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A new simulation based algorithm to approximate prices of path dependent European
options is introduced. The algorithm is defined for tree-like approximations to the under-
lying process and makes extensive use of structural properties of the discrete approxima-
tion. We indicate the advantages of the new algorithm in comparison to standard Monte
Carlo algorithms. In particular, we prove a probabilistic error bound that compares the
quality of both approximations. The algorithm is of general applicability and, for a large
class of options, it has the same computational complexity as Monte Carlo.
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1. Introduction

The Monte Carlo (mc) technique is an important computational technique in fi-

nance (see, for example, [9] and [3]), in particular it can be used to estimate prices

of exotic options. Two key properties of this technique are: its general applicability

and the fact that error bounds are readily available. Due to its slow convergence sev-

eral speed up alternatives/improvements have also been extensively studied. In this

paper we present a general way of improving mc to approximate prices of path de-

pendent European options. Our approach is based on exploiting the lattice structure

of certain tree approximations to the underlying diffusion process. For simplicity,

we stay in the one dimensional case but indicate possible generalizations. In the

literature there are several numerical procedures to approximate prices of exotic

options, in general tree approximations have not been used for this task because

of the exponential explosion in the number of paths. There are exceptions to this

last remark, for example, the technique described in [8] is a dynamic programming
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technique, based on the space discretization of the state variables, that approxi-

mates the exact value on the binomial tree. There are other examples of the use

of binomial trees tailored to particular class of options ([10], [5]). Our technique is

completely different from these approaches, in particular, it offers a convenient way

to estimate the error. On the other hand, our technique does not readily apply to

American options.

Let n be the number of time steps discretizations, X will denote the payoff of a given

option and En(X) the expectation (with respect to probability measure p( )) on

the tree approximation. Assuming constant interest rate, the price in the continuos

model will be given by the following limit

Vt0(X) = e−r(t−t0) lim
n→∞

En(X). (1.1)

There are two problems with this approximation, the first one is how to compute

En(X) efficiently. The issue being that the discrete probability space is of size 2n

and a naive Monte Carlo algorithm on the tree converges too slowly. We show

by using examples that our main new algorithm reduces the standard error of

the Monte Carlo algorithm by orders of hundreds. This is achieved, for a large

class of options, without increasing the computational complexity. We also prove

probabilistic inequalities to support this excellent performance. These facts make

our techniques readily useful to compute efficiently and with error bounds the exact

price in the discrete model. The second problem implicit in (1.1) is how large we

should take n to get a good approximation to the left hand side. This problem has

been only recently thoroughly treated in the literature ( [7], [13] and [18]) for the

case of path independent options. In addition, there are several proposals to speed

up convergence for specific classes of path dependent options (see, for example,

[4], [16], [17]). We do not study this problem directly in our paper, but given its

crucial role we perform numerical experiments and indicate how our ideas could be

combined with some specific speed ups treated in the literature.

This article is organized as follows, in Sections 2 and 3 we present two algorithms

the second one builds on the first one and represents our main contribution. These

algorithms are presented in the context of binomial trees. Section 4 presents many

numerical examples some of them related to the speed of convergence of tree approx-

imations to the continuos model. Section 5 elaborates some computational issues.

Section 6 indicates generalizations beyond the binomial tree setting and indicates

how to combine our new algorithm with improved lattice methods described in the

recent literature. Section 7 summarizes the main features of our contributions. Fi-

nally, Section Appendix A proves a result needed in the paper and, for completeness,

presents the expressions for the estimates of the standard errors corresponding to

the new algorithms.



January 19, 2004 17:18 localizedMC

Localized Monte Carlo Algorithm to Compute Prices of Path Dependent Options on Trees 3

2. Localized Monte Carlo on Binomial Trees

For a fixed n let w = {w0, w1, . . . , wn−1} be a path with wi ∈ {d, u} where 0 < d <

1 < u, also let Ω be the space of all such paths. Ω is assumed to be a probability

space with probability measure p( ) (a more precise notation would be pn( ), but we

will not use it for simplicity). The underlying process is S(w) = {S0, S1, . . . , Sn},

with S0 fixed beforehand and Si+1 = Si wi, we may use the notation Si(w) when

convenient. We will also need the following notation, for a given A ⊆ Ω define

En,A(X) =
1

p(A)

∑

w∈A

X(w)p(w), (2.1)

we set En(X) = En,Ω(X) and pA(w) = p(w)/p(A). In the present context, payoffs

for path dependent european options are nonnegative functions X : Ω → R. For

example, the payoff function for an average asian strike is

X(w) = (Sn(w) − Average(w))+, (2.2)

Average(w) =
1

n + 1

n
∑

k=0

Sk(w). (2.3)

By defining the probability p( ) appropriately, the price in the continuos model

Vt0(X) at time t0 can be obtained by taking the limit of the following quantity,

Vt0(X, n) = er (t−t0)En(X), (2.4)

under the hypothesis of constant interest rates r. The Monte Carlo algorithm on

binomial trees (mcbt) is based directly on the law of large numbers

En(X) = lim
m→∞

1

m + 1

m
∑

q=0

X(wq), (2.5)

where the paths wq = {wq
0, w

q
1, . . . , w

q
n−1} are independent samples from p( ). For

later reference, it will be useful to formalize this last statement; to achieve this end,

assume there are independent random variables Un, defined on ([0, 1]N, λ) (where

N = {0, 1, 2, . . .}), uniformly distributed with respect to the Lebesgue product prob-

ability measure λ. In particular, we could take Un to be the coordinate projections

Uk : [0, 1]N → [0, 1] where Uk(x) = xk and x = {x0, x1, . . . , xk, . . .}. (2.6)

We will use W to denote a generic random variable implicit in the sampling of the

paths. More formally

W : [0, 1]n → Ω and λ(W−1(A)) = p(A) for any A ⊆ Ω. (2.7)

For given x ∈ [0, 1]N, setting wq = W (Uqn(x), . . . , U(q+1)n−1(x)), (2.5) becomes

En(X) = lim
m→∞

1

m + 1

m
∑

q=0

X(W (Uqn(x), . . . , U(q+1)n−1(x))), a.e. on [0, 1]N. (2.8)
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Let Ωi = {w : nu(w) = i} where nu(w) = |{k : 0 ≤ k < n, wk(w) = u}| and

|C| indicates the cardinality of a set C. The localized monte carlo algorithm (to be

defined shortly) uses the obvious decomposition

En(X) =

n
∑

i=0

p(Ωi) En,Ωi(X). (2.9)

Similarly as we did above, sampling in Ωi is formalized by the use of a generic

random variable

W i : [0, 1]n → Ωi ⊆ Ω and λ((W i)−1(A)) = pΩi(A) =
p(A)

p(Ωi)
for any A ⊆ Ωi.(2.10)

For given x ∈ [0, 1]N we set wq,i = {wq,i
0 , . . . wq,i

n−1} = W i(Uqn(x), . . . , U(q+1)n−1(x)).

We now give a precise description of the localized monte carlo algorithm (lmc):

• Inputs: n, m (number of simulations).

(1) Compute mi = m × p(Ωi), i = 0, . . . , n.

(2) Loop over the n + 1 sets Ωi, in each of them sample paths independently,

wq,i ∈ Ωi q = 1, . . . , mi. For each wq,i compute the monte carlo estimator on

Ωi

Amc,Ωi(X, mi) =
1

mi

mi
∑

q=1

X(wq,i). (2.11)

(3) Finally compute the lmc estimator on Ω by

Almc,Ω(X, m) =

n
∑

i=0

p(Ωi) Amc,Ωi(X, mi). (2.12)

Alternative versions of the algorithm are discussed in Section 6. For completeness

recall Chebychev’s inequality for the mcbt estimator, let ε > 0:

p(|
1

m

m
∑

q=1

X(wq) − En(X))| ≥ ε) ≤
varn(X)

m ε2
. (2.13)

An upper bound for the error of the lmc estimator is given by the following.

Proposition 2.1. We have the following basic facts

lim
m→∞

Almc,Ω(X, m) = En(X) (2.14)

and the estimator is unbiased, that is En(Almc,Ω(X, m)) = En(X). Moreover, for

any ε > 0 we have the following bound for the error,

p(|Almc,Ω(X, m) − En(X)| ≥ ε) ≤
1

m ε2

n
∑

i=0

(

p(Ωi) varn,Ωi(X)
)

= (2.15)
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1

m ε2



varn(X) −
1

2

n
∑

i=0

n
∑

j=0

[

p(Ωi) p(Ωj) (En,Ωi(X) − En,Ωj (X))2
]



 . (2.16)

Where varn,Ωi(X) = En,Ωi((X − En,Ωi(X))2).

Proof. The convergence follows from the law of large numbers. We notice that

En(Almc,Ω(X, m)) = En(X), we then apply Chebychev’s inequality to the random

variable Almc,Ω(X, m). This gives the first inequality after recolling that mi =

m×P (Ωi) and the fact that the random variables X(W i(Uqn( ), . . . , U(q+1)n−1( )))

are independent and hence uncorrelated. We now notice

n
∑

i=0

p(Ωi) varn,Ωi (X) = varn(X) + E2
n(X) −

n
∑

i=0

p(Ωi) E2
n,Ωi(X). (2.17)

Finally, the equality in (2.15) follows directly by an application of (A.1) by taking

in that equation pk = p(Ωk), vk = En,Ωk(X) and ||vk||2 = v2
k, k = 0, . . . , n (i.e.

q = n in (A.1)).

We will illustrate through numerical examples in the remaining of the paper that

lmc offers better performance than mcbt. It follows from the above result that the

reason for this improvement is that the options considered have small variances

varn,Ωi(X). The computational complexities of these two algorithms are the same.

3. Cyclic Shift Algorithm on Binomial Trees

Here we introduce our main contribution, the cyclic shift (cs) algorithm. It offers

better error performance than lmc and for a class of options, to be described in Sec-

tion 5, the number of function evaluations is of the same order as for lmc and mcbt.

We now embark on a series of definitions and propositions, some of these will form

the background of the cs algorithm. We provide partial arguments and references

for the simple proofs; the results are specializations of well known constructions in

ergodic theory and combinatorics.

Definition 3.1. A measurable transformation τ on a general measure space

(Ω,F , p) is called measure preserving if p(τ−1A) = p(A) for all A ∈ F .

In the present section, all sigma algebras F considered will be the power set of a

given finite base space, hence we will not mention F explicitly. Moreover, in this

setting, the condition p(τw) = p(w) is equivalent to τ being measure preserving.

Definition 3.2. Define the circular left shift τc (shift on a discrete circle) acting

on a path w = (w0, . . . , wn−1) as follows

τc(w) = (w1, w2, . . . , wn−1, w0). (3.1)

We denote with τk
c the composition of τc with itself k-times. Notice that this trans-

formation is invertible, τ−1
c is called the right shift.
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To define the cs algorithm, we will need to assume that τc preserves the given

probability measure on the tree. We will state explicitly when this condition is

nedeed to clarify its role.

Definition 3.3. For any w ∈ Ωi define the orbit of w by

Ωi
w = {τk

c w : k ∈ Z}. (3.2)

Also, define θi
w to be the smallest positive integer such that τ

θi
w

c w = w

Lemma 3.1.

Ωi
w = Ωi

w′ for any w′ in Ωi
w (3.3)

Ωi
w = {τk

c w : 0 ≤ k < θi
w}. (3.4)

|Ωi
w| = θi

w = θi
w′ for any w′ in Ωi

w, (3.5)

θi
w × |{τk

c : ∃ k; 0 ≤ k < n, τk
c w = w}| = n. (3.6)

Proof. The statements above are simple, well known, properties of orbits. See for

example [14].

Proposition 3.1. For each i the set Ωi satisfies the following properties: there

are unique sets Ωi
j and integers Ji which satisfy Ωi

j ⊆ Ωi, j = 1, . . . , Ji and

Ωi = ∪jΩ
i
j , (3.7)

where

Ωi
j ∩ Ωi

j = ∅ if j 6= j′. (3.8)

Moreover,

τk
c Ωi

j = Ωi
j for all k ∈ Z. (3.9)

Proof. We first notice that Ωi
w ∩ Ωi

w′ = ∅ if w /∈ Ωi
w′ . Therefore we define the sets

Ωi
j as the collection of distinct orbits out of the collection of all orbits Ωi

w, w ∈ Ωi.

For convenience we use the notation θi
j = |Ωi

j |, this notation reflects the fact that

θi
w is indepedent of w ∈ Ωi

j , this is due to (3.5).

The following proposition will be crucial for the definition of the cs algorithm.

Proposition 3.2. Assume p(τcw) = p(w), then

En,Ωi
j
(X) =

1

|Ωi
j |

∑

w∈Ωi
j

X(w) = (3.10)

1

θi
j

θi
j−1
∑

k=0

X(τk
c w) =

1

n

n−1
∑

k=0

X(τk
c w). (3.11)
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Proof. First notice that p(τcw) = p(w) implies p( ) is constant on each Ωi
j , hence

for each w ∈ Ωi
j ,

p(w)

p(Ωi
j)

=
1

|Ωi
j |

. (3.12)

This equation gives the first equality in (3.10). The second equality in (3.10) follows

from (3.4) and (3.5). The third equality in (3.10) follows from (3.4) and (3.5) and

(3.6).

Is is important to notice that the above results can be seen from a different and

more general perspective, to this end, lets introduce the following definition.

Definition 3.4. A measure preserving transformation τ is called ergodic if for all

A ∈ F such that τ−1A = A we have A = ∅ or A = Ω.

The following Proposition follows easily from our definitions.

Proposition 3.3. Assume τc is mesure preserving, then τc restricted to each prob-

ability space (Ωi
w, pΩi

w
) is ergodic.

The following is the well known Birkhoff theorem ([19]). In the present context it

follows easily from Proposition 3.

Theorem 3.1. For any ergodic transformation τ on a probability space (Ω,F , p)

and integrable function X we have

E(X) = lim
m→∞

1

m

m−1
∑

k=0

X(τkw) almost everywhere in w. (3.13)

In our present finite context almost everywhere is equivalent to everywhere. Notice

that τc is not ergodic on the set Ωi, by means of Proposition 3 ?????? we have

decomposed this set into the ergodic components (see [19]) Ωi
j and used ergodicity

to compute the mean values En,Ωi
j
(X).

Define the following function Xs : Ω → R,

Xs(w) = En,Ωi
j
(X) =

1

n

n−1
∑

k=0

X(τk
c w), if w in Ωi

j , (3.14)

where we have made use of Proposition 3. Notice that Xs is well defined because of

Proposition 3. In short, Xs is constant in each Ωi
j and it is obtained by smoothing

X .

We are now in a position to define the cyclic shift (cs) algorithm as the lmc algorithm

applied to Xs. From now on we assume p(τcw) = p(w). Here are the details:

• Inputs: n, m (number of simulations).

(1) Compute mi = m × p(Ωi), i = 0, . . . , n.
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(2) Loop over the n + 1 sets Ωi, in each of them sample paths independently,

wq,i ∈ Ωi q = 1, . . . , mi. For each wq,i compute a mc estimator on Ωi but this

time for Xs,

Amc,Ωi(Xs, mi) =
1

mi

mi
∑

q=1

Xs(w
q,i). (3.15)

(3) Finally compute the estimator on Ω by

Acs,Ω(X, m) =

n
∑

i=0

p(Ωi) Amc,Ωi(Xs, mi). (3.16)

Theorem ref algorithmJustification ???? allow us to compare the probabilistic error

bounds for the mcbt, lmc and cs estimators. We will first need the following notation,

ri =
1

2

∑

j

p(Ωi
j)

|Ωi
j |

2
(
∑

w∈Ωi
j

(
∑

w′∈Ωi
j

(X(w) − X(w′))2)). (3.17)

The next lemma collects the relevant properties we will use from Xs.

Lemma 3.2.

En,Ωi(Xs) = En,Ωi(X), (3.18)

En,Ωi(X2
s ) = En,Ωi(X2) −

ri

p(Ωi)
. (3.19)

Proof. Equality (3.18) follows by noticing that the sets Ωi
j are a disjoint covering

of Ωi and the fact that Xs is defined as the mean of X over each Ωi
j . For (3.19) we

argue as follows

En,Ωi(X2
s ) =

1

p(Ωi)

∑

j

∑

w∈Ωi
j

p(w) X2
s (w) =

1

p(Ωi)

∑

j

p(Ωi
j)

(∑

w∈Ωi
j
X(w)

|Ωi
j |

)2

=(3.20)

1

p(Ωi)

∑

j

p(Ωi
j)





1

|Ωi
j |

∑

w∈Ωi
j

X2(w) −
1

2|Ωi
j |

2

∑

w∈Ωi
j

∑

w′∈Ωi
j

(X(w) − X(w′))2



 =(3.21)

En,Ωi(X2) −
ri

p(Ωi)
. (3.22)

Where, for each fixed Ωi
j , we have made use of (A.1) by taking in that equation

pk = pw = 1
|Ωi

j
| , vk = vw = X(w).

Theorem 3.2. We have the following basic facts

lim
m→∞

Acs,Ω(X, m) = En(X). (3.23)
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and the estimator is unbiased, that is E(Acs,Ω(X, m)) = E(X). Moreover, for any

ε > 0 we have the following bound for the error,

p(|Acs,Ω(X, m) − En(X)| ≥ ε) ≤ (3.24)

1

m ε2



varn(X) −
1

2

n
∑

i=0

n
∑

j=0

[

p(Ωi) p(Ωj) (En,Ωi(X) − En,Ωj (X))2
]

−
n
∑

i=0

ri



 .(3.25)

Proof. Equation (3.23) follows from the law of large numbers and (3.18). We notice

E(Acs,Ω(X, m)) = E(X), this and Chebychev’s inequality gives

p(|Acs,Ω(X, m) − En(X)| ≥ ε) ≤
1

m ε2

n
∑

i=0

(

p(Ωi) varn,Ωi(Xs)
)

.

Now using (3.19) and (3.18) we obtain

n
∑

i=0

p(Ωi) varn,Ωi(Xs) =

n
∑

i=0

p(Ωi) (EΩi(X2) −
ri

p(Ωi)
− E2

Ωi(X)) = (3.26)

varn(X) + E2
n(X) −

n
∑

i=0

p(Ωi) E2
n,Ωi(X) −

n
∑

i=0

ri. (3.27)

We complete the proof by the same argument as the one used below (2.17).

One could try to study the asymptotic behaviour, as a funtion of the number of

simulated paths and/or n, of the above error bounds for specific options. In practice,

one can easily estimate the variance of the cs, this is described in Section Appendix

A. In Section 5 we indicate the time complexity of this algorithm.



January 19, 2004 17:18 localizedMC

10 S. E. Ferrando, A. J. Bernal

4. Numerical experiments and Continuous Limit

We now offer some computational examples that indicate the quality of the approx-

imations to En(X) offered by mbct, lmc and cs. For later comparison with standard

discretizations of stochastic differential equations all of our numerical examples will

consider the standard ([12]) binomial approximation to the Black Scholes model.

This binomial model consists of,

u = eσ
√

dt = d−1 and dt =
(t − t0)

n
, (4.1)

and

pd =
u − erdt

u − d
, pu = 1 − pd. (4.2)

We then have that p( ) is the product probability and

p(Ωi) =
n!pi

upn−1
d

(n − i)!i!
, (4.3)

this last expression can easily be computed numerically avoiding round off errors.

The algorithms mcbt, lmc and cs were implemented with the above parameters.

Iterations

10000 20000 30000 40000 50000

O
pt

io
n 

V
al

ue

1.87

1.88

1.89

1.90

1.91

1.92

1.93

1.94

cs 
lmc 
exact tree
mcbt

exact tree

cs

Fig. 1. lmc, mcbt (LLAMADO BMC EN EL SOFT QUE TE MANDE), cs and exact value on
tree Here we compare lmc, mcbt and cs against the exact value on tree for the average strike.
Values of parameters: S0 = 50 r = 0.05 σ = 0.2 n = 19 T = 0.5.
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Iterations

0 10000 20000 30000 40000 50000

O
pt

io
n 

V
al

ue

1.90

1.91

1.92

1.93

1.94

1.95

1.96

cs 
mcbt
lmc 

Fig. 2. lmc, mcbt and cs Here we compare lmc, mcbt and cs against each other. Values of
parameters: S0 = 50 r = 0.05 σ = 0.2 n = 157 T = 0.5.

As we mentioned in the introduction we do not offer any theoretical results for the

speed of convergence of the binomial tree approximation to the Black and Scholes

continuous limit (REFERENCES FOR THE PATH INDEPENDENT CASE). We

do present some numerical evidence that our algorithms outperform the basic ap-

plication of Monte Carlo to the basic discretization of the stochastic differential

equation (REFERENCE). We refer to this application of Monte Carlo as the cmc

(continuos Monte Carlo) algorithm. We implemented cmc with the following stan-

dard discretization

Sti+1
(x) = Sti

(x) eνdt−σ
√

dtY (xi) (4.4)

where Y ∼ N (0, 1) and ν = r − σ2/2.

We will compare our techniques and cmc for cases where the exact continuos values

are known. For this reason we introduce the fixed strike average option, whith payoff

given by:

X(w) = (Average(w) − K)+, (4.5)

where K is a fixed strike value. We also introduce the lookback European call option

with payoff:

X(w) = (Sn(w) − m(w)+, (4.6)
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Iterations

0 10000 20000 30000 40000 50000

S
ta

nd
ar

d 
E

rr
or

0.00

0.02

0.04

0.06

0.08

0.10

cs 
mcbt
lmc 

Fig. 3. Standard errors for lmc, mcbt and cs Values of parameters (as in previous figure): S0 = 50
r = 0.05 σ = 0.2 n = 157 T = 0.5.

m(w) = min
0≤k≤n

Sk(w). (4.7)
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Iterations

0 1000 2000 3000 4000 5000 6000

O
pt

io
n 

V
al

ue
s

0.160

0.165

0.170

0.175

0.180

0.185

0.190

0.195

cmc 
cs 
exact tree 
lmc 
exact cont 

cs

exact tree

exact continuous

Fig. 4. lmc, cs, cmc and exact value on Black and Scholes. Here we compare lmc, cs and cmc
against the exact value on the continuous model for fixed strike average European call. Values of
parameters: S0 = 1.9, K = 2, r = 0.05, σ = 0.5, n = 7, T = 1.0. The exact value (in the continuos
model) para estos parametros es 0.193174, no tengo como ponerlo en archivo via software asi que
tendras que armarlo vos.

5. Fast Updates

We present computational details on how to compute the arithmetic average and

minimum value along a shifted path. These computations will readily apply to

Asian options depending on the arithmetic average and to the lookback European

call option. We basically show how the value of the payoff can be updated, after

applying a shift transformation, in constant time. The conclusion will be that the

cs algorithm requires the same order of function evaluations as mc and the ratios of

the constants involved are very low. We will refer to this constant time updates as

fast updates. Similar fast updates can be used to deal with other averages, maxima,

etc., in particular one can apply the cs algorithm , with fast updates, to barrier

options.

In this section we will use the following notation

Sj
k = S0w

j
0 wj

1 . . . wj
k−1 for k = 0, . . . , n. (5.1)

After applying the left cyclic shift to wj we obtain τc(w
j) = wj+1 where

wj+1
k = wj

k+1 for k = 0, . . . , n1 and wj+1
n−1 = wj

0. (5.2)
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Fig. 5. lmc, cs, cmc and exact value on Black and Scholes. Here we compare lmc, cs and cmc
against the exact value on the continuous model for fixed strike average european call. Aumento
el valor de n para ver que pasa Values of parameters: S0 = 1.9, K = 2, r = 0.05, σ = 0.5, n = 157,
T = 1.0. The exact value (in the continuos model) para estos parametros es 0.193174, no tengo
como ponerlo en archivo via software asi que tendras que armarlo vos.

After applying the right cyclic shift to wj we obtain τ−1
c (wj) = wj+1

wj+1
k = wj

k−1 for k = 1, . . . , n and wj+1
0 = wj

n−1. (5.3)

Clearly Sj
n = Sn for all j.

The fast update for the aritmetic average is obvious, let qj =
∑n

k=0 Sj
k, then

qj+1 =
1

wj
0

(qj − S0) + Sn. (5.4)

The following proposition indicates a fast update for the minimum of the stock

values along a path. For convenience let

mj = min
0≤k≤n

Sj
k = Sj

ij
, (5.5)

so ij is the index at which the minimum is attained.

Proposition 5.1. For a given i ∈ {0, 1, . . . , n} let Sn = S0u
idn−i, if Sn ≤ S0 let

wj+1 = τc(w
j) and

mj+1 = min

(

mj

wj
0

, Sn

)

, (5.6)
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Fig. 6. Standard errors (para l asituacion de la figura anterior) for lmc, cs, cmc and exact value on
Black and Scholes. Values of parameters (como en la figura anterior): S0 = 1.9, K = 2, r = 0.05,

σ = 0.5, n = 157, T = 1.0.

ij+1 = ij − 1 if
mj

wj
0

< Sn and ij+1 = n if
mj

wj
0

≥ Sn. (5.7)

If Sn > S0 let wj+1 = τ−1
c (wj) and

mj+1 = min

(

mj

wj
n−1

, S0

)

and (5.8)

ij+1 = ij + 1 if
mj

wj
n−1

< S0 and ij+1 = 0 if
mj

wj
0

≤ S0. (5.9)

Proof. From the notation introduced we have

Sj
ij
≤ Sj

k for k = 0, . . . , n. (5.10)

Consider first the case Sn ≤ S0 and notice

Sj+1
k =

Sj
k+1

wj
0

for k = 0, . . . , n − 1. (5.11)

The inequality Sn ≤ S0 rules out the case ij = 0, hence, consider ij ≥ 1, then

Sj+1
ij−1 ≤ Sj+1

k for k = 0, . . . , n − 1. (5.12)
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Fig. 7. lmc, cs, cmc and exact value on Black and Scholes. Here we compare lmc, cs and cmc
against the exact value on the continuous model for the lookback european call. Cambie un poco
los valores de la version anterior del paper para que no necesitemos n tan grande. Fijate que el
valor exacto queda siempre arriba (ya que el minimo en el modelo continuo es menor, razonable,
y por lo tanto el payoff es siempre mas grande y por lo tanto el valor de la opcion es siempre mas
grande). Values of parameters: S0 = 10, r = 0.05, σ = 0.3, n = 19, T = 1.0. The exact value (in
the continuos model) para estos parametros es 2.37885. La version nueva que te estoy mandando
del soft te permite calcular el valor exacto del modelo continuo del lookback, tenes que elegir 2,
despues 3 y despues 5 en los “prompt” de la consola. Para que el grafico no quede tan desastroso
tendras que toquetear un poco la escala en y para que el valor exacto quede un poco mas al medio

From these relationships we obtain (5.6). Consider now the case Sn > S0, notice

that this condition rules out ij = n. We therefore assume 0 ≤ ij ≤ n − 1, from the

use of the right shift we obtain

Sj+1
k+1 =

Sj
k

wj
n−1

for k = 0, . . . , n − 1. (5.13)

Then,

Sj+1
ij+1 ≤ Sj+1

k for k = 1, . . . , n. (5.14)

From these relationships we obtain (5.8).

The time complexity (CHECK WORDING) of mcbt and lmc is n × m, a direct

implementation of cs gives a time complexity of n2 × m, however, whenever fast

updates are available, the actual time complexity of cs is n×m. Our above compu-
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Fig. 8. lmc, cs, cmc and exact value on Black and Scholes. Here we compare lmc, cs and cmc
against the exact value on the continuous model for the lookback european call. Los mismos
parametros que en la figura anterior pero incremente n a n = 157.

tations and remarks show that fast updates are available for a large class of path

dependent European options.

6. Extensions of the Cyclic Shift Algorithm

In this section we make clear the hypothesis needed to define a cs algorithm, how

can be adapted to similar settings and how to combine it with improved lattice

methods described in the recent literature. Moreover, we briefly describe how the

idea of the algorithm originated. At a purely procedural level the cs algorithm

needs to decompose the space of paths Ω into subsets Ωi. A basic ingredient is to

compute p(Ωi) accurately, in the case of recombining binomial trees the number

of these subsets is small, namely n + 1. A second key ingredient is to decompose

the sets Ωi further into subsets Ωi
j in such a way that we can compute EΩi

j
(X)

fast. A more flexible way of implementing the lmc algorithm (and hence the cs

algorithm) will be described now. Instead of sampling mi = m × p(Ωi) paths from

each Ωi, we sample m independent paths wq from Ω with probability p( ) and sort

them according to which subset Ωi they belong. Set m̂i to be the number of paths

belonging to Ωi, if wq,i, q = 1, . . . , m̂i are the sorted paths belonging to Ωi, then
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Fig. 9. Standard Errors for lmc, cs, cmc. Aqui irian los standard errors del caso de la figura
anterior.

replace (2.12) by the following estimator

Âlmc,Ω(X, m) =

n
∑

i=0

p(Ωi)

(

1

m̂i

m̂i
∑

q=1

X(wq,i)

)

. (6.1)

One should replace X by Xs for the analogous modification to the cs algorithm.

This alternative version of the algorithm is more flexible for certain settings de-

scribed below, it will incur into the extra costs of sorting m paths into the subsets

Ωi (INDICATE COST). This sorting was implicit in our description of the cs algo-

rithm in the binomial setting, it did not incur into any extra omputations due to

the use of a data structure (with constant access time to records) of size n + 1.

We now indicate an extension to multi-trees (CHECK NAME, CONNECTION

WITH MULTINOMIAL, BASIC DEFINITION OF PRODUCT SPACE AND BA-

SIC PROPERTIES QUOTED) ans specialize to trinomial trees. For a given integer

n the base space Ω is defined as a product space An where the finite probabil-

ity space A is given by A = {r0, r1, . . . , rb−1} with probabilities pk > 0. Ω is

made into a probability space through the product probability (we use p( ) to de-

note the product measure) and the power set sigma algebra. We use the notation

w = {w0, w1, . . . , wn−1} for a point (path) in Ω. We also introduce the multi-index

notation i = {i0, i1, . . . , ib−1} with 0 ≤ ik ≤ n and
∑b−1

k=0 ik = n. For a given path

w we set i(w) = {i0(w), i1(w), . . . , ib−1(w)}, so w has a number ik(w) of children of
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type k (RE-WRITE THIS). This notation allows to define, for a fixed multi-index

i,

Ωi = {w : i(w) = i}. (6.2)

We have

|Ωi| =
n!

i0! i1! . . . ib−1!
. (6.3)

The stock evolution is given by

Sti+1
(w) = Sti

(w) wi, (6.4)

where wi ∈ A. To be specific we now specialize to the trinomial tree used in [4] and

[16]. So we consider b = 3, r0 = d, r1 = 1, r2 = u and p0 + p1 + p2 = 1. Setting the

parameters as indicated in [4] we obtain improved convergence for a class of options

including: discrete (i.e. with price fixings) barrier options, discrete lookbacks and

continuos lookbacks. Our cs algorithm readily applies to this setting, we do notice

that there are (n + 1)2 sets Ωi. The cs algorithm still can be implemented with

complexity m × n by making use of (6.1) and sorting the sampled paths wq into

the sets Ωi by mantaining a data structure, with constant time access to records,

of size (n + 1)2. There are several other papers dealing with speed improvements

for lattice methods (see, for example, [17]) but we will not pursue these possibilities

here.

Finally one could see the cmc algorithm as as a limit case of a high dimmensional

tree, this can be done by discretizing the standard normal random variable Y ( )

in (4.4). This can be done with the sampling algorithm described in [11]. EXPLAIN

BETTER CONTINUE WITH OTHER EXAMPLES.

As a final remark, we mention that our original intention was to use the ergodic

Bernoulli shift for computation, more specifically, the Monte Carlo algorithm can

be seen as defined on the space [0, 1]N as indicated by (2.8). The key issue is that

the paths wq are independent because we shift by multiples of n. If we only shift

by one unit we still have convergence,

En(X) = lim
m→∞

1

m + 1

m
∑

q=0

X(W (Uq(x), . . . W (Uq+(n−1)(x)), a.e. on [0, 1]N, (6.5)

the above equality holds because the ergodic theorem applies to the following ergodic

transformation on [0, 1]N (called the Bernoulli shift): τx = x′ where x′
i = xi+1, i =

0, 1, . . .. References [2] and [1] indicate advantages and strategies of how to apply

this technique. Our cs algorithm can be seen as a way of combining the use of

the shift transformation and making use of the fast updates available on the tree

approximations.
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7. Discussion

We introduced a Monte Carlo algorithm on tree approximations which makes use

of the discrete tree structure to obtain impressive improvements with respect to

a naive Monte Carlo. Our techniques are readily useful to compute efficiently and

with error bounds the exact price in the discrete model. Under certain conditions

on the path dependent option (namely, the existence of fast updates), there are

fast implementations of our cs algorithm. We also indicate how it can be combined

with recent improved lattice models to obtain faster convergence to the values of

the continuous model. Our approach is basic and general, in particular it may be

applicable to higher dimensional models like the ones described in [6] and [15].

Appendix A. Appendix

A.1. Parallelogram Identity

Here we present a simple equation which generalizes the parallelogram identity for

inner product spaces. In the main text, we only apply this identity to the space R

but it is convenient to prove the result on a more general setting. Let H be a vector

space of dimension q + 1 and 〈 , 〉 be a real inner product defined on H . Letting

||v||2 = 〈v,v〉 we have,

Proposition Appendix A.1. Let pk ≥ 0 and
∑q

k=0 pk = 1, then for any set of

vectors vk ∈ H, k = 0, . . . , q,

q
∑

k=0

pk ||vk||
2 − ||

q
∑

k=0

pk vk||
2 =

q−1
∑

k=0

pk





q
∑

j=k+1

(pj ||vk − vj ||
2)



 = (A.1)

1

2

q
∑

k=0

q
∑

j=0

(pkpj ||vk − vj ||
2). (A.2)

Proof.

q
∑

k=0

pk ||vk||
2 − 〈

q
∑

k=0

pk vk,

q
∑

k=0

pk vk〉 = (A.3)

q
∑

k=0

pk ||vk||
2(1 − pk) − 2

q−1
∑

k=0

pk





q
∑

j=k+1

pj〈vk, vj〉



 = (A.4)

q
∑

k=0



pk ||vk||
2(

q
∑

j=0,j 6=k

pj)



− 2

q−1
∑

k=0

pk





q
∑

j=k+1

pj〈vk, vj〉



 = (A.5)

q−1
∑

k=0

pk





q
∑

j=k+1

pj(||vk||
2 + ||vj ||

2)



− 2

q−1
∑

k=0

pk





q
∑

j=k+1

pj〈vk, vj〉



 = (A.6)
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q−1
∑

k=0





q
∑

j=k+1

pkpj ||vk − vj ||
2



 . (A.7)

The last equality in (A.1) is clear.

A.2. Standard Errors

Computation of Standard Error for LMC

StErrorlmc(X, m) = e−r(t−t0)
√

ˆvar(Almc,Ω(X, m)), (A.8)

ˆvar(Almc,Ω(X, m)) =

N
∑

i=0

P (Ωi)2 ˆvar(Amc,Ωi(X, mi)) (A.9)

where

ˆvar(Amc,Ωi(X, mi)) =
σ̂2

mc,Ωi(X, mi)

mi

. (A.10)

Finally

σ̂2
mc,Ωi(X, mi) =

1

(mi − 1)

m
∑

q=1

(X(wq,i) − Amc,Ωi(X, mi))
2. (A.11)

with wq,i ∈ Ωi sampled independently.

Computation Standard Error for CS

StErrorcs(X, m) = e−r(t−t0)
√

ˆvar(Acs,Ω(X, m)), (A.12)

ˆvar(Acs,Ω(X, m)) =

N
∑

i=0

P (Ωi)2 ˆvar(Amc,Ωi(Xs, mi)) (A.13)

where

ˆvar(Amc,Ωi(Xs, mi)) =
σ̂2

mc,Ωi(Xs, mi)

mi

. (A.14)

Finally

σ̂2
mc(Xs, mi) =

1

(mi − 1)

m
∑

q=1

(X(wq,i) − Amc,Ω(Xs, mi))
2. (A.15)

with wq,i ∈ Ωi sampled independently.



January 19, 2004 17:18 localizedMC

22 S. E. Ferrando, A. J. Bernal

Acknowledgments

We would like to thank P. Catuogno for useful suggestions, we also thank J. Cai

and A. Korobchevsky for developing software used during the writing of this paper.

References

[1] M. B. Alaya, On the simulation of expectations of random variables depending on a

stopping time, Stochastic Analysis and Applications, 11 (2) , 133-153, 1993.
[2] N. Bouleau and D. Lepingle Numerical Methods for Stochastic Processes

[3] P. Boyle, M. Broadie and P. Glasserman Monte Carlo methods for security pricing,
Journal of Econmic Dynamics and Control, Vol. 21, 1267-1321, 1997.

[4] M. Broadie, P. Glasserman and S.G. Kou, Connecting discrete and continuous path-

dependent options, Finance Stochat., Vol. 3, 55-82, 1999.
[5] T. Cheuk and T. Vorst, Currency lookback options and the observation frequency: A

binomial approach, J. International Money Finance, Vol. 16, 173-187, 1997.
[6] H. He Convergence from discrete to continuous-time contingent claims prices, The

Review of Financial Studies, Vol. 3, No. 4, 523-546, 1990.
[7] S. Heston and G. Zhou On the rate of convergence of discrete-time contingent claims,

Mathematical Finance, Vol. 10, No. 1, 53-75, January 2001.
[8] J. Hull and A. White Efficient procedures for valuing European and American path-

dependent options, The Journal of Derivatives, Fall 1993.
[9] P. Jackel, Monte Carlo Methods in Finance. Wiley Finance, 2002.

[10] H.M Kat, Pricing lookback options using binomial trees: An evaluation, J. Financial
Eng., Vol. 4, 375-397, 1995.

[11] D. Knuth, The Art of Computing Programming. Volume 2. 3rd edition.
[12] R. Korn and E. Korn, Option Pricing and Portfolio Optimization. Modern Methods

of Financial Mathematics. Graduate Studies in Mathematics, Volume 31. American
Mathematical Society, 2001.

[13] D. Leisen and M. Reimer Binomial models for option valuation- examining and im-

proving convergence, Applied Mathematical Finance, 3, 319-346, 1996.
[14] G. E. Martin, Counting: The Art of Enumerative Combinatorics. Springer-Verlag,

New York, 2001.
[15] D.N. Nelson and K. Ramaswamy Simple binomial processes as diffussion approxima-

tions in financial models, The Review of Financial Studies,Vol. 3, No. 3, 393-430,
1990.

[16] P. Ritchken On pricing barrier options, The Journal of Derivatives, 19-28, Winter
1995.

[17] L. C. G. Rogers and E. J. Stapleton Fast accurate binomial pricing, Finance and
Stochastics, Vol. 2, pp. 3-17, 1998.

[18] J. B. Walsh and O. D. Walsh, Embedding and the convergence of the binomial and

trinomial schemes. Numerical Methods of Differential Equation, T. J. Lyons and T.
S. Salisbury, editors. Fields Institute Communications, 2002.

[19] P. Walters, An Introduction to Ergodic Theory. Springer-Verlag, New York, 1982.


