ENGINEERING RESEARCH INSTITUTE
UNIVERSITY OF ICELAND

Efficient likelihood evaluation
for VARMA processes with
missing values

Kristjan Jonasson
Sebastian E. Ferrando

Report VHI-01-2006
Reykjavik, September 2006



Report VHI-01-2006, Reykjavik September 2006

Kristjan Jonasson. Efficient likelihood evaluatimn VARMA processes with missing values,
Engineering Research Institute, University of laélaTechnical report VHI-01-2006, September 2006

Kristjan Jénasson, Department of Computer Scigdfdarhagi 4, 1S-107 Reykjavik, Iceland. Email:
jonasson@hi.is.

Sebastian E. Ferrando, Department of MathematigstdRn University, 350 Victoria Street
Toronto, Ontario M5B 2K3. Email: ferrando@ryersan.c

The authors are responsible for the opinions egprem this report. These opinions do not necdgsapresent
the position of the Engineering Research Institutthe University of Iceland.

O Engineering Research Institute, University of &cel, and the authors.

Engineering Research Institute, University of Iceland, Hjardarhagi 4, 1S-107 Reykjavik, Iceland



CONTENTS

1. INTRODUCTION

2. NOTATION AND THE CHOLESKY DECOMPOSITION METHOD
2.1 Model notation
2.2 Likelihood evaluation for complete data
2.3 Operation count for complete data

3. MISSING VALUE CASE
3.1 Likelihood evaluation via the Sherman-Morriddieodbury formula
3.2 Estimating missing values and shocks
3.3 Simplification for pure autoregressive models
3.4 Operation count for missing value likelihood

4. DERIVATIVE OF THE LIKELIHOOD FUNCTION
4.1 Derivatives of the r x r covariance matrices
4.2 Remaining steps in likelihood gradient calaalat
4.3 Operation count for gradient calculation andgilde savings

5. NUMERICAL EXPERIMENTS
5.1 Timing of function evaluations
5.2 Timing of gradient evaluations

APPENDICES
A. Differentiation with respect to matrices
B. Solution of the vector Yule-Walker equations
C. Time series simulation
D. Determinant of a low rank update

ACKNOWLEDGEMENT

REFERENCES

10

11

12
12

13
13
14

15
15
17
18
18

19

19



AGRIP

I skyrslunni er sett fram lysing & adferd til pegsreikna fallsgildi og afleidu sennileikafalls ifywigurtimarod af
VARMA gerd (vector autoregressive moving averageddr meeligdgn vantar. Adferdin byggist & ad sambvin
svokallada Cholesky-pattunar-adferd fyrir VARMA sdaikafall pegar gogn eru heil og Sherman-Morrison
Woodbury formiluna. Lyst er hvernig na ma fram spéi pegar engir MA lidir eru i r6dinni og ennfremar
utskyrt hvernig meta ma gildi sem vantar og suéhl&darinnar. Skyrslunni lykur med lysingu a togulen
tilraunum sem gerdar hafa verid med Utfeerslu arédéfeum i Matlab-forritum. Forritin dsamt lysingunatkun
beirra eru i sérstakri skyrslu sem gefin er Gt d@atpessari. | vidaukum er sidan sagt fra diffrned tilliti til
fylkja, lausn vigur-Yule-Walker jafna, hermun VARMUkana, og ad lokum er s6nnud setning um fylkjaedor.

ABSTRACT

A detailed description of an algorithm for the exlon and differentiation of the likelihood furmi for
VARMA processes in the general case of missingeslis presented. The method is based on combihing t
Cholesky decomposition method for complete data WiRlikelihood evaluation and the Sherman-Morrison-
Woodbury formula. Potential saving for pure VAR geeses is discussed and formulae for the estimafion
missing values and shocks are provided. The reportludes with description of numerical resultsaated with

a Matlab implementation of the algorithm, whichiis a companion report. Differentiation with respéot
matrices, solution of vector-Yule-Walker equatiod®&RMA model simulation and the determinant of & lmank
update are discussed in appendices.



1. INTRODUCTION

A key aspect for the numerical treatment of aut@sgjve moving average (ARMA) processes is the
efficient evaluation of the likelihood function fdre parameters. It is necessary to treat the afagec-
tor-valued processes (VARMA) as they are the omeggiling in practice. There has been a large num-
ber of publications dealing with this subject, ghdre are a number of related approaches, some of
which will be mentioned in due time.

In order to make the results more relevant to pralcapplications it is important to study the mgem-

eral case of missing values. Evaluation of the igraf the likelihood function is also importawer fits
maximization using traditional numerical optimizatimethods. This report's main contribution is to
present formulae for the calculation of the likelild function and its gradient, both for the congplet
data case, and when there are missing values. Weegtate on thexactlikelihood function, not the
conditional likelihood (where the initial shockseaassumed to be zero), both because the latt@t is n
easily applicable when values are missing or whenntodel has moving average terms, and also be-
cause the exact likelihood does in many practina gignificantly better parameter estimates.

Three different approaches for evaluating the elikelihood function of univariate ARMA processes
have been described in the literature: (A) one wWeashall refer to as theresamplemethoddescribed

by Siddiqui [1958] for pure MA processes, (B) Bholesky decompositianethodl first described by
Phadke and Kedem [1978], and (C3tate space Kalman filtanethoddescribed by Harvey and Phil-
lips [1979]. Several authors have described impren@s and generalizations of the originally pro-
posed methods, in particular, all three approattze® been generalized to VARMA models and to
ARMA models with missing values. An overview of tbdevelopments is given by Penzer and Shea
[1997]. Among the papers discussed there are [LamdyBox 1979] describing a computationally effi-
cient VARMA implementation of the presample methad [Jones 1980] with a Kalman filter missing
value ARMA method. In addition to the reference$Renzer and Shea 1997], Ljung [1989] discusses
estimation of missing values for ARMA processes Bladiricio [2002] gives details of a VARMA im-
plementation of the Cholesky decomposition methiodo Fortran programs for VARMA likelihood
evaluation in the complete data case have beeisphedl the Kalman filter method is implemented by
Shea [1989], and the presample method by Maurk98T]. In addition, pure VAR models (with com-
plete data) may be fitted using the Matlab packagét, described and published in the pair of paper
by Neumaier and Schneider [2001].

In contrast to complete data VARMA and missing @aARMA, the case of VARMA processes with
missing values has not been treated carefully énliterature. We only know of [Penzer and Shea
1997], and in that article only a sketch of a tegha is presented. Formulae for the efficient eataun

of the likelihood gradient are also lacking in theblished literature.

In this report we take the Cholesky approach. ttassiderably simpler and more direct than therothe
two approaches, and with complete data it is absgeneral more efficient [Penzer and Shea 1997;
Mauricio 2002]. The original article of Phadke akddem [1978] treats VMA models, extension to
ARMA models is in [Ansley 1979], Brockwell and Daj1987, Ch. 11] describe a VARMA imple-
mentation (they and some other authors refer tartbhod as th@novation methodand Penzer and
Shea [1997] provide a way of handling missing valirethe ARMA case, albeit not the same as our
way.

Consider equations (2.1) and (2.2) and the assatiattation for the definition of a VARMA process.
With the simple change of variableg,= x, —p for t < p andw, =y, for t > p, w, andw,,, are independ-

ent for|k| >max(p,q and thus the covariance matgx of the combinedv-vector has a block band
structure. Since the likelihood function can betten solely in terms of2 (c.f. ) it may be evaluated
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efficiently through Cholesky decomposition @f[Golub and Van Loan 1983] and this is from where
the method gets its name. Presence of missing valeesponds to crossing out rows and columns of
the covariance matri$ of the combinedk-vector, giving an expression for the likelihoodtbé ob-
served data (c.f. (2.4)). One of the noveltieshef present work is to show how the Cholesky faabbrs

Q together with the Sherman-Morrison-Woodbury foranahd other tools from numerical linear alge-
bra may be used to evaluate this missing valuditided efficiently.

We have included the mean of the series amongateeters, instead of assuming a zero-mean proc-
ess as is customary in the literature. This isimgortant when there are no missing values: one can
simply subtract the mean of the series. When thsrenissing values, this might however cause a bias
Say a weather station was out of function durirgpla spell. Then the mean of all observed tempera-
ture values would probably overestimate the truarmbut if other nearby stations were measuring dur
ing the cold spell then maximizing the likelihoodaoVARMA model with the mean as a free parame-
ter would avoid this bias.

We refer to the companion report [Jonasson 2006k fMatlab implementation of the new methods.
The programs follow very closely the notation atgbathms of the present report. An implementation
of the methods using the C programming languagéssunder way.

The report is organized as follows. Section 2 ihtices the basic notation and reviews the Cholesky
decomposition method for the complete data casgtid®e3, the main section of the report, describes
our approach to dealing with the missing value c8eetion 4 describes the main ideas and techniques
used to compute the derivative of the likelihooddiion. Section 5 presents some numerical experi-
ments that complement the report. The appendieasept technical material. Appendix A describes our
approach to differentiation with respect to masicAppendix B describes our solution to the Yule-
Walker equations, Appendix C describes how to geresimulated time series, and, finally, Appendix
D provides the proof of a result used in the report

2. NOTATION AND THE CHOLESKY DECOMPOSITION METHOD

2.1 Model notation

A VARMA model describing a time series of valuggl R' for integert is given by:

P
X —n=Y AX_ —m)+Y, (2.1)
j=1
where,

y. =g+ B, (2.2)

pn is the expected value &f, theA's and theB/'s arer x r matrices, and the’s arer-variateN(0, X)
uncorrelated in time. Lefdenote the€p+ q)r® + r (r +3)/2-dimensional vector of all the parameters (the
elements of théy's, theB’s, £ andp; X being symmetric). If there are no missing valwservations

x fort = 1,...,n are given, ana denotes thar-vector (x/,....x )" of all these values. When there are
missing values the observations are limited tokvectorx, [J R" of X, andx,, O R" is a vector of the
missing values, sax, :(era""'xrm . If the time series is stationary then the congpleéata log-
likelihood function is given by

1(6) ==3(nrlog 277+ logdetS+ - J S* -1 ) (2.3)



where S=cov, (x) andg=E,(X)=(u',...,n")". The log-likelihood function for the observed diga
given by

1,(6) =—3(Nlog 277+ log dets, + &, ~H, J §* k,~#,) (2.4)

whereS§, = coy(x,) is obtained frons by removing rowsn,,..., m, and columnsn,,..., my, andp, =
E, (x,) is obtained fronu by removing components,, ..., my, (see for example [Ljung 1989]).

2.2 Likelihood evaluation for complete data

We now turn attention to the evaluation of (2.48¥ proceed in a similar vein as Mauricio [2002] an
Brockwell and Davis [1987] (and as briefly suggdste[Penzer and Shea 1997]). From (2.1),

Ve =X, —R~ ZJP:lAj (X-j 1)

fort>p. Letw, = x, —p fort<pandw, =y, fort >p and letw = (w;,....w] ). Thenw = A(X — ) where
A is thenr x nr lower triangular block-band matrix given by

A= A, - _Ipi | - (2.5)

A A

Now letC; = cov(x, ,&,_; ), G; =cov(y, x,_; ), W, =cov(y, ,y,_; ) and§ = cov(x,,x
r matrices). Note that with this notation,

i »» (all these are x

S §- %

1S S

sS=| 7. 2.6
P g (26)
S. 8 $§

Furthermore, le®; andB; be zero foi andj outside the ranges implied by (2.1). By multiplyittrough
(2.1) from the right withstT_j forj = 0,...,q and taking expectations the following recurrenmeniulae
for C,, C,, C,,... are obtained:

C,=AC,+...+ AG+ BZ, forj=0,1,.. (2.7)
(soC,=%). With B, =1, we have by (2.1) and (2.2):
G, =BG +...+ B, forj=0,...,q, (2.8)
W, =BZR +...+ BZ g, forj=0,...,q. (2.9)
Forj <0 orj >q, C, Gy andW, are zero. By multiplying (2.1) from the right with,_; -n)' forj =

0,...,p and taking expectations one gets the followingdirgystem (th&ector-Yule-Walkeequations)
for ther(r +1)/2+pr? elements o8,,..., S, (note thatS, is symmetric):



S-AS-.-AS= g
S-AS-A$-.- AS=
S-AS- A§ AB-..- WS— ! (2.10)

Sp_'%%—l_ Az‘%—z_---_ 'pAGQF E

The solution of (2.10) is dealt with in Appendix Bg < p, the covariance matrix o¥ will be given by
thenr x nr matrix:

'S 9 S
S 8 <t
: .Sf i
Sps 5 5|6 - ¢
o= G GWW oW (2.12)
PWwW W ‘
G |: W W V\[
W, oW
WoW W
i W, - W W_
If g < p the depiction is slightly different, thgr x (n —p)r upper right partition of2 will be
G, - Gj ,
GlT GzT ...... G’

the lower left partition will be the transpose bist but the upper left and lower right partiticare un-
altered. Sincé\ has unit diagonal, one finds that

1(6) = -%(nrlog 277+ log de +w'Q'w) (2.12)

To evaluate (2.12) it is most economical to calieutae Cholesky-factorization = LL" exploiting the
block-band structure and subsequently determimel "w using forward substitution. Then the log-
likelihood function will be given by

1(6) =—%(nrlog 277+ 25, lod; +2'z.. (2.13)

We remark that the exposition in [Brockwell and 3ai987] is significantly different from ours. They
talk of theinnovationalgorithm but it turns out that the actual caltiolas are identical to the Cholesky
decomposition described here.

2.3 Operation count for complete data

Let h = maxp, q) and assume thgt> 0 (see Section 3.4 for tlge= 0 case). Given it takesr?p(n— p)
multiplications to calculatev. Determining theC/'s for j < g, Gs andW's with (2.7), (2.8) and (2 9)
costs about*(min(p,q)?/2+ ¢?) multlpllcatlons and solvmg the system (2.10) &keughlyr’p’/3
multiplications. The cost of the Cholesky-factotiaa of Q will be about(rh)3/6 multiplications for
the upper left partition and*(n—h)(q?/2+ 7/6) for the lower partition. Finally, the multiplicati
count for the forward substitution faris aboutr2(h?/2+ (p/ 2+ q)(n- h)).



To take an example of the savings obtained by &) rather than (2.12) Ipt=q=3,r =8 andn =
1000. Then Cholesky-factorization 8fwill cost 8000/6 = 8.5-10° multiplications (and take about 7
min. on a typical Intel computer) but calculatioithw(2.13), including all the steps leading toviti)l
take 4.0-16mu|tip|ications (and take 0.02 s).

3. MISSING VALUE CASE

3.1 Likelihood evaluation via the Sherman-Morrison-Woalbury formula

We now consider the economical evaluation of (f14he presence of some missing values. Consider
first the term(x, -1,)" S;'(x,— 1 ,). LetQ, A andS be obtained fron®, A andS by placing rows and
columnsm,,..., m,, after the other rows and columns and partitiomtlze follows (withQ,, A, andS,
beingN x N, andQ,,, A, andS, beingM x M):

O — Qo Qom N — /\o /\om Q — So Som
Q_|:Qmo Qm:"/\_|:/\mo /\m:l’ ar]dS_|:Smo Sm:l

By the definition ofw, Q = ASA" and therefore

QO = /\OSO/\TC-] +/\ OSOFI(\TOm+/\ omSmé\To-'-/\ omSA\T c (31)

A, is obtained from\ by removing rows and corresponding columns, ansl ttherefore an invertible
lower band matrix with unit diagonal and bandwidthmostrp, andQ, is obtained fronf2 by removing
rows and corresponding columns, so it is also al maatrix and its triangular factorization will bece
nomical. It is thus attractive to operate with #hesatrices rather than the full mat8x Defining

Q,=N,SA! (3.2)
andw, =A(x, —it) we have(x, —1,)" S, (X, — 1t ) =W QW . Also, from (3.1) and (3.2)
f’20 = QO _/\OSOTT/\-ll—)m_/\ 0m§OfA\TO_ /\ OmSAT o’ (3'3)

(keep in mind thaB is symmetric). The matrices,, A, andS A, areNx M, so if the number of
missing valuesM, is (considerably) smaller than the number of olzge@ns,N, then (3.3) represents a
low rank modification of2,. This invites the use of the Sherman-Morrison-Wanog (SMW) formula
[Sherman and Morrison 1950; Woodbury 1950; c.f.uband Van Loan 1983]. To retain symmetry of
the matrices that need to be factorized, (3.3) beagewritten as:

Q,=Q, +USU"-VSV (3.4)

whereU = A S, andV =A_S,, +/A S, It turns out that is generally a full matrix bu¥ is sparse,

0 ~om 0 ~om

and it will transpire that it is possible to avéatming U.

To obtainV economically, select the observed rows and missalgmns fromAS From (2.5), (2.6)
and proceeding as when deriving (2.10) the follgnlitock representation ofS for the casey > p is
obtained:



So S ’ %—1 |
Sp—l % $ : $—p
/\S: G.‘p Gl G0 .G—l G—n.+p+l
G, :
. G,
i G, G
For g < p the upper partition is the same but the lowerifpamtis:
G, = G, G—.n+p+1
G, G

For S,,;,..., S, multiply (2.1) from the right with(x,_, —-n)' forj = p+1,..., n—1 and take expecta-
tions (as when deriving (2.10)), giving

Si=A3at Apott A+ | (3.5)
with G, = 0 forp > g. TheG,; for negativg may be obtained using:
G, =C/+BG.*. ..+ B G,
where theC’s are given by the recurrence (2.7).

From (2.10) and (3.5) it follows that blockisjj withi >j + g of ASare zero, giving almost 50% spar-
sity. In practice the missing values will often ocamear the beginning of the observation period and
this implies thav will be sparser still. To take an examplegif 1,r =2,n=6 andm = (2, 3,4, 5, 9)
then the sparsity pattern @fwill be:

X X
X X
X X X

X XXX XXX

The SMW formula applied to (3.4) gives

Q=0 +QVQ VA

[o]

where
Q,=Q, +USU" (3.6)
andQ is theM x M matrix S, - V'Q:1V. Moreover, ifR is theM x M matrix S, + UTQ;*U then (again
by the SMW formula):
Q'=0'-Q URUQ;.
If Ly is the Cholesky factor ® andK = L;U 'Q;V it follows thatQ = S, - V'Q_'V+ K' K. The first
method that springs to mind to evalusteQ;'V efficiently is to Cholesky factoriz®_ =LL', use for-

ward substitution to qbtai\;{ = L' and formVV. However, with this proceduré will be full and
the computation 0¥ "V will cost NM (M +1)/2 multiplications. In contrast, if ah'L-factorization of



Q. is employed instead of Cholesky factorization sparsity ofV will be carried over t&/ with large
potential savings. This is a crucial observationawse, with many missing values, multiplicationhwit
V constitutes the bulk of the computation neededHedikelihood evaluation.

Thus the proposed method isL-factorize Q,=LIL, and back-substitute to gat = L'V and
/\ =LA, making use of known sparsity for all calculatidttse sparsity structure dﬁ . Will be
S|m|Iar to that oV). With R, =V™V, R, = AT A__andP = Al V (again exploiting sparS|ty) we find
thatR=S,+R, + S,R.S, - S.P - P S, (all matrices in this identity are full x M), K = L (RV P)
and Q S, - R+ K K. Let further LQr be the Cholesky factor ofd, W, _LlW

- S,ALW ) andv = Lo LVW, - K'u). A little calculation then gives:
(X ~Ho) Sy (X =R =W ;—uTu+v'v.

Now turn attention to the other nontrivial term(ih4), log detS,. Fromdet(l + AB) = det(l +BA, (see
Appendix D) we gedet(X + AY' A = detX detr™ detK+ A Y A, From (3.3), (3.6) and the defi-
nition of Lo, detQ, = det@ Vsﬂ VT‘ = detQ, de1Sm det§, - VQIV = detQ, delSm det(,, °.
Similarly, detQ, = detQ, +US!U") = detQ, deISm det§,+ UQ'U detQO detsS,' det(; 3
Since detA, = 1 it now follows from (3.2) and the definitior Io, that

logdetS, = 2(logdet, + logdel; + logddt, - logd&y,

3.2 Estimating missing values and shocks

An obvious estimate of the vector of missing valisg$s expected value;. =E(X,, |X,,6), whered is
the maximum likelihood estimate of the parameténss (is also the maximum likelihood estimate of
Xy). SinceS,,, = cov(x,, X, ) andS, = var,),

X5 =S S (X~ B +H

(wherepn,, consists of missing componentsof. Similarly, the maximum likelihood estimate ofeth
shocksg, is given byst —E(st [X, 6?) For 0<j < q, COV(g, X, )= C andeg, is mdependent of,,; for
otherj. It follows thate” —CS0 (x, - )wherea is the column vector with;,....&" EandC is obtained
by removing missing columns from thex nr matrix:

c, ¢ - G
C, -
. cr
G, C
L Co |

With some calculation one may verify that given thatrices and vectors defined in the previous sec-
tion, the estimates of, ande may be calculated economically using:

m = SmVZ +l—l’m1
and

g5 =CATLLT (W, +V(v,-Vv,)-A,SV)
wherev, = LJ'v andv, = L (u+Kuv,).

3.3 Simplification for pure autoregressive models

If g is zero and there are no moving average termsdemable simplification results, and it is worth-
while to review this case. Singg =¢, for all t the G, andW, matrices will all be zero apart fro@, and
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W,, which are both equal ta. The upper leftSpartition of Q in (2.11) will be unchanged, the-
partition will be zero and the lower-rigki¥-partition will be a block diagonal matrix where bawock
is equal tax. For the missing value ca€e, needs to be Cholesky factorized. It is obtaineddmov-
ing rows and corresponding columns frémso that its upper left partition is the samerathée general
ARMA case, but the lower right partition is a blodiagonal matrix:

whereX; contains rows and columns bfcorresponding to the observed indices at fimd. To obtain
L, it is therefore sufficient to Cholesky factorizg, for each missing pattern that occurs, which in all
realistic cases will be much cheaper than Choléséiprizing the entir€ -matrix.

3.4 Operation count for missing value likelihood

Finding theC/'s, Gs andW's andS1 s will be identical to the complete data case. Tlmlesky fac-
torization on costs at m03|t N(q2/2+ 7/ 6. multiplications (unless the upper left partitienunusu-
ally big). FormingAS costs about®(2p +q)(n- p) multiplications. The cost of formlng andV
using back substitution depends on the missingevphttern. In the worst case, when all the missing
values are at the end of the observation periogdadlseis approximatelggNM multiplications for each,
since the bandwidth of both isrq, but typically the missing values will be concem&d near the be-
ginning and the cost will be much smaller. The a@i®®,, R, andP also depends on the missing value
pattern. In the worst case the symmeRjandR, cost NM 2/2 multiplications each anél costsNM?,

but the typical cost is again much smaller (forreghe, with the “miss-25" pattern of Table | the tizs

5 times smaller). Next follows a series of ordiéf operationsS, P costsM ®, R costs3M 3/2, K andQ
costM 3/2 multiplications each. Finally the Cholesky factations for each aofg, L, anddetS, cost

M 3/6 multiplications. The multiplication count of othealculations is negligible by comparison unless
M is very small. Whem and M are large compared to, q andr the governing tasks will cost
2fNM? + 4M? multiplications wheré is the savings factor of having the missing valea@sy on.

In the pure autoregressive case @y, G's andW’s come for free, but solving the vector-Yule-
Walker equations costs the same as before. Theot@tolesky factorizing2 will usually be negligi-
ble, and much cheaper than wreger 0. When nothing is missing, it is the numippN of multiplica-
tions to findw and the numberpN/2 of multiplications of the forward substitution farthat govern
the computational cost. On the negative side, thélitebe no savings in the governing tasks wién
andn are large.

4. DERIVATIVE OF THE LIKELIHOOD FUNCTION

Several different matrix operations that need tdlifferentiated may be identified. Matrix produete
used in the calculation ¥ and the covariance matric€s G, andW,, Cholesky factorization giveQ,
linear equations are solved to obtain wenatrices ana, and lastly one must differentiate logtL. In
the missing value case, several more matrix pragd@holesky factorizations, linear equation sohaio
and determinants occur.

Nel [1980] reviews and develops matrix differentiatmethods of scalar and matrix-valued functions
with respect to scalars and matrices. He discubses basic methods, and concludes that a metlad th
he calls theeslement breakdowmethod is best for general purposes, and thiseisapproach we take.
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For the change of variables described in Secti@hwk also make use of higctor rearrangement
method.

Since there is no commonly used notation for déffitiation with respect to matrices, we provide the
needed notation and formulae in Appendix A forityaand ease of reference.

4.1 Derivatives of the r x r covariance matrices

The matriceC,, G, andW, are all simple matrix-polynomials in the parametetrices (theA’s, B/'s
andX), and it is not difficult to verify that they cal be obtained by applying a sequence of operation
of the following types:

F  F+XY
F  F+XY
F « F+XG
F « F+XG

(4.1)

whereF is the polynomial X andY are independent variables (parameter matrices),Gais also a
polynomial obtained through such steps. Initialaatcan be eitheF —~ O (ther xr zero matrix) or

F — X (one of the parameter matrices). The operatioriy ¢an all be differentiated using (A.3) and
(A.4) as detailed in the following table, wheteY andZ are different parameter matrices:

Corresponding change to:
Changeto P | rqF/dz, [dF/dX],, [dF/dY],
+XY 0 +g €Y +Xe €
#XYT 0 teeyY’ +Xe, &
+XG +X[dG/dZ,,  +X[dG/ dX, +g€ C
+XG' +X[dG dZ; +X'[dG/ d{;+g€ G

For the first few applications of (4.1) the derivas will be sparse, and for smpllg and/om it may be
worthwhile to exploit this sparsity. There are Sgible sparsity patterns fdi/dX:

1) all elements are zero

2) inthe {,j)-block only the i j)-element is honzero
3) only thei-th row in the {,j)-block is nonzero

4) only thej-th column in thei(j)-block is nonzero
5) the matrix is full

As an example, lgp = 1,9 = 2 and consider the differentiation Gf, C,, andC,. These matrices are
given byC, =X, C, = A X + B,X (the first operation of (4.1) twice) arig} = A,C, + B,X (the third op-
eration of (4.1) followed by the first operatiof)eatingX as non-symmetric to begin with, one ob-
tains:

dG,/dA=0  [dG/ dAl.=g€= [ dG/ dA.= B d¢ dA+ed |
dG,/dg=0  [dG/ dBl,. =e€Z [ dG/ dB.= P d¢ dR.+eq !
dC,/dB =0 dG/ dg=0 [dG/ dB, =g€x

[dC,/d%] =6 [dG/ ] =( A+ Be¢ [ dG/ @, = [A d¢ X, +Beq

Here all the sparsity patterns are representedfaadnly full matrices are the derivatives ©f with
respect tA, andB,. Finally, the derivatives with respect to the syetinc X are adjusted using (A.7).

Now we turn attention to the vector-Yule-Walker agons (2.10). Differentiating through these with
respect to a parameter gives:
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S ~(ASac +ot AS)=( AL B+t A8
=G, + (A S+t A §)+( By S+t AF)for FO,.,
This set of equations has exactly the same coefffiahatrix as the original equations (2.10), bdifa
ferent right hand side which can be obtained uttiegformula ford(XA)/ dX in (A.4) (sparsity can be

exploited). It can therefore be solved to obta derivatives of,..., §, using the same factorization
as was used to obtain tBe

(4.2)

4.2 Remaining steps in likelihood gradient calculation

It follows from (4.1) that the derivative gf (and therebyv,) with respect thé3’s andX is zero, and
(A.5) gives its derivative with respect to tA¢s andp. For complete data, the next needed derivative is
that ofL, the Cholesky factor . As the derivative of all the submatricestdhave been found, this
may be obtained using (A.10) and (A.11), makingessary modifications to take advantage of the
block-band structure d@d. To finish the calculation of the gradient!(f) in (2.13), usd.z = w together
with (A.8) to differentiatez, followed by (A.6) to differentiate’z, and finally used(logl;)/dX =

(/1 )dl; /dX.

In the missing value case, the operations that mslifferentiated are the same: matrix producks-C
lesky factorization, forward substitution, and detimants of lower triangular matrices, and theraas
need to give details of all of them. They have biegplemented in [Jonasson 2006] by writing func-
tions that implement (A.3), (A.9), (A.10) and (A)11

4.3 Operation count for gradient calculation and possikte savings

Inspection of the formulae in appendix A for theidatives of the most costly operations, namely ma-
trix products, Cholesky factorization and forwarstitution, shows that they all cost approximately
2n, times more multiplications than the original opeEnas being differentiated, where, =
r’(p+q)+r(r+1)/2 is the total number of model parameters excluginghich does not enter the
costly operations. The gradient calculation wikrdéfore usually dominate the total work needed for
likelihood maximization and this is confirmed byethumerical results of Section 5.

One way of trying to reduce this work would be g&unumerical gradients in the beginning iterations,
when the accuracy of the gradients is not as imapors closer to the solution. Using forward differ
encing,(0/06,)1(6) = (1(6+de,) ~1(8))/, the gradient can be approximated withfunction calls,
giving a potential saving of factor 2. However, gty by the results shown in Table Il in the neat-s
tion, it seems that this technique is not so useful

Another possibility of speeding the computationgstsxwhen estimating seasonal models, structural
models, or various models with constraints on thmmeters such as distributed lag models. Without
entering too much into detail, such models mayrofie described by writing as a function of a re-
duced set of paramete@= g(¢), WheregDDRn“’ has (often much) fewer components tt&mhe log-
likelihood for a given set of parametegss I(g(¢)), and the corresponding gradient i@ (¢))J, (9),
whereJ, is then, x n, Jacobian of the transformatign The parameter matrices may be sparse and it
would be possible to exploit the sparsity, but $agings are also possible by multiplying with theat

bian earlier in the computation of the gradienstéad of after evaluating(6). A convenient place to
make the change of variables is after the difféagion ofw, theC’s, G's andW's, and theg’s in the
right-hand-side of (B.3). The costly derivativesmeo after this, so the potential saving approaches a
factor ofng/nw. In [Jonasson 2006] this course of action has lmaplemented, and the likelihood rou-
tines havel, as an optional parameter.
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5. NUMERICAL EXPERIMENTS

The methods described in Sections 2-4 have beeleimgmted in Matlab as described in the compan-
ion report [Jonasson 2006]. The Matlab packageided a function to simulate time series as destribe
in Appendix C below. This function has been useddaerate test data with several models, missing
value patterns and dimensions, and these databieareused to test and time the likelihood evalunatio
functions. The tests were run using Matlab 7.1 wgtdefault Intel Math Kernel Library (MKL) on a
1600 MHz Pentium M processor.

The primary use of likelihood evaluation is to estte model parameters by maximizing the likelihood
function. The authors have been experimenting uiesgBFGS method with line search, To take two
examples, estimating a VMA(1) model with= 4, n = 100 and missing value pattern “miss-5a” from
Table | (giving 30 model parameters) took 205 fiorcevaluations and 48 gradient evaluations, and a
VAR(3) model withr = 4,n = 500 and missing value pattern “miss-5a” (givilgparameters) took 393
function evaluations and 73 gradient evaluatiorfsest figures together with the run times reported
below indicate what to expect in terms of run tifoe parameter estimation. For real problems of this
size it is however likely that a reduced set ofapagters would be used, and then the savings dedcrib
at the end of Section 4.3 would come into effect.

5.1 Timing of function evaluations

Table | shows the run time in seconds requiredofoe function evaluation for each combination of
model, missing value pattern, and dimensions.

Table | — Run time in seconds per one function evaluafldre missing value patterns
shown in the “data” column are a) complete dataniss-5a: 5% missing scattered in first
quarter of each series; ¢) miss-5b: 5% missingeyeat throughout entire series; d) miss-
25: 25% missing — half the series have the firéitinéssing.

Dimensionr =2 | Dimensior = 4 | Dimensiorr = 8
Model Data |n=100 n=500n=100 n=500{n= 100 n=500
VAR(1) completegl 0.01 0.02 0.01 0.03 0.01 0.03

miss-5a 0.02 0.1d 0.03 0.24 0.05 0.85
miss-5b 0.03 0.24 0.04 0.58 0.10 2.1
miss-25 0.04 0.73 0.08 407 035 28.[7

VMA(1) complete| 0.04 0.19 0.04 0.21 0.05 0.24

miss-5a 0.06 0.29 0.06 0.47 0.09 1.p7
miss-5b 0.07 0.43 0.08 0.86 0.15 2.8
miss-25 0.08 1.00 0.12 4.41 0.39 2834

VAR(3) |complet§ 001  0.03| 001 003 004 0.06

miss-5a 0.03 0.11 0.04 0.24 0.08 0.88
miss-5b 0.03 0.19 0.05 0.55 0.12 2.19
miss-25 0.04 0.73 0.09 4.09 0.37 27.90

VARMA(2,2) |completel 0.05  0.25| 0.06 0.27 0.08 0.34

miss-5a 0.07 0.33 0.08 0.51 0.13 1.p4
miss-5b 0.08 0.57 0.10 1.02 0.19 2.98
miss-25 0.09 1.02 0.14 4.47 0.44 28.64

For the pure VAR models the simplifications of $&tt3.3 are realized, and for complete data the-sol
tion to the vector-Yule-Walker equations and thiewdation ofw andz will govern the computation.
For VMA and VARMA models these calculations stilake up a portion of the total, but the factoriza-

13



tion of Q is now more expensive and accounts for most ofdifference between the complete data
execution times of the VAR(1) and VMA(1) models simoin Table I.

Missing values add gradually to the cost, and wihene are few missing values the execution time is
only marginally greater than for complete data. Whwore values are missing the savings in the VAR
model are gradually eradicated. Now the approxipateder M * operations (independent pfandaq)
involving the profile-sparsél x M matricesV andf\om, and the fullM xM matricesS,, R,, R, P, Q,

R andK become more and more important. If these weretihecomputations one would expect a fac-
tor 125 difference between= 100 anch = 500, but because of other calculations thatatalepend on

M the largest factor in the table is 80 (for VAR(iiss-251 = 8).

Another feature shown by the table is the diffeeebetween miss-5a and miss-5b, corroborating the
discussion between equations (3.5) and (3.6) itiGe8.1. This ranges from a factor of 1.26 to @da
of 2.61, the average being 1.89.

5.2 Timing of gradient evaluations

Timing experiments for gradient evaluation wereoatarried out. It seems most relevant to compare
with the cost of numerical differentiation. Thenefdrable 1l shows the factor between the time @& on
gradient evaluation armth function evaluations. Where a table entry is tbss one, the analytical gra-
dients take less time than (maybe inaccurate) fahwidference numerical gradients, and where it is
less than two the analytical gradients are chetdyaer central-difference numerical gradients. Therav
age of the 70 factors shown in the table is 0.1 Table is less extensive than Table | because the
computer used did not have enough memory to tiradaitgest models. The memory was sufficient to
time some runs not shown in the table, and thdteesiere comparable to the figures shown (the aver-
age factor for 11 cases not shown in the tableQzvE).

Table Il — Execution time for one gradient evaluation deddy time form
function evaluations whema is the number of model parameters. See caption
of Table | for explanation of the “Data” column.

Dimensionr =2 | Dimensiom =4 | r=8

Model Data |n=100 n=500| n=100 n=500{n= 100
VAR(1) complete| 0.40 0.47 0.15 0.17 0.09
miss-5a 0.56 0.74 0.35 0.9
miss-5b 0.58 0.66 0.50 1.0
miss-25 0.83 2.04 1.33 2.2
VMA(1) complete| 1.16 1.57 1.06 1.08 1.12

N N
N O O
MNP N
P~ &

miss-5a 0.63 0.6§ 0.33 0.6 0.2
miss-5b 0.67 0.76 0.42 0.74 0.5
miss-25 0.71 1.39 1.02 2.01 1.92

VAR(3) complete| 0.23 0.26 0.10 0.11 0.05
miss-5a 0.35 0.62 0.30 1.0
miss-5b 0.38 0.82 0.42 1.0
VARMA(2,2) | complete| 1.10 1.19 1.07 1.17% 1.08
miss-5a 0.34 0.45 0.27 0.66 0.5
miss-5b 0.36 0.51 0.38 0.76 0.74

[$2INe)
o o
R
N O

The relative cost of gradient evaluation is somavdaer than expected at the outset, as the derevat
of many basic linear algebra operations with thenfdae of Appendix A costr@ times more than the
operations themselves. This could be because thieaion of the gradient involves larger matrices,
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thus making better use of the Intel MKL. The valégbower of the MKL explains partly the variability
of the numbers in Table I, but the rest of thedrity probably occurs because different derivatowe
tines make unlike use of the power of Matlab.

APPENDICES
A. DIFFERENTIATION WITH RESPECT TO MATRICES

Many of the identities that follow may be foundisel 1980]; see also [Golub and Van Loan 1983]. If
is differentiable function on the set Bfx N matricesf: R™™ _ R, then theNxM matrix with , j)-
eIementdf/d)gj will be denoted byf'(X) or df /dX. If f is a vector valued function of a matrix,
R"N _ R™thendf/dX orf'(X) denotes the block matrix:

ffax,, - Of /9y,

af/éxwll af/éXMN

where each block is an-dimensional column vector (theth block row is actually the Jacobian matrix
of f with respect to thé&-th row of X). If F is matrix valuedF: R™*N —, R™", thendF/dX or F'(X)
denotes th&1 x N block-matrix

[6F/@x11 e OF /0, ~

OF /0%y -+ OF /0%y

The (, c)-block of (A.1) will be denoted b, or[dF/dX]IC and it is armx n matrix with {, j)-element

equal todf; (X)/G){c . It is now easy to verify, that i is a scalar an& is another matrix function with

same dimensions & thend(aF + F)/dX= adH dx+ df d.. We also have (whe is thel-th unit
vector):

[dX/dX]_=e€, (A.2)
and, ifG is another matrix functio®: RN _ R™¥ then

[d(FG)/dX] = FG+ R C (A.3)

A.1 Differentiation of matrix products

The following special cases are all consequencéa.gj and (A.3):

[dX"/dX],. =e.€
[d(AX)/dX,. = A€ [ 4 XW dK.=¢¢ A
[d(AF)/dX] . = AR [d Fy dX.= E A
[d(XF)/dX,.= XE +ed F [ d F¥/ dX.= F X% B¢

where, in each cas@, is a constant matrix with dimensions compatibléhwiose ofF andX. WhenA
is actually a vectorA = a, we have:

(A.4)

e
d(Xa)/dXz[ : ]aT, (A.5)

€wm
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and similarly,d(@" X)/ dX=a[d --- €]. If n=1 andF is vector-valuedF =f =[f,,..., f_]", thel-th
block-row of d(Xf)/dX is X[0f/dx, ... of /dx,]+ef" and thecth block-column ofd(f "X)/dX is
[0f /0%, ... Of /0x,]T X +fe . Furthermore:

[d(F TF) /dX] . =2f (o /0 %) (A.6)

A.2 Derivative with respect to a symmetric matrix

WhenX is square and symmetric and its upper triangldichtes its lower triangle, the correct deriva-
tives are obtained by using the fdlin (A.4), and assigning in the final result:

(1, ¢)-block ~ (I,c)-block + (,1)-block (for alll,c with | >¢) (A.7)

(only the lower block-triangle is relevant). To éain example lat = 2,x,, = X;, and consider the cal-
culation ofdX?/dx,. By (A.2) and (A.4),

dde = Xe o+ X=|: X O:landdxz dx. = Xe. € + X=|:X21 X11+X22:l.
[dn = Xe,d + o dx=| "2 [dx, = Xerd, + g X =70

Adding these matrices and lettirglenote the duplicated elementdr{i.e. x = X, = X,,) gives the ma-
trix:

2 X1t X%,
X+ X, 2X

which is easily verified to be the derivative Xf with respect to. It would be possible to make the
calculation of derivatives with respect to symmetriatrices more efficient by developing appropriate
formulae analogous to (A.4), but the complicatiovisuld probably be significant and the pay-back
marginal in the present setting.

A.3 Derivative of the solution to linear equations

If the vectory is given byAy = b then it follows from (A.3) thatA(dy/ox.)+ Ay =db/ox. and
dy/ox.is therefore given by solving the set of linearatpns:

A@Y/0x,) =0b/ax. - Ay. (A.8)

We note that the factorization éfused to obtairy can be reused to obtain its derivative. Similaifly,
the matrixF is given byAF = B thenF_ may be obtained by solving:

AR, =B, - A F. (A.9)

A.4 Derivative of Cholesky factorization

If S=LL" is the Cholesky factorization of a symmetric mat8 it follows from (A.3) that
S.=LL) + L L. If S, LandL, are partitioned as follows for a givin

g L K
S. =|s" s ,L=u” I, andL, ={u'" I,
St S L v L L, V' L,

then2(u'u’ +1,l},) =s}, andLu’'+ Llu=s so that

Lu =s-Lu (A.10)
and
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i =(Si/2-u"u)/1,,. (A.11)

These relations may be used iteratively Kor 1, 2, ... to calculatd;. line by line, withu' obtained
from (A.10) with forward substitution.

B. SOLUTION OF THE VECTOR YULE-WALKER EQUATIONS

In this appendix, we consider the solution to thstesm of equations (2.10). Our approach closely re-
sembles that given by [Mauricio 1997, eq. (6)] amgarticular the system we solve is of the same or
der, namelyr*p —r(r —1)/2. However, Mauricio does not provide a derivatidrih@ system, our nota-
tion is significantly different from his, and lagtthe system solved is not exactly the same (atthau

is equivalent). Therefore, we provide an expligtidation in this appendix.

Isolating§, in the last equation of (2.10) and substitutirtg ithe first equation gives
S-(AS+.+ A 3)-(ASH ASA+. .+ ASDE 6 A (B.1)

It is convenient to make use of the Kronecker pod@A U B is a block matrix withi( j)-block equal to
a;B), the notation vea for the vector consisting of all the columns aatrix A placed one after an-
other, and vecl for the columns of the lower triangle Afplaced one after another. A useful property
here isvec(ASB )= (B0 A)vecS. Lets = vecS, g = vecG, and denote the-th column ofA with a,
and thek-th unit vector withe,. Becauses, is symmetric, taking the transpose of (B.1) giwaih this
notation:

(1 -AOA)S—(ADT+ATA Js—...—- (A0 1+ A0 A s=vecG+ (A0 I)g, (B.2)
Furthermore, the equations with right hand side.., G, , in (2.10) may be written as
s-As-As-.-As.T g
S ASTAST AT T A ST 8 (B.3)
S,u—AS, ,—..-A_5-As= g,

WhereA =10A andA is also am® x r? sparse block-matrix (which cannot be represensil):

A=lag - 34§/

a, g - 3¢

Together (B.2) and (B.3) provide? linear equations in the elementssyf.., S,_1» but one can (and
should) take into account th8tis symmetric and, contains therefore duplicated eIements.éﬂdbe a
lower triangular matrix such th&, = §+ A% (the diagonal elements éJ are halved compared with
S) and let§, = vech§, (the ((r +1)/2)-vector obtained by removing the duplicated eleimémms).
Let alsoJ be anr® x r(r +1)/2 matrix such that post-multiplication with it renes/columnsg + 1, 2 +
1,2+2,3+1,3+2,3+3,...,r°— 1. Then a term of the typ@s0 in (B.3) may be rewritten:

A% =(10A)g=vec(AS I")= vec(AS+ AS )y (A Avec S (A A5, (B4
For (B.2) it is not difficult to verify that

(A OA)S=(AOA+AAVec(S =(A 0A+AA)E,
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and furthermore thad, = Dvec(éoj whereD is diagonal withd; = 2 wheni gorresponds to a diagonal
element in§, (i.e.i = 1,r + 2, 2 +3, ...); otherwised; = 1. The matrixApAp is a block-matrix with
(i, )-block equal taa ;ay;.

Finally, the upper triangle of (B.2) should be remo. These modifications result ifip —r(r —1)/2
equations in the same number of unknowns, the eleés,, s,,..., s,; (B.2) becomes

-1

J((D-A0A-ARA) &-Y(AD + AD Qﬂ)si)z J(vec ¢+ (A )g,) (B5)

and (B.3) is modified using (B.4).

C. TIME SERIES SIMULATION

Simulation of VARMA time series has many applicasa.g. to create test data for modelling methods,
analyze such methods, and forecast with fitted isod&ven values oé,, x, for t =1,...,h whereh =
max(p,q, one may drave, from N(OZ) fort = h+1,h+ 2,.. and apply (2.2) and (2.1) to obtain simu-
lated values ox, for t > h. If the starting values are not given, one maxt stéh any values, for exam-
ple zeros, and, after simulating, discard an ih#&gment to avoid spin-up effects. This is forraghe
done in the routinarsim of [Schneider and Neumaier 2001]. For processés s¥iort memory, this
procedure works well and the discarded segment neele very long, but for processes that are nearl
non-stationary it may take a long time before tregch their long-term qualities, it is difficult tiecide

the required length of the initial segment, andittigal extra simulations may be costly. Thesewdra
backs may be avoided by drawing values to starsithalation from the correct distribution.

Letx' = (X{,...,X;)" have meam' and covariance matri$, € = (g ,...,& )’ have covariance matrix
2, and letC' = covf', €'). S, ' andC' are given with (2.7) and (2.8) and solution of Weetor-Yule-
Walker equations (2.10) applying (3.5) if necessandp' is therh-vector(u',...,n")". Starting values
for X' may be drawn fronN(p',X'), and starting values faf (that are needed if there are moving aver-
age terms) may be drawn from the conditional distion of €' | X', which is normal with expectation
C'"S'(x'-p') and covariance matriX' —C'"S™C. This conditional distribution may also be used to
draw &' whenxg,..., X, are given and,,..., g, are unknown, for example when forecasting withav-m
ing average model. This procedure has been impledém [Jonasson 2006].

D. DETERMINANT OF A LOW RANK UPDATE

The economical evaluation of the determinant ofdtnariance matrix of the observations in the miss-
ing value case, described at the end of Sectigns3dased on the following theorem. As we havenbee
unable to locate a proof of this useful fact in fhublished literature, we include it here for coetpt
ness. An immediate consequence of the theorenaighf determinant of a low rank update of an arbi-
trary matrixM may often be evaluated efficiently usidgtM +UV"™ ) = detM det( +V'M™U |, in this
way complementing the Sherman-Morrison-Woodburynida.

Theorem. If A is mxn, B isnxm andl, andl, are themth andn-th order identity matrices then
det(,, +AB =det(, +BA).

Proof. Let C andD be mx i and nx n invertible matrices such th&IADz('(k) 8) and letD™*BC™ =

(B1 Bz) be a partitioning witlB, ak x k matrix. Then
B, B,
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det(+AB)= de( cic+ crl{'o g} D[ Sj CJ

_ 1 I
= det(C )de(lm+[o 0 ] de€

:de'{lkgBl Ii_zk}:det(kml): deElk';sBl '“ﬂ
) B, B, 0|~
=de {I +D{B3 BJCC {0 O}D }

=det(, +BA).
The matricesC and D may, for example, be obtained from the singulduezadecomposition oA
[Golub and Van Loan 1983].
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