginning and the cost will be much smaller. The cost of RV, RΛ and P also depends on the missing value 
pattern. In the worst case the symmetric RV and RΛ cost 2 2NM  multiplications each and P costs 2NM , 
but the typical cost is again much smaller (for example, with the “miss-25” pattern of Table I the cost is 
5 times smaller). Next follows a series of order 3M  operations: SmP costs 3M , R costs 33 2M , K and Q 
cost 3 2M  multiplications each. Finally the Cholesky factorizations for each of LR, LQ and mdetS  cost 

3 6M  multiplications. The multiplication count of other calculations is negligible by comparison unless 
M is very small. When n and M are large compared to p, q and r the governing tasks will cost 

2 22 4fNM M+  multiplications where f  is the savings factor of having the missing values early on. 

In the pure autoregressive case the Cj’s, Gj’s and Wj’s come for free, but solving the vector-Yule-
Walker equations costs the same as before. The cost of Cholesky factorizing Ω will usually be negligi-
ble, and much cheaper than when q > 0. When nothing is missing, it is the number rpN of multiplica-
tions to find w and the number 2rpN  of multiplications of the forward substitution for z that govern 
the computational cost. On the negative side, there will be no savings in the governing tasks when M 
and n are large. 

4.   DERIVATIVE OF THE LIKELIHOOD FUNCTION 

Several different matrix operations that need to be differentiated may be identified. Matrix products are 
used in the calculation of w and the covariance matrices Ci, Gi and Wi, Cholesky factorization gives Ω, 
linear equations are solved to obtain the Si-matrices and z, and lastly one must differentiate log det L. In 
the missing value case, several more matrix products, Cholesky factorizations, linear equation solutions 
and determinants occur.  

Nel [1980] reviews and develops matrix differentiation methods of scalar and matrix-valued functions 
with respect to scalars and matrices. He discusses three basic methods, and concludes that a method that 
he calls the element breakdown method is best for general purposes, and this is the approach we take. 
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For the change of variables described in Section 4.3 we also make use of his vector rearrangement 
method. 

Since there is no commonly used notation for differentiation with respect to matrices, we provide the 
needed notation and formulae in Appendix A for clarity and ease of reference. 

4.1  Derivatives of the r × r covariance matrices 

The matrices Ci, Gi and Wi are all simple matrix-polynomials in the parameter matrices (the Ai’s, Bi’s 
and Σ), and it is not difficult to verify that they can all be obtained by applying a sequence of operations 
of the following types: 

 
T

T

F F XY
F F XY
F F XG
F F XG

← +
← +
← +
← +

 (4.1) 

where F is the polynomial, X and Y are independent variables (parameter matrices), and G is also a 
polynomial obtained through such steps. Initialization can be either F O←  (the r  × r zero matrix) or 
F X←  (one of the parameter matrices). The operations (4.1) can all be differentiated using (A.3) and 
(A.4) as detailed in the following table, where X, Y and Z are different parameter matrices: 

Corresponding change to: 
Change to F: [ ] lcdF dZ  [ ] lcdF dX  [ ] lcdF dY  

XY+  0 T
l cY+e e  T

l cX+ e e  
TXY+  0 

T T
l cY+e e  T

c lX+ e e  

XG+  [ ] lcX dG dZ+  T[ ] lc l cX dG dX G+ + e e   
TXG+  T[ ] lcX dG dZ+  T T T T[ ] lc l cX dG dX G+ + e e   

For the first few applications of (4.1) the derivatives will be sparse, and for small p, q and/or n it may be 
worthwhile to exploit this sparsity. There are 5 possible sparsity patterns for dF dX:  

1) all elements are zero 
2) in the (i, j)-block only the (i, j)-element is nonzero 
3) only the i-th row in the (i, j)-block is nonzero 
4) only the j-th column in the (i, j)-block is nonzero 
5) the matrix is full 

As an example, let p = 1, q = 2 and consider the differentiation of C0, C1, and C2. These matrices are 
given by C0 = Σ, C1 = A1Σ + B1Σ (the first operation of (4.1) twice) and C2 = A1C1 + B2Σ (the third op-
eration of (4.1) followed by the first operation). Treating Σ as non-symmetric to begin with, one ob-
tains: 

 

T T
0 1 1 1 2 1 1 1 1 2

T T
0 1 1 1 2 1 1 1 1 2

T
0 2 1 2 2 2

T T
0 1 1 1 2 1 1

0 [ ] [ ] [ ]

0 [ ] [ ] [ ]

0 0 [ ]

[ ] [ ] ( ) [ ] [

lc l c lc lc l c

lc l c lc lc l c

lc l c

lc l c lc l c lc

dC dA dC dA dC dA A dC dA C

dC dB dC dB dC dB A dC dB C

dC dB dC dB dC dB

dC d dC d A B dC d A dC d

= = Σ = +
= = Σ = +
= = = Σ

Σ = Σ = + Σ = Σ

e e e e

e e e e

e e

e e e e T
2] lc l cB+ e e

 

Here all the sparsity patterns are represented and the only full matrices are the derivatives of C2 with 
respect to A1 and B1. Finally, the derivatives with respect to the symmetric Σ are adjusted using (A.7). 

Now we turn attention to the vector-Yule-Walker equations (2.10). Differentiating through these with 
respect to a parameter gives: 
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( ) ( )

( ) ( )
T T

, 1 1, 0, 1 1, ,

T T
1, 1 , 0 1, 1

( ) ( )

 for 0, , .

j lc j lc j lc j lc p p j lc

lc lc j j lc j lc p p j

S A S A S A S A S

G A S A S A S A S j p

− + −

− + −

′ ′ ′ ′ ′− + + − + +

′ ′ ′ ′ ′= + + + + + + =

… …

… … …
 (4.2) 

This set of equations has exactly the same coefficient matrix as the original equations (2.10), but a dif-
ferent right hand side which can be obtained using the formula for ( )d XA dX in (A.4) (sparsity can be 
exploited). It can therefore be solved to obtain the derivatives of S0,…, Sp using the same factorization 
as was used to obtain the Sj. 

4.2  Remaining steps in likelihood gradient calculation 

It follows from (4.1) that the derivative of yt (and thereby wt) with respect the Bj’s and Σ is zero, and 
(A.5) gives its derivative with respect to the Aj’s and µ. For complete data, the next needed derivative is 
that of L, the Cholesky factor of Ω. As the derivative of all the submatrices of Ω have been found, this 
may be obtained using (A.10) and (A.11), making necessary modifications to take advantage of the 
block-band structure of Ω. To finish the calculation of the gradient of l(θ) in (2.13), use Lz = w together 
with (A.8) to differentiate z, followed by (A.6) to differentiate zTz, and finally use (log )iid l dX  = 
(1 )ii iil dl dX . 

In the missing value case, the operations that must be differentiated are the same: matrix products, Cho-
lesky factorization, forward substitution, and determinants of lower triangular matrices, and there is no 
need to give details of all of them. They have been implemented in [Jonasson 2006] by writing func-
tions that implement (A.3), (A.9), (A.10) and (A.11). 

4.3 Operation count for gradient calculation and possible savings 

Inspection of the formulae in appendix A for the derivatives of the most costly operations, namely ma-
trix products, Cholesky factorization and forward substitution, shows that they all cost approximately 
2nθ times more multiplications than the original operations being differentiated, where nθ = 

2( ) ( 1) 2r p q r r+ + +  is the total number of model parameters excluding µ which does not enter the 
costly operations. The gradient calculation will therefore usually dominate the total work needed for 
likelihood maximization and this is confirmed by the numerical results of Section 5. 

One way of trying to reduce this work would be to use numerical gradients in the beginning iterations, 
when the accuracy of the gradients is not as important as closer to the solution. Using forward differ-
encing, ( ) ( )k lθ θ∂ ∂  = ( )( ) ( )kl lθ δ θ δ+ −e , the gradient can be approximated with n

θ
 function calls, 

giving a potential saving of factor 2. However, judging by the results shown in Table II in the next sec-
tion, it seems that this technique is not so useful. 

Another possibility of speeding the computations exists when estimating seasonal models, structural 
models, or various models with constraints on the parameters such as distributed lag models. Without 
entering too much into detail, such models may often be described by writing θ as a function of a re-
duced set of parameters, ( )gθ φ= , where 

nφφ ∈R  has (often much) fewer components than θ. The log-
likelihood for a given set of parameters φ is ( ( ))l g φ , and the corresponding gradient is ( ( )) ( )gl g Jφ φ′ , 
where Jg is the n nθ φ×  Jacobian of the transformation g. The parameter matrices may be sparse and it 
would be possible to exploit the sparsity, but big savings are also possible by multiplying with the Jaco-
bian earlier in the computation of the gradient, instead of after evaluating ( )l θ′ . A convenient place to 
make the change of variables is after the differentiation of w, the Cj’s, Gj’s and Wj’s, and the gj’s in the 
right-hand-side of (B.3). The costly derivatives come after this, so the potential saving approaches a 
factor of n nθ φ . In [Jonasson 2006] this course of action has been implemented, and the likelihood rou-
tines have Jg as an optional parameter. 
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5.  NUMERICAL EXPERIMENTS 

The methods described in Sections 2−4 have been implemented in Matlab as described in the compan-
ion report [Jonasson 2006]. The Matlab package includes a function to simulate time series as described 
in Appendix C below. This function has been used to generate test data with several models, missing 
value patterns and dimensions, and these data have been used to test and time the likelihood evaluation 
functions. The tests were run using Matlab 7.1 with its default Intel Math Kernel Library (MKL) on a 
1600 MHz Pentium M processor. 

The primary use of likelihood evaluation is to estimate model parameters by maximizing the likelihood 
function. The authors have been experimenting using the BFGS method with line search, To take two 
examples, estimating a VMA(1) model with r = 4, n = 100 and missing value pattern “miss-5a” from 
Table I (giving 30 model parameters) took 205 function evaluations and 48 gradient evaluations, and a 
VAR(3) model with r = 4, n = 500 and missing value pattern “miss-5a” (giving 78 parameters) took 393 
function evaluations and 73 gradient evaluations. These figures together with the run times reported 
below indicate what to expect in terms of run time for parameter estimation. For real problems of this 
size it is however likely that a reduced set of parameters would be used, and then the savings described 
at the end of Section 4.3 would come into effect. 

5.1  Timing of function evaluations 

Table I shows the run time in seconds required for one function evaluation for each combination of 
model, missing value pattern, and dimensions. 

Table I — Run time in seconds per one function evaluation. The missing value patterns 
shown in the “data” column are a) complete data; b) miss-5a: 5% missing scattered in first 
quarter of each series; c) miss-5b: 5% missing scattered throughout entire series; d) miss-
25: 25% missing — half the series have the first half missing. 

Dimension r = 2 Dimension r = 4 Dimension r = 8 

Model Data n = 100 n = 500 n = 100 n = 500 n = 100 n = 500 

VAR(1) complete 0.01 0.02 0.01 0.03 0.01 0.03 

 miss-5a 0.02 0.10 0.03 0.24 0.05 0.85 

 miss-5b 0.03 0.24 0.04 0.58 0.10 2.21 

 miss-25 0.04 0.73 0.08 4.07 0.35 28.17 

VMA(1) complete 0.04 0.19 0.04 0.21 0.05 0.24 

 miss-5a 0.06 0.29 0.06 0.47 0.09 1.07 

 miss-5b 0.07 0.43 0.08 0.86 0.15 2.78 

 miss-25 0.08 1.00 0.12 4.41 0.39 28.34 

VAR(3) complete 0.01 0.03 0.01 0.03 0.04 0.06 

 miss-5a 0.03 0.11 0.04 0.24 0.08 0.88 

 miss-5b 0.03 0.19 0.05 0.55 0.12 2.19 

 miss-25 0.04 0.73 0.09 4.09 0.37 27.90 

VARMA(2,2) complete 0.05 0.25 0.06 0.27 0.08 0.34 

 miss-5a 0.07 0.33 0.08 0.51 0.13 1.24 

 miss-5b 0.08 0.57 0.10 1.02 0.19 2.98 

 miss-25 0.09 1.02 0.14 4.47 0.44 28.64 

For the pure VAR models the simplifications of Section 3.3 are realized, and for complete data the solu-
tion to the vector-Yule-Walker equations and the calculation of w and z will govern the computation. 
For VMA and VARMA models these calculations still make up a portion of the total, but the factoriza-
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tion of Ω is now more expensive and accounts for most of the difference between the complete data 
execution times of the VAR(1) and VMA(1) models shown in Table I. 

Missing values add gradually to the cost, and when there are few missing values the execution time is 
only marginally greater than for complete data. When more values are missing the savings in the VAR 
model are gradually eradicated. Now the approximately order 3M  operations (independent of p and q) 
involving the profile-sparse N M×  matrices ̂V  and omΛ̂ , and the full M M×  matrices Sm, RΛ, RV, P, Q, 
R and K become more and more important. If these were the only computations one would expect a fac-
tor 125 difference between n = 100 and n = 500, but because of other calculations that do not depend on  
M the largest factor in the table is 80 (for VAR(1), miss-25, r = 8). 

Another feature shown by the table is the difference between miss-5a and miss-5b, corroborating the 
discussion between equations (3.5) and (3.6) in Section 3.1. This ranges from a factor of 1.26 to a factor 
of 2.61, the average being 1.89. 

5.2  Timing of gradient evaluations 

Timing experiments for gradient evaluation were also carried out. It seems most relevant to compare 
with the cost of numerical differentiation. Therefore Table II shows the factor between the time of one 
gradient evaluation and m function evaluations. Where a table entry is less than one, the analytical gra-
dients take less time than (maybe inaccurate) forward-difference numerical gradients, and where it is 
less than two the analytical gradients are cheaper than central-difference numerical gradients. The aver-
age of the 70 factors shown in the table is 0.74. The table is less extensive than Table I because the 
computer used did not have enough memory to time the largest models. The memory was sufficient to 
time some runs not shown in the table, and the results were comparable to the figures shown (the aver-
age factor for 11 cases not shown in the table was 0.41). 

Table II  — Execution time for one gradient evaluation divided by time for m 
function evaluations where m is the number of model parameters. See caption 
of Table I for explanation of the “Data” column. 

Dimension r = 2 Dimension r = 4 r = 8 

Model Data n = 100 n = 500 n = 100 n = 500 n = 100 

VAR(1) complete 0.40 0.47 0.15 0.17 0.09 

 miss-5a 0.56 0.78 0.35 0.97 0.66 

 miss-5b 0.58 0.66 0.50 1.02 0.77 

 miss-25 0.83 2.04 1.33 2.22 2.11 

VMA(1) complete 1.16 1.57 1.06 1.08 1.12 

 miss-5a 0.63 0.68 0.33 0.66 0.52 

 miss-5b 0.67 0.76 0.42 0.74 0.65 

 miss-25 0.71 1.39 1.02 2.01 1.92 

VAR(3) complete 0.23 0.26 0.10 0.11 0.05 

 miss-5a 0.35 0.62 0.30 1.09 0.50 

 miss-5b 0.38 0.82 0.42 1.05 0.72 

VARMA(2,2) complete 1.10 1.19 1.07 1.17 1.08 

 miss-5a 0.34 0.45 0.27 0.66 0.55 

 miss-5b 0.36 0.51 0.38 0.75 0.74 

The relative cost of gradient evaluation is somewhat lower than expected at the outset, as the derivative 
of many basic linear algebra operations with the formulae of Appendix A cost 2m times more than the 
operations themselves. This could be because the evaluation of the gradient involves larger matrices, 
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thus making better use of the Intel MKL. The variable power of the MKL explains partly the variability 
of the numbers in Table II, but the rest of the disparity probably occurs because different derivative rou-
tines make unlike use of the power of Matlab. 

APPENDICES 

A.  DIFFERENTIATION WITH RESPECT TO MATRICES 

Many of the identities that follow may be found in [Nel 1980]; see also [Golub and Van Loan 1983]. If f 
is differentiable function on the set of M × N matrices, f : M N× →ℝ ℝ, then the N × M matrix with (i, j)-
element ijf x∂ ∂  will be denoted by ( )f X′  or df dX. If f is a vector valued function of a matrix, f: 

M N m× →ℝ ℝ  then d dXf  or ( )X′f  denotes the block matrix: 

 
11 1

1

N

M MN

x x

x x

∂ ∂ ∂ ∂ 
 
 ∂ ∂ ∂ ∂ 

f f

f f

⋯

⋮ ⋮

⋯

,  

where each block is an m-dimensional column vector (the k-th block row is actually the Jacobian matrix 
of f with respect to the k-th row of X). If F is matrix valued, F : M N m n× ×→ℝ ℝ , then dF dX or ( )F X′  
denotes the M × N  block-matrix 

 
11 1

1

N

M MN

F x F x

F x F x

∂ ∂ ∂ ∂ 
 
 ∂ ∂ ∂ ∂ 

⋯

⋮ ⋮

⋯

 . (A.1) 

The (l, c)-block of (A.1) will be denoted by lcF ′ or [ ]lc
dF dX  and it is an m × n matrix with (i, j  )-element 

equal to ( )ij lcf X x∂ ∂ . It is now easy to verify, that if a is a scalar and Fɶ  is another matrix function with 
same dimensions as F, then ( )d aF F dX adF dX dF dX+ = +ɶ ɶ . We also have (where el is the l-th unit 
vector): 

 [ ] T
l clc

dX dX = e e , (A.2) 

and, if G is another matrix function G: M N n k× ×→ℝ ℝ , then 

 [ ]( ) lc lclc
d FG dX FG F G′ ′= + . (A.3) 

A.1  Differentiation of matrix products 

The following special cases are all consequences of (A.2) and (A.3): 

 

T T

T T

T T

[ ]

[ ( ) ] [ ( ) ]

[ ( ) ] [ ( ) ]

[ ( )) ] [ ( ) ]

lc c l

lc l c lc l c

lc lc lc lc

lc lc l c lc lc l c

dX dX

d AX dX A d XA dX A

d AF dX AF d FA dX F A

d XF dX XF F d FX dX F X F

=
= =

′ ′= =
′ ′= + = +

e e

e e e e

e e e e

 (A.4) 

where, in each case, A is a constant matrix with dimensions compatible with those of F and X. When A 
is actually a vector, A = a, we have: 

 
1

T( )

M

d X dX
 
 =
 
 

e
a a

e
⋮ , (A.5) 
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and similarly, T T T
1( ) / [ ]Nd X dX=a a e e⋯ . If n = 1 and F is vector-valued, T

1[ , , ]mF f f= =f … , the l-th 
block-row of ( )d X dXf  is T

1[ ]l lN lX x x∂ ∂ ∂ ∂ +f f e f…  and the c-th block-column of T( )d X dXf  is 
T T

1[ ]c Mc cx x X∂ ∂ ∂ ∂ +f f fe… . Furthermore: 

 T T[ ( ) ] 2 ( )lc lcd dX x= ∂ ∂f f f f  (A.6) 

A.2  Derivative with respect to a symmetric matrix 

When X is square and symmetric and its upper triangle duplicates its lower triangle, the correct deriva-
tives are obtained by using the full X in (A.4), and assigning in the final result: 

 (l, c)-block ← (l, c)-block + (c, l)-block  (for all l, c with l > c) (A.7) 

(only the lower block-triangle is relevant). To take an example let n = 2, x21 = x12 and consider the cal-
culation of 2

21dX dx . By (A.2) and (A.4), 

 2
21dX dx  = T T

2 1 2 1X X+e e e e  = 12

22 11 12

0x
x x x
 
 + 

 and 2
12dX dx  = T T

1 2 1 2X X+e e e e  = 21 11 22

210
x x x

x
+ 

  
. 

Adding these matrices and letting x denote the duplicated element in X (i.e. x = x12 = x21) gives the ma-
trix: 

 11 22

11 22

2
2

x x x
x x x

+ 
 + 

 

which is easily verified to be the derivative of 2X  with respect to x. It would be possible to make the 
calculation of derivatives with respect to symmetric matrices more efficient by developing appropriate 
formulae analogous to (A.4), but the complications would probably be significant and the pay-back 
marginal in the present setting. 

A.3  Derivative of the solution to linear equations 

If the vector y is given by Ay = b then it follows from (A.3) that ( )lc lc lcA x A x′∂ ∂ + = ∂ ∂y y b  and 

lcx∂ ∂y is therefore given by solving the set of linear equations: 

 ( )lc lc lcA x x A′∂ ∂ = ∂ ∂ −y b y. (A.8) 

We note that the factorization of A used to obtain y can be reused to obtain its derivative. Similarly, if 
the matrix F is given by AF = B then lcF ′ may be obtained by solving: 

 lc lc lcAF B A F′ ′ ′= − . (A.9) 

A.4  Derivative of Cholesky factorization 

If S = LLT is the Cholesky factorization of a symmetric matrix S it follows from (A.3) that 
T T( )lc lc lcS L L L L′ ′ ′= + . If lcS′ , L and lcL′  are partitioned as follows for a given k 

 
1
T

2 3

lc kk

S

S s
S S

′ 
 ′ ′ ′=
 

′  

s
t

, 
1
T

3 2

kk

L

L l
L L

 
 =
 
  

u
v

 and 
1
T

3 2

lc kk

L

L l
L L

′ 
 ′ ′ ′=
 

′ ′ ′  

u
v

 

then T2( )kk kk kkl l s′ ′ ′+ =u u  and 1 1L L′ ′ ′+ =u u s  so that 

 1 1L L′ ′ ′= −u s u (A.10) 

and 
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 T( 2 )kk kk kkl s l′ ′ ′= − u u . (A.11) 

These relations may be used iteratively for k = 1, 2, … to calculate lcL′  line by line, with ′u  obtained 
from (A.10) with forward substitution. 

B.  SOLUTION OF THE VECTOR YULE-WALKER EQUATIONS 

In this appendix, we consider the solution to the system of equations (2.10). Our approach closely re-
sembles that given by [Mauricio 1997, eq. (6)] and in particular the system we solve is of the same or-
der, namely 2 ( 1) 2r p r r− − . However, Mauricio does not provide a derivation of the system, our nota-
tion is significantly different from his, and lastly the system solved is not exactly the same (although it 
is equivalent). Therefore, we provide an explicit derivation in this appendix.  

Isolating Sp in the last equation of (2.10) and substituting into the first equation gives 

 T T T T T T T T T
0 1 1 1 1 0 1 1 1 1 0( ) ( )p p p p p p p p p pS A S A S A S A A S A A S A G A G− − − −− + + − + + + = +… …  (B.1) 

It is convenient to make use of the Kronecker product (A B⊗  is a block matrix with (i, j)-block equal to 
aijB), the notation vec A for the vector consisting of all the columns of a matrix A placed one after an-
other, and vech A for the columns of the lower triangle of A placed one after another. A useful property 
here is Tvec( )ASB  = ( ) vecB A S⊗ . Let si = vec Si, gi = vec Gi, and denote the k-th column of Ai with aik 
and the k-th unit vector with ek. Because S0 is symmetric, taking the transpose of (B.1) gives with this 
notation: 

 T
0 1 1 1 1 1 0( ) ( ) ( ) vec ( )p p p p p p p p pI A A A I A A A I A A G A I− −− ⊗ − ⊗ + ⊗ − − ⊗ + ⊗ = + ⊗s s s g…  (B.2) 

Furthermore, the equations with right hand side G1,…, Gp–1 in (2.10) may be written as 

 

1 1 0 2 1 1 1

2 1 1 2 0 3 1 2 2

1 1 2 1 0 1 1

ˆ

ˆ ˆ

ˆ ˆ

p p

p p

p p p p p

A A A

A A A A

A A A

−

−

− − − −

− − − − =
− − − − − =

− − − − =

s s s s g

s s s s s g

s s s s g

ɶ ɶ…

ɶ ɶ…

⋮

ɶ…

 (B.3) 

where ˆiA  = iI A⊗  and iAɶ  is also an r2 × r2 sparse block-matrix (which cannot be represented using ⊗): 

 T T
1 1 1

T T
1

i i ir

i r ir r

A  =
 
 
  

a e a e

a e a e

ɶ ⋯

⋮ ⋮

⋯

  . 

Together (B.2) and (B.3) provide pr2 linear equations in the elements of s0,…, sp – 1, but one can (and 
should) take into account that S0 is symmetric and s0 contains therefore duplicated elements. Let 0Ŝ  be a 
lower triangular matrix such that T

0 0 0
ˆ ˆS S S= +  (the diagonal elements of 0Ŝ  are halved compared with 

S0) and let 0ŝ  = vech S0 (the ( ( 1) 2r r + )-vector obtained by removing the duplicated elements from s0). 
Let also J be an r2 × ( 1) 2r r +  matrix such that post-multiplication with it removes columns r + 1, 2r + 
1, 2r + 2, 3r + 1, 3r + 2, 3r + 3‚ …, r2 – 1. Then a term of the type 0

ˆ
iAs  in (B.3) may be rewritten: 

 T T
0 0 0 0 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ( ) vec( ) vec( ) ( )vec ( )i i i i i i i i iA I A A S I A S A S A A S A A J= ⊗ = = + = + = +s s sɶ ɶ , (B.4) 

For (B.2) it is not difficult to verify that 

 0( )p pA A⊗ s  = 0
ˆ( ) vec( )p p p pA A A A S⊗ + ɶ  = 0

ˆ ˆ( )p p p pA A A A J⊗ + sɶ , 
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and furthermore that 0 0
ˆvec( )D S=s  where D is diagonal with dii = 2 when i corresponds to a diagonal 

element in S0 (i.e. i = 1, r + 2, 2r +3, …); otherwise dii = 1. The matrix ˆ
p pA Aɶ  is a block-matrix with 

(i, j)-block equal to T
pj pia a . 

Finally, the upper triangle of (B.2) should be removed. These modifications result in 2 ( 1) 2r p r r− −  
equations in the same number of unknowns, the elements of 0ŝ , s1,…, sp; (B.2) becomes 

 ( ) ( )1T T T
0 01

ˆ ˆ( ) ( ) vec ( )
p

p p p p i p p i i p pi
J D A A A A J A I A A J G A I

−
−=

− ⊗ − − ⊗ + ⊗ = + ⊗∑s s gɶ  (B.5) 

and (B.3) is modified using (B.4). 

C.  TIME SERIES SIMULATION 

Simulation of VARMA time series has many applications e.g. to create test data for modelling methods, 
analyze such methods, and forecast with fitted models. Given values of εt, xt for 1, ,t h= …  where h = 
max( , )p q  one may draw εt from N(0,Σ) for t = 1, 2,h h+ + … and apply (2.2) and (2.1) to obtain simu-
lated values of xt for t > h. If the starting values are not given, one may start with any values, for exam-
ple zeros, and, after simulating, discard an initial segment to avoid spin-up effects. This is for example 
done in the routine arsim of [Schneider and Neumaier 2001]. For processes with short memory, this 
procedure works well and the discarded segment need not be very long, but for processes that are nearly 
non-stationary it may take a long time before they reach their long-term qualities, it is difficult to decide 
the required length of the initial segment, and the initial extra simulations may be costly. These draw-
backs may be avoided by drawing values to start the simulation from the correct distribution. 

Let x' = T T T
1( , , )hx x…  have mean µ' and covariance matrix S′, ε' = T T T

1( , , )hε ε…  have covariance matrix 
′Σ , and let C′ = cov(x', ε'). S′, ′Σ  and C′ are given with (2.7) and (2.8) and solution of the vector-Yule-

Walker equations (2.10) applying (3.5) if necessary, and µ' is the rh-vector T T T( , , )µ µ… . Starting values 
for x' may be drawn from N( , )′ ′Σµ , and starting values for ′ε  (that are needed if there are moving aver-
age terms) may be drawn from the conditional distribution of ′ ′ε | x , which is normal with expectation 

T 1( )C S−′ ′ ′−x µ  and covariance matrix T 1C S C−′ ′ ′Σ − . This conditional distribution may also be used to 
draw ′ε  when x1,..., xh are given and ε1,…, εh are unknown, for example when forecasting with a mov-
ing average model. This procedure has been implemented in [Jonasson 2006]. 

D.  DETERMINANT OF A LOW RANK UPDATE 

The economical evaluation of the determinant of the covariance matrix of the observations in the miss-
ing value case, described at the end of Section 3.1, is based on the following theorem. As we have been 
unable to locate a proof of this useful fact in the published literature, we include it here for complete-
ness. An immediate consequence of the theorem is that the determinant of a low rank update of an arbi-
trary matrix M may often be evaluated efficiently using Tdet( )M UV+  = T 1det det( )M I V M U−+ , in this 
way complementing the Sherman-Morrison-Woodbury formula. 

Theorem. If A is m n× , B is n m×  and Im and In are the m-th and n-th order identity matrices then 
det( )mI AB+  = det( )nI BA+ . 

Proof. Let C and D be m m×  and n n×  invertible matrices such that ( )0
0 0
kICAD=  and let 1 1D BC− −  = 

( )1 2

3 4

B B
B B

 be a partitioning with B1 a k k×  matrix. Then 



 

 19 

 

1 1 1 1 2

3 4

1 1 2

3 4

1 2 1
1

3

11 2

3 4

0
det( ) det

0 0

0
det( )det det

0 0

0
det det( ) det

0

0
det

0 0

k
m

k
m

k k
k

m k n k

k
n

B BI
I AB C C C D D C

B B

B BI
C I C

B B

I B B I B
I B

I B I

B B I
I D CC

B B

− − −

−

− −

−

   + = +       

   = +       

+ +   = = + =      

   = +      

1

det( ).n

D

I BA

− 
 
 

= +

 

The matrices C and D may, for example, be obtained from the singular value decomposition of A 
[Golub and Van Loan 1983]. 
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