martingalePricing: A C++ Template Library to
Price Financial Derivatives on Trees

Sebastian Ferrando and Brendan Bartlett

October 20, 2002

Abstract

A financial derivative system with several different data types, un-
derlying types and derivatives. The system is implemented using generic
programming techniques in C++.

Contents
1 Summary 3
1.1 DataTypes o o i i 3
1.2 Underlying Models, 3
1.3 Derivative Models oL 4
2 How to compile 5
2.1 Generate. 5
3 Structure of the library 8
3.1 Underlying Type 9
3.1.1 Implementing another underlying 10
3.2 Data Structure Type 13
3.21 Tree . . . o oo e e 13
3.22 Matrixo 17
3.3 Derivative Type Lo 20
3.3.1 Implementing another path dependent derivative 25
34 Pricing. e 26
3.41 Complete Tree 27
3.4.2 Memory Saving Tree 29
3.4.3 Complete Matrix 0. 30
3.4.4 Memory Saving Matrix 32
A Post Order Traversal Code 35

CONTENTS

B Tree Iterators
B.1 Breadth First Iterator .
B.2 Post Order Tree Iterator

C Functor

38
38
40

44

1 SUMMARY 3

1 Summary

martingalePricing is a financial derivative system which has two fundamental
data types to represent the underlying and derivative. The system is imple-
mented using generic programming and templates inspired by A. Alexandrescu'.

1.1 Data Types

The two fundamental data types are:

1. Tree
A fully balanced tree which can be either binomial or trinomial. Larger
degree of trees are possible but they have not been tested.

2. Jagged matrix
A jagged matrix is simply a matrix where the first column holds the root
value and the next column height contains the children of the root value.
Notice that in a jagged matrix, there is no concept of a path through the
matrix, since each ‘child’ in the matrix can have multiple parents.

For both of these data types there are two different algorithms to price the
underlying and derivative. The two algorithms are:

1. Complete
The entire data structure is contained in memory. This can consume large
amounts of memory, especially with a trinomial tree data structure.

2. Memory Saving
Only a portion of the data structure is held in memory.

Notice that the data structure (either tree or jagged matrix) and algorithm
(complete or memory saving) used for the underlying dictates the data structure
and algorithm for the derivative?. For example, it is not possible to have the
underlying as a complete tree with the derivative held in anything other then a
complete tree.

1.2 Underlying Models

The different underlying types are different mathematical models to represent
a particular type of stock. Three underlying types have been implemented:

1. Binom
2. Binom 2

3. Time Halving Trinom

1See chapters 1 and 2 of [1]
2Not true for a memory saving jagged matrix, discussed later.

1 SUMMARY 4

1.3 Derivative Models

A derivative type is responsible for providing functions to calculate a particular
type of derivative. Derivatives can be divided into two different categories:

1. Non Path Dependent
These derivatives do not require any kind of path information to calculate
the derivative value. Three different types have been implemented:
(a) European Call
(b) European Put
(¢) American Put
2. Path Dependent
These do require path information to calculate the derivative value. Two
of these have been implemented:
(a) Average Strike European Call
(b) Average Strike American Put

Notice that since there is not a concept of a ‘path’ in a jagged matrix, a jagged
matrix cannot be used to calculate a path dependent derivative.

2 HOW TO COMPILE)

2 How to compile

martingalePricing has been implemented by following generic programming
ideas. This means the actual implementation of the library uses C++ templates
extensively. Due to the use of templates, it is necessary for martingalePricing
to consist of header files which must be #included in any code which wants to
use martingalePricing.

There is an optional feature to the library which allows complete data struc-
tures of either the underlying of derivative to be saved to disk as a png image
file. In order to use this feature an extra library is required called the gd li-
brary which can be found at http://www.boutell.com/gd/. The version used
is 1.8.4.

2.1 Generate

In the Test subdirectory, there is a program called generate. The purpose of
this program is to ask the user several questions and generate a C++ program
plus a Makefile which will call martingalePricing for what the user entered. For
example, let’s assume we want the following:

1. Data Structure - Tree
(a) Type - Complete
2. Underlying - Binom
3. Derivative - European Call

With the input parameters of

Paramater | Value Meaning

K 100.0 Derivative strike price

S0 100.0 Initial stock price

N 3 Number of time steps

dt[0] 1.0/3.0 | Time difference between each step
U 1.1 Stock up jump value

D 0.9091 | Stock down jump value

T 0.06 interest rate (yearly)

Please notice here that it is very important to include the decimal values for
any paramaters which are double precision numbers (the only integer value is
N). Failure to do so will yield incorrect results, as the compiler will incorrectly
assume values are integers when they should be double precision numbers.

generate will produce two files: the actual cpp file and a Makefile for that
source file. In this example, these files are called sample.cpp and Makefile.sample.
The standard include files used by sample.cpp are shown below:

2 HOW TO COMPILE 6

Listing

1: sample.cpp [Line 2 to 5]

#include
#include
#include

#include

Noti
The ma

Listing

<stdio.h>
<vector.h>
<stack.h>
<math.h>

ce that the standard template library include files are used here.
rtingalePricing included files are the following:

2: sample.cpp [Line 9 to 16]

#include
#include
#include
#include
#include
#include
#include
#include

"treenode.h"

"visitor.h"

"iterators.h"

"dstruct.h"
"multiplicative.h"
"underlying/binom.h"
"derivative/europeanCall.h"
"pricing.h"

If different combinations of data structure, underlying types, etc. were used
then different include files would be here.

Below is the code which calls martingalePricing to initialize the underlying
and derivative:

Listing

3: sample.cpp [Line 22 to 37]

int main

{

Afte
calculat
section.

The

(void)
IP_Binom param;
param.dt = vector<double>(1);

param.SO = 100.0;
param.N = 3;
param.dt[0] = 1.0/3.0;
param.U = 1.1;

0.9091;
0.06;

param.D

param.r

Pricing<UNDERLYING(Binom), Tree<Complete, Multiplicative>, EuropeanCall > *derivative =
new Pricing<UNDERLYING(Binom), Tree<Complete, Multiplicative>, EuropeanCall >(param, 100.0);

r the code above runs, the underlying and derivative have been fully
ed. The syntax for the above declaration will be explained in the next

code below calls martingalePricing to get the derivative root value:

2 HOW TO COMPILE 7

Listing 4: sample.cpp [Line 41 to 56]

/

*

The following methods are available in derivative:
double getDerivativeRootValue()

PostOrderIterator<double>& getStockPostOrderIterator()
BreadthFirstIterator<double>& getStockBreadthFirstIterator()

PostOrderIterator<double>& getDerivativePostOrderIterator()
BreadthFirstIterator<double>& getDerivativeBreadthFirstIterator()

void graphStock(char *fname, unsigned int width, unsigned int height)

* X X X X X X X X ¥ %

void graphDerivative(char *fname, unsigned int width, unsigned int height)

*
~

printf("root derivative value is /f\n", derivative->getDerivativeRootValue());

Below is the relevant portion of Makefile.sample which shows the two
variables which must be set by the user. The GRAPHICS option selects if the
graphics library will be included with martingalePricing. The INCLUDE tells the
compiler where to find the header files for martingalePricing.

set GRAPHICS to either YES or NO
set INCLUDE to either the relative or absolute location
of the header files

GRAPHICS= YES
INCLUDE= ../Source

#don’t touch anything below here

3 STRUCTURE OF THE LIBRARY 8

3 Structure of the library

As mentioned earlier, martingalePricing has been implemented by using generic
programming ideas. This means that rather then following a traditional object
oriented method, the code uses templates and policies extensively. Policies
are structures of C code which implement a predefined set of functions. A
number of different policies can be written which all implement the same set
of functions. Code which uses these policies (called host classes) inherit from
a template argument, where the template argument is the desired policy. This
allows many different combinations of the code which calls the policies to the
actual policies used.

Partial template specialization is used by code which uses policies to handle
the different types of policies it supports.

martingalePricing uses policies extensively. The host class for the policies in
martingalePricing is called pricing. It takes three policies, which are:

1. Underlying Type.

As mentioned in the previous section, there are three choices here:

e Binom
e Binom?2

e TimeHalvingTrinom

2. Data Structure Type.

There are two choices here:

o Tree

e Matrix
Notice that these policies also use policies. This will be explained later.

3. Derivative Type.

There are five different choices here:

e European Call
e European Put

e American Put

Average Strike European Call

e Average Strike American Put

The different policies for pricing will be explained in the following sections.

3 STRUCTURE OF THE LIBRARY 9

3.1 Underlying Type

The underlying policy is responsible to accept input parameters and calculate
several matrices which are used by pricing to calculate the stock price. The
Binom underlying type will be explained here. The other types are similar ®.

Each underlying type accepts only one set of input parameters. The input
parameters are implemented as a simple structure of values whose structure
name must be the name of the underlying type prepended with IP_. For exam-
ple, for the underlying type Binom, the input parameters are called IP_Binom.
The data structure is defined to be:

Listing 5: ../Source/underlying/binom.h [Line 4 to 14]

struct IP_Binom

{
double S0;
unsigned int N;
vector<double> dt;
double U;
double Dj;
double r;

};

typedef struct IP_Binom IP_Binom;

Paramater | Meaning

S0 Initial Stock Value

N Number of time steps

dt vector of time gaps

U Up step multiplier

D Down step multiplier

r Annual continuously compounded interest rate

The size of dt can be either one or N. If it is one, all of the time steps are
equal, otherwise the vector specifies the gap between each time step. For binom
the size must be one.

Note that these input parameters are specific for binom and they will be
different for the other underlying types.

The signature, or format of the policy is shown below:

Listing 6: ../Source/underlying/binom.h [Line 18 to 34]

/% Binom *kkkkkkkkkkkkkkKKKKKK]

class Binom

1
protected:

3See [7] for explanation of the formulas used

3 STRUCTURE OF THE LIBRARY

Listing 6: ../Source/underlying/binom.h [Line 18 to 34] (continued)

static const
static const
static const
static const
static const

unsigned int Q = 2;

int I = 1;
int J = 1;
int K = 0;

bool recomb = true;

vector< vector<double> > M;
vector< vector<double> > P;
vector< double > disc;

double SO0;

unsigned int N;
vector<double> dt;

10

Paramater | Meaning Value

Q Number of children per node 2

I Size of 1st dimension of M 1

J Size of 1st dimension of J 1

K Size of 1st dimension of disc 0

recomb True if can be stored in matrix true

M Matrix of multipliers to price stock MJ0][0] = D, M[0][1] = U

P Up and down probabilities calculated from input parameters
disc Annual continuously compounded interest rate | calculated from input parameters

Where SO, N and dt are simply copied from the passed input parameters.
Unlike the input parameters, the table above describes the format of the
policy. Every new policy must implement the above variables.

3.1.1 Implementing another underlying

Let’s say we want to implement another underlying called newUnderlying. Ev-
erything in the left margin in text typeset is the actual code for the new under-
lying. T will present some code and explain it. If you take this code, you will
have a (uninteresting) new underlying. You will place the code in the library in
the Source/underlying subdirectory to make it available for finance++.

The first step is developing the input parameters this underlying needs from

the user to operate.

You would create a regular C structure and name it

IP_newUnderlying. You must name the input parameters IP_newUnderlying
for reasons which will be discussed later.
Let’s pretend that the input parameters are similar to Binom:

struct IP_newUnderlying

{
double SO;

unsigned int N;

3 STRUCTURE OF THE LIBRARY 11

vector<double> dt;
double r;
};

You also need to typedef the structure, otherwise pricing will have prob-
lems:

typedef struct IP_newUnderlying IP_newUnderlying;

Now, as discussed in the previous section, you must implement several vari-
ables as protected class variables, otherwise it will not compile.

Let’s pretend that those necessary variables (Q, I, J, K, recomb, M, P, disc,
S0, N and dt) are similar to Binom as well:

class newUnderlying

{

protected:

static const unsigned int Q = 2;
static const int I = 1;

static const int J = 1;

static const int K 0;

bool recomb;

vector< vector<double> > M;
vector< vector<double> > P;
vector< double > disc;

double SO0;
unsigned int N;
vector<double> dt;

This declaration is required in all underlyings, including our new one newUnderlying.
Notice that the variables may have different values (Q for a trinomial underlying
would be 3).

Now, we will continue on with defining our underlying class. Here we define
the constructor which is the only function in the class which is defined for an
underlying. In the constructor, you perform any input validation (eg. N must
be less than 16, vector dt cannot be larger than 1, etc.) with a simple if
statement and print a message to stderr and then returning to the calling
code. Additionaly, you perform any calculations and set the vectors of M, P
and disc accordingly.

Let’s pretend that our input validation consists of ensuring that the vector
dt in the input paramaters is no larger then 1:

public:
newUnderlying (IP_newUnderlying inIP)

3 STRUCTURE OF THE LIBRARY 12

{

// dt can only have just one element

if(inIP.dt.size() > 1)

{
fprintf (stderr, "newUnderlying, invalid dt size %d, must be 1.\n", inIP.dt.size());
return;

¥

Now, we are finished our input validation. The underlying needs to set the
hardcoded recomb variable to true or false. Let’s pretend that newUnderlying
is always recombining (ie. it may be stored in a matrix):

recomb = true;

At this point, we simply copy over the SO, N and dt values from the input
parameters:
SO = inIP.SO;

N = inIP.N;

dt = vector<double>(inIP.dt.size());
dt[0] = inIP.d4t[0];

Now, we simply fill in the M, P and disc vectors according to the model for
this underlying (for which this fictional one has hardcoded values, in reality it
will have some kind of mathematical formula here):

vector<double> vd = vector<double>(2);

// £ill in the M vector

vd[0]

0.9; // Di
vd[1] = 1.1

; // Ui

M.push_back(vd) ;
// £ill in the P vector
vd = vector<double>(2);

vd[0]
vd[1]

0;
1

3 STRUCTURE OF THE LIBRARY 13

P.push_back(vd) ;

disc.push_back(pow(M_E, (-inIP.r) * dt[i]));
}
}

And that’s it. You should now be able to use this underlying (assuming,
of course, it is in a file named newUnderlying.h in the Source/underlying
subdirectory.

3.2 Data Structure Type
There are two data structure types:
e Tree
e Matrix

This policy takes two template arguments which specify policies it uses.
They are:

1. Type

e Complete
This holds the entire data structure for an underlying in memory.

e Empty
This holds the entire data structure for a derivative in memory. Is it
identical to a Complete tree with the exception that after initializa-
tion, all node values are 0.0 in the tree.

e MemorySaving
This is used for a partial tree for both the underlying and derivative.

2. UnderlyingType

How to actually calculate the underlying. The only choice ismultiplicative.

Note that the data structure types are implemented in the file dstruct.h.
The following will explain the code in that file only.

The MemorySaving version of the two data types are implemented in pricing.h
and will be explained in that section.

Also, please note that any calculation code in dstruct.h is only responsible
to calculate the underlying. The calculation code for the derivative is contained
in pricing.h and will be explained in that section.

3.2.1 Tree

A tree consists of tree nodes. A tree node is defined as:

3 STRUCTURE OF THE LIBRARY 14

Listing 7: ../Source/treenode.h [Line 2 to 10]

template <class T>
class TreeNode

{

public:
T value;
unsigned int depth; // 0 .. N, the current depth of this node
unsigned int childNum; // which child # of the parent this node is
vector<TreeNode<T> *> children;

};

The type T used in martingalePricing is double.
The protected variables in the tree are shown below:

Listing 8: ../Source/dstruct.h [Line 138 to 141]

protected:
TreeNode<double> #*sRoot_;
BreadthFirstIterator<double> *sBreadthFirstlIter_;
PostOrderIterator<double> *sPostOrderIter_;

There are access methods for the iterators:

Listing 9: ../Source/dstruct.h [Line 171 to 179]

BreadthFirstIterator<double> *GetBreadthFirstIterator(void)
{

return sBreadthFirstIter_;

}

PostOrderIterator<double> *GetPostOrderIterator(void)
{

return sPostOrderIter_;

}

For a complete tree, the constructor code is shown below:

Listing 10: ../Source/dstruct.h [Line 146 to 155]

Tree(int inQ, double SO, int N, vector<vector<double> >M, TFunctor *inVisitListener)

{
Constr(inQ);
sRoot_->value = S0;

UpdateCalc(N, 0, sRoot_, M);

sBreadthFirstIter. = new BreadthFirstIterator<double>(sRoot_, degree.);
sPostOrderIter. = new PostOrderIterator<double>(sRoot_, degree_, inVisitListener);

3 STRUCTURE OF THE LIBRARY 15

Listing 10: ../Source/dstruct.h [Line 146 to 155] (continued)

The first four arguments are from the underlying and the final argument is
a pointer to a member function (a functor) which is called every time the Post
Order Iterator visits a new node. This is needed to price path dependent deriva-
tives which will be discussed in the pricing.h section. Also see appendices B
and C for more information.

Constr is defined to be:

Listing 11: ../Source/dstruct.h [Line 40 to 51]

void Constr(int inQ)

{

degree_ = inQ;

sRoot_ = new TreeNode<double>;
sRoot_->value = 0.0;
sRoot_->childNum = 0;
sRoot_->depth = 0;

sBreadthFirstIter_ = NULL;
sPostOrderIter_ = NULL;

The code which calculates the underlying tree values is shown below:

Listing 12: ../Source/dstruct.h [Line 55 to 72]

void UpdateCalc(int N, int depth, TreeNode<double> *node, vector< vector<double> > M)

{
if (depth == N)
return;

node->children = vector<{TreeNode<double> *>(degree_);

for(int ¢ = 0; c < degree_; c++)
{
node->children[c] = new TreeNode<double>();

node->children[c]->value = underlyingChildValue(node->value, c, depth, M);
node->children[c]->childNum = c;
node->children[c]->depth = depth+1;

UpdateCalc(N, depth+1l, node->children[c], M);
}
T

This code is simply recursive code which allocates memory for each new
depth of the tree and calls underlyingChildValue for each newly created tree
node.

3 STRUCTURE OF THE LIBRARY 16

underlyingChildValue is defined in multiplicative.h as:

Listing 13: ../Source/multiplicative.h [Line 3 to 22]

struct Multiplicative

{

/* returns the stock value for a child given:

parent is the parent’s stock value
c is the requested child # stock value

M is the vector of factors (of size [N][Q] if time dependent,

*

*

* T is the current time step
*

* otherwise size [1][Q])

double underlyingChildValue(double parent, int c, int T, vector<vector<double> > M)

{
assert((unsigned int)c < M[0].size());

if(M.size() > 1) // is M time dependent?
return parent * M[T][c];
else
return parent * M[0][c]; // no, use Oth vector for multiplicative factor
}

};

The complete tree also contains a function called dumpNodes which uses the
gd library to render the tree as a png image file.

An empty tree is identical to a Complete tree with the exception that
underlyingChildValue is not called when the tree is created. This means
that all of the node values are set to 0.0 after initialization. This type of tree is
used by pricing.h to hold a complete tree derivative in memory.

It’s constructor is defined to be:

Listing 14: ../Source/dstruct.h [Line 159 to 167]

Tree(int inQ, int inN)
{
Constr(inQ);

UpdateEmpty(inN, 0, sRoot.);

sBreadthFirstIter_. = new BreadthFirstIterator<double>(sRoot_, degree.);
sPostOrderIter. = new PostOrderIterator<double>(sRoot_, degree_, NULL);

Where UpdateEmpty is:

3 STRUCTURE OF THE LIBRARY 17

Listing 15: ../Source/dstruct.h [Line 76 to 95] (continued)

Listing 15: ../Source/dstruct.h [Line 76 to 95]

void UpdateEmpty(int N, int depth, TreeNode<double> *node)
{
if (depth == N)
return;

node->value = 0.0;
node->children = vector<TreeNode<double> *>(degree_);

for(int ¢ = 0; c < degree_; c++)
{
node->children[c] = new TreeNode<double>();
node->children[c]->value = 0.0;
node->children[c]->childNum = c;
node->children[c]->depth = depth+1;

UpdateEmpty(N, depth+1l, node->children[c]);
}
T

3.2.2 Matrix

A complete matrix is simply a vector of other vectors. The height of the matrix
is initially one, to hold the root value. Then, it grows by either one or two
depending on if it is binomial or trinomial, respectively.

Here is how the matrix is implemented:

Listing 16: ../Source/dstruct.h [Line 250 to 251]

protected:
vector< vector< MatrixNode <double> *> > jag_;

Each node in the matrix is held in a simple data structure:

Listing 17: ../Source/dstruct.h [Line 227 to 232]

template <class T>
class MatrixNode
{
public:
T value;

};

3 STRUCTURE OF THE LIBRARY 18

Listing 17: ../Source/dstruct.h [Line 227 to 232] (continued)

Each matrix has access methods:

Listing 18: ../Source/dstruct.h [Line 419 to 432]

void Set(int col, int row, double inValue)
{
jag-[col]l [row]->value = inValue;

}

double Get(int col, int row)
{
return jag_[col] [row]->value;

}

unsigned int Height(int col)
{
return jag_[col].size();

}

As with the tree, there are two different variations of the matrix, a complete
one which holds the underlying and an empty one which holds the derivative.
The empty matrix is identical to a complete matrix with the exception that at
initialization time, all nodes have 0.0 in them.

The complete matrix constructor is defined as:

Listing 19: ../Source/dstruct.h [Line 298 to 334]

Matrix(int inQ, double SO, unsigned int inN, vector<vector<double> >M)
{
MatrixNode<double> #*node = new MatrixNode<double>;
vector<MatrixNode<double> *> column = vector<MatrixNode<double> *>(1);

Constr(inQ);

// set the root node value.
jag-[0][0]->value = SO;

unsigned int columnHeight;
// now add the remaining nodes
for(unsigned int columnNum = 1; columnNum < inN+1; columnNum++)
{
columnHeight = 1 + columnNum * (inQ-1);
column = vector<MatrixNode<double> *>(columnHeight);

for(int rowNum = columnHeight - 1; rowNum >= 0; rowNum--)
{

node = new MatrixNode<double>;

3 STRUCTURE OF THE LIBRARY 19

Listing 19: ../Source/dstruct.h [Line 298 to 334] (continued)

unsigned int sRowNum = rowNum;

if (sRowNum == 0)
node->value = underlyingChildValue(jag_[columnNum-1][0]->value, 0, columnNum, M);
else if(sRowNum >= jag_[columnNum-1].size())
node->value = underlyingChildValue(jag_[columnNum-1][jag_[columnNum-1].size() - 1]->value,
sRowNum - jag_[columnNum-1].size() + 1, columnNum, M);
else
node->value = underlyingChildValue(jag-[columnNum-1][sRowNum - (sRowNum % inQ)]->value,
sRowNum % inQ, columnNum, M);

column[rowNum] = node;

jag-.push_back(column);
}
}

The empty matrix constructor is:

Listing 20: ../Source/dstruct.h [Line 271 to 294]

Matrix(int inQ, unsigned int inN)
{
Constr(inQ);

MatrixNode<double> #*node;
vector<MatrixNode<double> *> column;

unsigned int columnHeight;
for(unsigned int columnNum = 1; columnNum < inN+1; columnNum++)
{
columnHeight = 1 + columnNum * (inQ-1);
column = vector<MatrixNode<double> *>(columnHeight);

for(unsigned int rowNum = 0; rowNum < columnHeight; rowNum++)

{

node = new MatrixNode<double>;

node->value = 0.0;
column[rowNum] = node;

jag-.push_back(column);
}
¥

Where Constr is:

3 STRUCTURE OF THE LIBRARY 20

Listing 21: ../Source/dstruct.h [Line 255 to 267]

public:
void Constr(int inQ)
{
degree_ = inQ;

MatrixNode<double> *node = new MatrixNode<double>;
vector<MatrixNode<double> *> column = vector<MatrixNode<double> *>(1);

// add the root node first.
node->value = 0.0;
column[0] = node;
jag-.push_back(column);

3.3 Derivative Type
There are two different types of derivatives:

e Non Path Dependent

These derivatives do not care about the path taken to calculate the deriva-
tive at a particular node. They can be held in both trees and matrices.

e Path Dependent

These derivatives need path information to calculate the value of the
derivative at a node. They can only be held in trees, since matrices do
not have a concept of an individual path to a node.

Derivatives are implemented as policies. The basic structure of every deriva-
tive is:

struct DerivativeName
{
bool pathDependent;

void derivativeInit(unsigned int N)

{
}

void visitStock(unsigned int depth, unsigned int c, double inStockValue)

{
}

3 STRUCTURE OF THE LIBRARY 21

double pay0ff (double K, double inStockValue)
{

}

double derivativeValue(stack<double> *childStack, unsigned int T,
vector< vector<double> > P, vector<double> disc,
double K, double stockValue)
{

}
};

bool pathDepedent is set to either true or false, depending on the deriva-
tive.

void derivativeInit(unsigned int N) is called by pricing before any
other functions. Since the policies are implemented in structures, this is where
the pathDependent variable can be set to true or false (as a hardcoded value).
Path Dependent derivatives may also need to know N before they start, so it is
provided here.

void visitStock(unsigned int depth, unsigned int c, double inStockValue)
is for path dependent derivatives. It is called by pricing when a tree is used
and nodes are visited. Notice that pricing uses a post order traversal to travel
through the tree and visitStock is only called when nodes are advanced to,
so visitStock is not called for each individual path. That would be unnecessary
since the derivative needs to be aware that pricing uses a post order traveral
and it can figure out the path to each node by understanding how visitStock
is called.

Take for example, the tree in the included file ecall-derivative.png

Here is the order that visitStock will be called:

3 STRUCTURE OF THE LIBRARY 22

inStock Value
100.00
90.91
82.65
75.13
90.91
100.00
90.91
110.00
110.00
100.00
90.91
110.00
121.00
110.00
133.10

)
=S

=
=

L N W| W[N W W N W W N—O
=l K=l Y W Nenl Ren) N B e d NE B Ren] Neo) Renl Neanl I oY

double pay0ff (double K, double inStockValue) is called when pricing
is at an end node. pay0ff returns the value of the derivative at this node, where
K is the derivative parameter and inStockValue is the value of the stock at the
corresponding end node.

double derivativeValue(stack<double> *childStack, unsigned int T,
vector< vector<double> > P, vector<double> disc, double K, double stockValue)
is called when pricing is not on an end node. This function returns the value
of the derivative at this node. The paramaters are:

Name Meaning

childStack | The child nodes of this derivative node

T Current time step

P vector of derivative probabilities

disc Discounted interest rate

K Derivative paramater

stockValue | Value of the stock at the corresponding node

Notice that it is this functions responsibility to pop the children nodes off
of childStack when it is done with them.
Below is the entire European Call derivative. It is not path dependent.

Listing 22: ../Source/derivative/europeanCall.h [Line 3 to 53]

struct EuropeanCall
{
bool pathDependent;

void derivativeInit(unsigned int N)

{

3 STRUCTURE OF THE LIBRARY 23

Listing 22: ../Source/derivative/europeanCall.h [Line 3 to 53] (continued)

pathDependent = false;

return;

3

void visitStock(unsigned int depth, unsigned int c, double inStockValue)

{

return;

}

double payOff(double K, double inStockValue)

{
return MAX(0.0, inStockValue - K);

}

double derivativeValue(stack<double> *childStack, unsigned int T, vector< vector<double> > P,
vector<double> disc, double unusedl, double unused2)

{
int pindex; // indez into first vector of P
// needed because P might be time dependent or time independent
if(P.size() > 1) // is P time dependent?
pindex = T;
else
pindex = 0;

double derivativeValue = 0.0;
for(int childNum = P[pindex].size() - 1; childNum >= O; childNum--)
{
derivativeValue += childStack->top() * P[pindex][childNum];

childStack->pop();
}

double r;

if(disc.size() > 1) // is R time dependent?

r = disc[T];
else
r = disc[0];

return r * derivativeValue;
}
};
Notice that for visitStock this derivative simply returns. Since it is not
path dependant, it has no need to keep track of any path information.

3 STRUCTURE OF THE LIBRARY 24

Also notice that the European Call has no early exercise condition, so it
ignores the last two arguments given to it in derivativeValue.

For a derivative with an early exercise (American Put), it simply uses the
last two variables, K and stockValue where the return value changes from the
European Call:

return r * derivativeValue;
to computing a maximum in the return value:
return MAX(r * derivativeValue, K - stockValue);

Compare this derivative to a path dependent one, the Average Strike Euro-
pean Call:

Listing 23: ../Source/derivative/averageStrikeEuropeanCall.h [Line 2 to 64]

struct AverageStrikeEuropeanCall
{
bool pathDependent;

double stockSum;
unsigned int averageStrikeN;

void derivativeInit(unsigned int N)
{
stockSum = 0.0;

averageStrikeN = N + 1;

pathDependent = true;
}

double payOff(double K, double inStockValue)
{
double returnValue;
returnValue = MAX(0.0, inStockValue - (stockSum / (double)averageStrikeN));
stockSum -= inStockValue;
return returnValue;
double derivativeValue(stack<double> *childStack, unsigned int T, vector< vector<double> > P,

vector<double> disc, double K, double stockValue)

int pindex; // indez into first vector of P

// needed because P might be time dependent or time independent

O

3 STRUCTURE OF THE LIBRARY 25

Listing 23: ../Source/derivative/averageStrikeEuropeanCall.h [Line 2 to 64] (continued)

if(P.size() > 1) // is P time dependent?
pindex = T;

else
pindex = 0;

double derivativeValue = 0.0;

for(int childNum = P[pindex].size() - 1; childNum >= 0; childNum--)
{
derivativeValue += childStack->top() * P[pindex][childNum];

childStack->pop();
}

double r;

if(disc.size() > 1) // is R time dependent?
r = disc[T];

else
r = disc[0];

stockSum -= stockValue;

return r * derivativeValue;

}

void visitStock(unsigned int depth, unsigned int c, double inStockValue)
{
stockSum += inStockValue;
}
};

The Average Strike European Call needs to have the sum of all the nodes
along the path to an end node (actually the average, but the sum is required
to calculate that). When visitStock is called, this derivative simply adds the
value of the stock to it’s own internal variable stockSum. After either of pay0ff
or derivativeValue is called, the derivative subtracts that stock value from
it’s sum, since that node has been visited.

3.3.1 Implementing another path dependent derivative

Let’s say we want to implement a barrier derivative, where the derivative pa-
rameter (K) represents a barrier and for any node along a path if the stock
in that path leading to that node goes below the barrier (K), the pay off is 0,
otherwise the derivative is a standard european one.

You would need to add another variable to this structure (let’s say it is a
stack called barrier which accepts integers). Initally, you put nothing on the
stack.

3 STRUCTURE OF THE LIBRARY 26

derivativeInit will need to be modified to accept two variables, N and K.
It does not right now - all that is sent is N. This change involves going through
pricing to send the parameter K along with N. The derivatives will have to be
changed as well to accept this new parameter (easy since they ignore it). When
derivativelnit sends K to this new barrier derivative, it copies the value to inside
the structure where it can further work with it.

Alternatively, visitStock can be modifed to pass K along with the depth, c
and inStockValue. This is more difficult, since it involves modifying the functor
to pass it. The memory saving tree algorithm in pricing would have to be
modified as well, but that is far easier then modifying the functor (for which
the complete tree uses).

Then, when visitStock is called, the code simply compares inStockValue with
K. If it has gone below (or above, depending on the derivative) it pushes a 0
onto the stack. Otherwise, it pushes a 1 on the stack.

When payOff or derivativeValue are called, the code will act like a european
option, except before returning it will have to examine the entire stack to see if
there is a 0 on it. If so, these functions return 0, otherwise (the stack contains
all ones), return the european value. Before returning (but after examining the
stack), pop the top value from the stack.

This approach should work for calculating a barrier derivative (although
it has not been implemented or tested). A naive approach would use a single
multiplier, changing it from 0 to 1 when the barrier is reached, but this approach
runs into problems because it is not trivial to change the 0 back to a 1 when
the path has gone away from the barrier.

3.4 Pricing

In martingalePricing, the code which calls the policies is called pricing and it
takes three different template arguments, where each template argument is a
policy. Here is how code outside the library will call pricing:

Pricing<UNDERLYING(Binom), Tree<Complete, Multiplicative>, EuropeanCall >

xderivative = new Pricing<UNDERLYING(Binom),
Tree<Complete, Multiplicative>, EuropeanCall >(param,

The first template argument specifies the desired underlying type (Binom,
Binom2, TimeHalvingTrinom). Notice that the type of underlying is passed to
an include macro called UNDERLYING, which is defined in pricing.h to be:

Listing 24: ../Source/pricing.h [Line 2 to 2]

#define UNDERLYING(type) type, IP_type

The purpose of this macro is to take one argument and expand it into two
arguments, where the first argument is left untouched and the new second ar-
gument is simply the name of the original argument with IP_ prepended to

100.0);

3 STRUCTURE OF THE LIBRARY 27

it. Without this macro, any code which calls pricing would need to specify
both the desired underlying type and the input parameter structure for that
underlying type. Since the input parameters for each underlying type must be
named IP_<name of underlying>, the UNDERLYING macro eliminates the need
for calling code to specify the input arguments structure type.

The next argument to pricing is the desired data structure. In the example
above, it is Tree<Complete, Multiplicative>. The data structure is a policy
which itself uses policies (Complete and Multiplicative). There are only two
choices for the data structure here:*

1. Tree
2. Matrix

The final argument to pricing is the desired derivative type. As listed in
the previous section, there are several choices:

e European Call
e European Put

American Put

o Average Strike European Call

o Average Strike American Put

Notice that it is only possible to run a path dependent derivative (Average
Strike European Call or Average Strike American Put) with a tree as the data
structure. An attempt to use a matrix will yield a run time error.

All of the work for calculating the derivative is done in the constructor.
Thus, after the piece of code in listing 24 runs, the variable derivative will
contain a priced derivative. Each type of data structure for pricing will include
the method getDerivativeRootValue which contains a double of the priced
derivative root. Other data structures may add additional access methods, see
the next sections.

Since there are four distinct algorithms that pricing works with, each one
will be described in a seperate section.

3.4.1 Complete Tree

Here is the code which calculates the derivative for a complete tree:

Listing 25: ../Source/pricing.h [Line 29 to 68]

public:
Pricing(inputParameters inParam, double K) : UnderlyingModel(inParam)

40f course, those policies themselves take policies

3 STRUCTURE OF THE LIBRARY 28

Listing 25: ../Source/pricing.h [Line 29 to 68] (continued)

{

derivativeInit(N);

specificFunctor_ = new TSpecificFunctor< Pricing<UnderlyingModel, inputParameters,
Tree<Complete, UnderlyingMethod>, DerivativeMethod> >(this, &DerivativeMethod::visitStock);

sTree_ = new Tree<Complete, UnderlyingMethod>(Q, SO, N, M, specificFunctor.);
dTree_ = new Tree<Complete, Empty>(Q, N);

TreeNode<double> #*sNode;
TreeNode<double> #*dNode;

PostOrderIterator<double> *ptrDPostOrderIter = dTree_->GetPostOrderIterator();
PostOrderIterator<double>& dPostOrderIter = *ptrDPostOrderIter;

PostOrderIterator<double> *ptrSPostOrderIter = sTree_->GetPostOrderIterator();
PostOrderIterator<double>& sPostOrderIter = *ptrSPostOrderIter;

stack<double> #*childStack = new stack<double>;
while(! sPostOrderIter.isDone() && ! dPostOrderIter.isDone())

sNode = *sPostOrderIter;
dNode = *dPostOrderIter;

if (sNode->children.size() == 0)
dNode->value = pay0ff(K, sNode->value);
else
dNode->value = derivativeValue(childStack, sNode->depth, P, disc, K, sNode->value);

childStack->push(dNode->value);

++sPost0rderIter;
++dPost0rderIter;

rootDval = dNode->value;

}

Intially, the algorithm registers a functor with the post order iterator for the
stock®. This is necessary so that the visitStock method of the derivative can
be called. Notice that visitStock is not called by this code, as that is left for
the post order iterator to call when it advances over the tree.

As discussed earlier, to calculate the derivative a post order iterator is
used over the stock tree. Each time the iterator for the stock is advanced
(sPostOrderIter), the corresponding iterator for the derivative tree (dPostOrderIter)
is advanced so that they are both synchronized.

5See appendix B

3 STRUCTURE OF THE LIBRARY 29

When the algorithm starts off, the first node that the iterator gives is
the extreme left child of the tree. The algorithm will then call the deriva-
tive method pay0ff for that node and push the returned result onto the stack
childStack which will be passed back to the derivative when derivativeValue
is called. When the post order iterator returns a parent node, the algorithm
calls derivativeValue and pushes that result on the stack childStack.

Once the post order iterator runs out of nodes, the variable dNode holds the
root derivative value which is copied to the variable rootDval where it is ready
to be returned to calling code through getDerivativeRootValue.

Pricing provides several access methods for outside code to examine both
the derivative and stock. The methods are:

e double getDerivativeRootValue(void) - returns the root value of the
derivative. All algorithms provide this method.

e PostOrderIterator<double>& getStockPostOrderIterator(void) -re-
turns a post order iterator over the stock tree.

e PostOrderIterator<double>& getDerivativePostOrderIterator (void)
- returns a post order iterator over the derivative tree.

e BreadthFirstIterator<double>& getStockBreadthFirstIterator(void)
- returns a breadth first iterator over the stock tree.

e BreadthFirstIterator<double>& getDerivativeBreadthFirstIterator (void)
- returns a breadth first iterator over the derivative tree.

If graphics were enabled, then the following two additional methods are
available:

e graphStock(char *fname, unsigned int width, unsigned int height)
- plots the stock using the gd library to a png file.

e graphDerivative(char *fname, unsigned int width, unsigned int height)
- plots the derivative using the gd library to a png file.

Graphic example

For example, say you have a stock that you wish to dump to a file named
stock.png with width of 800 pixels and height of 600 pixels. After you run
pricing and have a pricing variable to work with (eg. the variable is called
derivative), the following code will work:

derivative->graphStock("stock.png", 800, 600);

3.4.2 Memory Saving Tree

The memory saving tree algorithm uses two stacks: one for the stock values and
another for the derivative values.

3 STRUCTURE OF THE LIBRARY 30

Listing 26: ../Source/pricing.h [Line 140 to 162]

public:
Pricing(inputParameters inParam, double inK) : UnderlyingModel(inParam),
Tree<MemorySaving, UnderlyingMethod>()
{

K = inK;

sRoot_ = new TreeNode<double>();
sRoot_->value = S0;

stack<double> stock;
stack<double> derivative;

derivativeInit(N);

stock.push(S0);
visitStock(0, 0, stock.top());

createTree(&stock, &derivative, 0);
rootDval = derivative.top();

return;

}

Where createTree is defined as a recursive function® which simply does a
post order traversal over a non-existant tree all the while keeping the stack for
the stock and derivative in sync and updated. Since this code does not use an
interator like the complete tree does, it is responsible for calling the visitStock
derivative function.

The memory saving tree algorithm only provides the following access method:

e double getDerivativeRootValue(void) - returns the root value of the
derivative. All algorithms provide this method.

3.4.3 Complete Matrix

The complete matrix algorithm performs two checks before it calculates the
derivative:

1. The underlying must be recombining

2. The derivative must not be path dependent

If either of the two conditions are not met, the algorithm prints out a message
to stderr and returns back to the calling code without calculating anything.

8 Although difficult, it is possible to do this iteratively, see appendix A

3 STRUCTURE OF THE LIBRARY 31

Listing 27: ../Source/pricing.h [Line 212 to 258]

public:
Pricing(inputParameters inParam, double K) : UnderlyingModel(inParam)

{

derivativeInit(N);
rootDval = 0.0;

if (! recomb)
{
fprintf(stderr, "Error: cannot run a non-recombining underlying on a matrix\n");
return;

}

if (pathDependent)
{

fprintf(stderr, "Error: cannot run a path dependent derivative on a matrix\n");

return;

X

sJag. = new Matrix<Complete, UnderlyingMethod>(Q, SO, N, M);
dJag_ = new Matrix<Complete, Empty>(Q, N);

stack<double> *Stk = new stack<double>();

for(unsigned int colNum = N; ;colNum--)

{
for(unsigned int rowNum = 0; rowNum < sJag_->Height(colNum); rowNum++)
{
if(colNum == N)
dJag_->Set(colNum, rowNum, payO0ff(K, sJag_->Get(N, rowNum)));
else

{
for(unsigned int childNum = 0; childNum < Q; childNum++)
Stk->push(dJag_->Get(colNum + 1, rowNum + childNum));

dJag_->Set(colNum, rowNum, derivativeValue(Stk, colNum, P, disc, K,
sJag_->Get(colNum, rowNum)));

if(colNum == 0)
break;

}

rootDval = dJag ->Get(0, 0);
T

3 STRUCTURE OF THE LIBRARY 32

Listing 27: ../Source/pricing.h [Line 212 to 258] (continued)

The algorithm then starts in the rightmost column and calls the derivative
method pay0ff to calculate the end nodes of the derivative.

Then the algorithm moves one column to the left and calculates the value
of the derivative at the current node by pushing it’s two ”children” nodes in
the column to the right onto the stack Stk where it is passed to the derivative
method derivativeValue.

The algorithm repeats the above until the reaches the leftmost column of the
matrix. At that point the node in the lower left corner of the matrix represents
the “root” node of the matrix and its value is copied to rootDval where it can
be returned by the access method getDerivativeRootValue.

Technical note: The reason for the strange for loop exit condition is caused
by the fact that the control variable colNum is held in an unsigned int where
it is not permitted to go negative, so the check for the exit has to be at the
bottom of the loop.

The following access methods are provided by the complete matrix pricing
algorithm:

e double getDerivativeRootValue(void) - returns the root value of the
derivative. All algorithms provide this method.

e double getStockValue(unsigned int col, unsigned int row) - returns
the stock value in the given column and row of the matrix

e double getDerivativeRootValue(void) - returns the derivative value
in the given column and row of the matrix

If graphics were enabled, then the following two additional methods are
available:

e graphStock(char *fname, unsigned int width, unsigned int height)
- plots the stock using the gd library to a png file.

e graphDerivative(char *fname, unsigned int width, unsigned int height)
- plots the derivative using the gd library to a png file.

3.4.4 Memory Saving Matrix

The memory saving matrix performs the exact same two checks as the complete
matrix does (see above).

This algorithm is the only one where the underlying and the derivative are
not stored in the same data structures. In this algorithm, the stock is stored
in a complete matrix because there is no efficent formula to calculate the value
of the stock in the matrix on the fly. Thus, it is necessary to store the entire
matrix for the stock. The derivative is temporarily held in a STL queue of size

Q.

3 STRUCTURE OF THE LIBRARY 33

Listing 28: ../Source/pricing.h [Line 304 to 375]

public:
Pricing(inputParameters inParam, double K) : UnderlyingModel(inParam)
{

derivativeInit(N);
rootDval = 0.0;

if(! recomb)

{
fprintf(stderr, "Error: cannot run a non-recombining underlying on a matrix\n");
return;

}

if (pathDependent)

{
fprintf(stderr, "Error: cannot run a path dependent derivative on a matrix\n");
return;

}

sJag_ = new Matrix<Complete, UnderlyingMethod>(Q, SO, N, M);
queue<double> *Que[Q];

for(unsigned int i = 0; i < Q; i++)

Que[i] = new queue<double>();
stack<double> *Stk = new stack<double>();
double dVal;

for(unsigned int colNum = N; ;colNum--)
{
for(unsigned int rowNum = 0; rowNum < sJag ->Height(colNum); rowNum++)
{
if(colNum == N)
dVal = pay0ff(K, sJag_->Get(N, rowNum));
else
{
for(unsigned int childNum = 0; childNum < Q; childNum++)
{
Stk->push(Que [childNum]->front());
Que [childNum]->pop();
T

dVal = derivativeValue(Stk, colNum, P, disc, K, sJag ->Get(colNum, rowNum));

3 STRUCTURE OF THE LIBRARY 34

Listing 28: ../Source/pricing.h [Line 304 to 375] (continued)

if (rowNum == 0)
Que [0]->push(dVal);
else if(rowNum == sJag ->Height(colNum)-1)
Que[Q-1]->push(dVal);
else if((rowNum == 1) && Q == 3)
{
Que [0]->push(dVal);
Que[1]->push(dVal);
}
else if((rowNum == sJag_->Height(colNum)-2) && Q == 3)
{
Que[Q-1]->push(dval);
Que[1]->push(dVal);
}
else
for(unsigned int childNum = 0; childNum < Q; childNum++)
Que [childNum] ->push(dVal) ;
}

if(colNum == 0)
break;

}

rootDval = dVal;
}

This algorithm is bit complicated, since it uses a queue to keep track of
the derivative values. This queue is used by the algorithm to keep track of the
”children” of nodes in the derivative. This is complicated since children nodes
in a matrix can have up to 3 parents (when Q is 3), but not every child node
has this situation, so the algorithm has to detect when a child node has only
one parent, two parents, etc. and set up the queue appropiately.

Otherwise, this algorithm proceeds in a similar structure as the complete ma-
trix one does, starting with the rightmost column in the matrix and proceeding
to the left. A major difference is that when calling derivativeValue where a
stack of child node values is required, this algorithm cannot simply consult the
derivative matrix, since it does not exist. Thus a queue is used which holds
the child node values, and these queue values are pushed into a stack which is
passed to derivativeValue.

The memory saving matrix algorithm only provides the following access
method:

e double getDerivativeRootValue(void) - returns the root value of the
derivative. All algorithms provide this method.

A POST ORDER TRAVERSAL CODE 35

A Post Order Traversal Code

Included here is code which does both a recursive and iterative post order traver-
sal of an imaginary tree (one where there is no data structure present).

Please note that the iterative memory saving code is not present in martin-
galePricing. Right now, it is simply recursive post order tree traversal.

By carefully seeing the similarities of the recursive code presented here with
the current memory saving tree algorithm, it is not terribly difficult to convert
the recursive code over to an iterative version since the algorithm for an iterative
post order tree traversal is shown below.

Listing 29: postorder.cpp [Line 2 to 91]

// post order tree traversal

#include <stack.h>
#include <stdio.h>

void iterative(unsigned int Q, unsigned int N);
void recursive(unsigned int Q, unsigned int N, unsigned int depth, unsigned int c);

main()

{

unsigned int Q =

I
N

unsigned int N = 4;

printf("Recursive traversal\n");

recursive(Q, N, 0, 0);

printf("Iterative traversal\n");
iterative(Q, N);

void recursive(unsigned int Q, unsigned int N, unsigned int depth, unsigned int c)

{
if(depth == N)
return;

for(unsigned int i = 0; i < Q; i++)

recursive(Q, N, depth+i, i);

printf("%d, %d\n", depth, c);
}

void iterative(unsigned int Q, unsigned int N)

{
stack<unsigned int> *c = new stack<unsigned int>();
unsigned int tmpInt;

A POST ORDER TRAVERSAL CODE 36

Listing 29: postorder.cpp [Line 2 to 91] (continued)

printf("jd, %d\n", 0, 0);

for(unsigned int i = 0; i < N-1; i++)

{
if(i == N-3)
{
printf("jd, 0\n", c->size()+1);
c=>push(1);
}
else
{
c->push(0);
if(i !'= N-2)
printf("jd, %d\n", c->size(), c->top());
}
}

while(!c->empty())
{
printf("%d, 7%d\n", c->size(), c->top());

tmpInt = c->top();
c=>pop();
c->push(tmpInt + 1);

if(c->top() > Q-1)
{
c=>pop();

while(!c->empty() && c->top()+1 > Q-1)

{
printf("jd, jd\n", c->size(), c->top());
c->pop();

T

if (c->empty())

{
printf£("0, 0\n");
return;

T

printf("/d, %d\n", c->size(), c->top());

tmpInt = c->top();
c->pop();
c->push(tmpInt + 1);

A POST ORDER TRAVERSAL CODE

Listing 29: postorder.cpp [Line 2 to 91] (continued)

for(unsigned int i = c->size(); i < N-1; i++)
c->push(0);

37

B TREE ITERATORS 38

B Tree Iterators
B.1 Breadth First Iterator

The BreadthFirstIterator implements a tree breadth first iterator using a
queue from the Standard Template Library:

Listing 30: ../Source/iterators.h [Line 8 to 22]

template <class NodeData>
class BreadthFirstIterator

{

private:
TreeNode<NodeData> *root;
unsigned int degree;
queue<TreeNode<NodeData> *> Q;

public:
BreadthFirstIterator(TreeNode<NodeData> *inRoot, unsigned int inDegree);
void Reset();
bool isDone();
TreeNode<NodeData> *operator*();
void operator++();

};

The empty arguments constuctor is not valid and throws an exception if
called. A BreadthFirstIterator object is instantiated by the Tree class only.
The Tree passes its root Node to the constructor of the BreadthFirstIterator
which is defined as follows:

Listing 31: ../Source/iterators.h [Line 50 to 56]

template <class NodeData>
BreadthFirstIterator<NodeData>::BreadthFirstIterator(TreeNode<NodeData> *inRoot, unsigned int inDegree)
{
degree = inDegree;
root = inRoot;
Q.push(root);
}

All this does is record the degree integer and root node pointer as well as
initializing the queue Q with the root node.

The Reset method simply empties the queue and places the root at the front
of the queue:

Listing 32: ../Source/iterators.h [Line 60 to 67]

template <class NodeData>
void BreadthFirstIterator<NodeData>::Reset()

B TREE ITERATORS 39

Listing 32: ../Source/iterators.h [Line 60 to 67] (continued)

{
while(!Q.empty())
Q.popQ);

Q.push(root);
}

The isDone method checks to see if the queue is empty:

Listing 33: ../Source/iterators.h [Line 71 to 75]

template <class NodeData>
bool BreadthFirstIterator<NodeData>::isDone()
{

return Q.empty();

}

The dereferencing operator of the iterator simply returns the head value of
the queue:

Listing 34: ../Source/iterators.h [Line 79 to 83]

template <class NodeData>
TreeNode<NodeData> #*BreadthFirstIterator<NodeData>::operator *()

{

return Q.front();

}

The increment operator removes the top node from the queue and the chil-
dren of that node are pushed into the queue. The if statement makes sure that
we do not try to push the children of a leaf node into the queue.

Listing 35: ../Source/iterators.h [Line 87 to 101]

template <class NodeData>
void BreadthFirstIterator<NodeData>::operator++()

{
TreeNode<NodeData> *head, *child;

head = Q.front();
Q.popO;

if(head->children.size() == degree)
for(unsigned int curDegree = 0; curDegree < degree; curDegree++)
{
child = head->children[curDegree];
Q.push(child);
¥

B TREE ITERATORS 40

Listing 35: ../Source/iterators.h [Line 87 to 101] (continued)

B.2 Post Order Tree Iterator

The PostOrderIterator implements a tree post order iterator using two stacks
from the Standard Template Library. It also allows a member function of an
object to register itself where it will be called whenever the iterator travels down
a path. This is used by path dependent derivatives to capture path information.

Listing 36: ../Source/iterators.h [Line 26 to 44]

template <class NodeData>

class PostOrderIterator

{

private:
TreeNode<NodeData> *root;
unsigned int degree;
stack<TreeNode<NodeData> *> §;
stack<int> curDegrees;
TFunctor *visitListener;

public:
PostOrderIterator(TreeNode<NodeData> *inRoot, unsigned int inDegree, TFunctor *inVisitListener);
void registerVisitListener(TFunctor *inVisitListener);
void Reset();
bool isDone();
TreeNode<NodeData> *operator*();
void operator++();
void dump();
};

The functor argument to the constructor is allowed to be null, in which
case the iterator will not call any function when it travels down a path.

As well, during the operation of the iterator, calling code may change or
unregister the listener functor by calling registerVisitListener:

Listing 37: ../Source/iterators.h [Line 120 to 124]

template <class NodeData>
void PostOrderIterator<NodeData>::registervisitListener(TFunctor *inVisitListener)

{
visitListener = inVisitListener;

}

One stack contains the nodes to return S while the second stack, curDegrees
contains integers indicating which children have been visited already, where 0
represents the left most child, 1 the child next to it, etc. S is populated by

B TREE ITERATORS 41

first pushing the root onto the stack, then by pushing the roots left most child,
followed by that childs leftmost child, etc., until the left most leaf in the tree
is reached. curDegrees is initially populated with one 0 for each node visited,
since only the left most node has been travelled to.

Thus if the top integer on the stack curDegrees contains a 1, this indicates
that for the node on the top of the stack S we have already visited its second
child (the one to the right of the leftmost child).

The Reset method does exactly what is described two paragraphs above, as
well it calls the functor (if registered) when it travels down a path:

Listing 38: ../Source/iterators.h [Line 128 to 154]

template <class NodeData>
void PostOrderIterator<NodeData>::Reset()

{
TreeNode<NodeData> *walker;

while(!curDegrees.empty())
curDegrees.pop();

while(!S.empty())
S.popQ);

for(walker = root; walker->children.size() == degree;
walker = walker->children[0])
{

if(visitListener)

(*visitListener) (walker);

S.push(walker) ;
curDegrees.push(0) ;
}

if(visitListener)
(*visitListener) (walker);

curDegrees.push(0);
S.push(walker) ;
}

The isDone method simply checks to see if the stack S is empty. It could
have also checked the stack curDegrees to see if it is empty, but since the two
stacks are always the same size, the code does not bother.

Listing 39: ../Source/iterators.h [Line 158 to 162]

template <class NodeData>
bool PostOrderIterator<NodeData>::isDone()
{

B TREE ITERATORS 42

Listing 39: ../Source/iterators.h [Line 158 to 162] (continued)

return S.empty();
}

The dereferencing operator of the iterator simply returns the top node on
the stack:

Listing 40: ../Source/iterators.h [Line 166 to 170]

template <class NodeData>
TreeNode<NodeData> *PostOrderIterator<NodeData>::operator *()
{

return S.top();

3

The increment operator pops the top element from both stacks and if the
stacks are empty, it stops. Otherwise, the new top of the stack curDegree
integer is incremented by one to indicate we are now visting the children to the
right of what was visited before. If this increment is greater then the degree of
the tree, then we have visited all of the children of this node, so we do nothing
leaving this node as the top of the stack.

If the increment is less then the degree of the tree, we still have children to
visit, so, just like the reset code, the leftmost children are pushed onto stack
S, and for each child child pushed a 0 is pushed onto the stack curDegrees
indicating we have only visited the leftmost children of these nodes.

Whenever a node is visited, the visit listener functor is called if registered.

This technique yields a post order iteration of the tree.

Listing 41: ../Source/iterators.h [Line 174 to 222]

/* This code is quite complicated, as it generally is expressed
* as a recursive function.

* We need two stacks: one for the objects themselves
* another to keep track of which child we’ve visited
*/

template <class NodeData>

void PostOrderIterator<NodeData>::operator++()

{
TreeNode<NodeData> *top, *walker;

unsigned int curDegree;

curDegrees.pop() ;
S.popQ);

if(S.empty())
return;

B TREE ITERATORS

Listing 41: ../Source/iterators.h [Line 174 to 222] (continued)

top = S.top();
curDegree = curDegrees.top();

if(top->children.size() != degree)
return;

curDegree++;

if (curDegree < degree)
{
curDegrees.pop();
curDegrees.push(curDegree) ;

for(walker = top->children[curDegree];
walker->children.size() == degree; walker = walker->children[0])
{
if(visitListener)
(*visitListener) (walker);

S.push(walker);
curDegrees.push(0);

}

if (visitListener)
(*visitListener) (walker);

S.push(walker) ;
curDegrees.push(0);
}

43

C FUNCTOR 44

C Functor

A functor is simply a pointer to a member function of an object.

In martingalePricing, functors are used by the post order iterator to call a
registered listener. As mentioned in the comments, the functor acts as a bridge
between the iterator (which deals with TreeNodes) and the derivative (which
deals with depth, child number and values).

Listing 42: ../Source/visitor.h [Line 2 to 41]

// see

// http://www.newty.de/CCPP/functor/functor.himl#chaptery

//

// chapter 5 of andrei ignored, since it is far too complicated
// for what is needed here.

// generic functor
// implementation class inherits from this, but this is passed to functions
class TFunctor
{
public:
virtual void operator()(TreeNode<double> *inNode) = 0;

};

// implementation class, the constructor takes a pointer to an object (pricing)

// and acts as a bridge between the iterator listener callback and

// the visitStock provided by one of the derivative classes (which is stored inside
// pricing)

template <class TClass> class TSpecificFunctor : public TFunctor

{

private:
void (TClass::*fpt)(unsigned int depth, unsigned int c, double inStockValue);
TClass *ptr20bject;

public:
TSpecificFunctor(TClass *inPtr20bject, void (TClass::*_fpt)(unsigned int depth, unsigned int c,
double inStockValue))

ptr20bject = inPtr20bject;
fpt = _fpt;
}

virtual void operator() (TreeNode<double> *inNode)

{
// translate the call from the callback from the iterator to the format
// ezpected by one of the derivative classes
(*ptr20bject.*fpt) (inNode->depth, inNode->childNum, inNode->value);

}

C FUNCTOR

Listing 42: ../Source/visitor.h [Line 2 to 41] (continued)

};

45

REFERENCES 46

References

[1] A. Alexandrescu, Modern C++ Design. Generic Programming and Design
Patterns Applied. Addison-Wesley, 2001.

[2] M.Avellaneda and P. Laurence, Quantitative Modeling of Derivative Secu-
rities. From Theory to Practice. Chapman and Hall, 2000.

[3] Les Clewlow, Chris Strickland, Implementing Derivatives Models. John Wi-
ley and Sons.

[4] S. Lippman and J. Lajoie, C++ Primer, 3rd. Edition. Addison-Wesley,
1998.

[5] B. Stroustrup, The C++ Programming Language, 3rd. Edition. Addison-
Wesley, 1997.

[6] P. Wilmott, J. Dewynne and S. Howison, Option Pricing. Mathematical
models and computation. Oxford Financial Press, 1993.

[7] S. Ferrando, Draft for martingalePricing V 0.6.1. Private Document, 2002.

