C++ Implementation of Haar systems for
Black-Scholes model

Sebastian Ferrando and Jihong Cai,
Ryerson University.

November 3, 2004

Abstract

This is a financial application to assess the Haar Hedging(HH) and
Black & Schole(BS) algorithm. The application simulates stock paths and
then implements the algorithm for HH and BS, in addition it implements
the value of the Holding portfolio along a sampled path. The application
uses Object-Oriented design and programming, in particular, the stock,
the path and the portfolio are all abstracted to classes. The assessing
result is writen to some text files and plotted out using the g2 package.

Contents

1

Requirement Documentation

1.1 introduction and goal of the system

1.2 functional requirement . . .

Class design and Structure

21 General
2.2 Class Definition
2.3 library definition

Activity specification

3.1 General Algorithm
3.2 Basic Algorithm
3.3 Specific Algorithm

Test Plans

4.1 Unit Test
4.2 System Testing

User’s guide

5.1 Installation and Compilation
5.2 Running
5.3 Concepts

DO

6 Sample output 45

6.1 Final, one Eucall,onestep. 45
6.2 Final, one Eucall, several steps 46
6.3 Final, one Eucall, one Euput, several steps 47
6.4 Final, three Eucall, four Euput, several steps 47
6.5 Pathwise,one Eucall, several steps 48
6.6 Fixed,one Eucall, several steps 51
6.7 Final,one Eucall, several steps,HH onlyerroronly 53

1 Requirement Documentation

1.1 introduction and goal of the system

Options can be categorized into two basic types:calls and puts. A call option
gives the holder the right to buy an asset by a certain date for a certain price.
A put option gives the holder the right to sell an asset by a certain date for a
certain price. The certain price in the option is called strike price, the certain
date is called expiration date. An asset might be a kind of stock, currency or
something else.

We only consider stock as asset in our system.Furthermore, we only compute
European Call and European Put option. Both option are simple and easy to
derive formular and algorithm. However, we design the application so that we
can expand the kind of options in the future easily.

Hedging means to reduce the risk with forward contracts and options. We
only consider hedging techniques using stock options.

A stock price depends on many random factors, such as no-risk interest
rate, market volatility and time. Therefore, a stock path is random with certain
regularity. A stock price has a lognormial distribution at an arbitrary time.

The goal of this system is to compute the payoff for different hedging tech-
niques: Haar Hedging and Delta Hedging(Black & Schole Portfolio). The system
assesses these techniques on an investment and output the visual result.

1.2 functional requirement

The system accepts input from 2 files. The file ”parameter.txt” includes the
following data:

1. Stock information: current price, market volatility and non-risk bank in-
sterest. Stock information in clude interest only for simplicating the sys-
tem.

2. Hedging information

e j_ H, R or threshold: For Haar Hedging only.

e N and times: General hedging times along a path.

e N_H and Htimes: times for Haar Hedging, and it is a sub set of
the general time. IN addition, its first and last time is same as the
general time.

e N_BS and BStimes: times for Black and Schole Hedging, and it is a
subset of the general time. In addition, its first and last time is same
as the general time.

e M seed: M is the number of paths to simulate. If M is equal to 1, it
means we want to get the pathwise result. The path might be choose
by defining different seed number.

3. CallNum,PutNum: define how many call and option are in the porfolio,
and both must be consistent with the following option information.

4. Option information: This is a multilines input, and one line represent one
option. The total line number is equal to the addition of callNUm and
putNum above. Each line contains 3 numbers, which are amount, strike
prices and expiration date. The first CallNum lines are for Call options.
and the rests are for Put options.

The file ”outputops.txt” defines outputs combinations that user wants. It
includes the following data:

1. Hedging method: This information defines the hedging method to assess,
1 means only assess HH, -1 means assess BSH, and 0 means assess both
hedging method.

2. ErrorOption: This difines the option to get sample values or error in-
formation.If it is 0, the payoff or values of Holding portfolio, HH payoff
and/or BSP payoff will all be be calculated and the result is recorded by
a ps file and a text file. Otherwise, the difference between HH payoff and
holding portfolio and the difference between BSP payoff and the value of
holding porfolio will be output.

3. assessTime: The result for different algorithms can be assessed at different
asses time. Assess time might be T, which is the last element in the general
time vector. It might be another time, but this assess time should be an
element of threee time vectors.

The system simulates a stock price movement during a period defined by
general times. A general path is generated during each simulation. The subpath
for Haar Hedging and Black and schole Hedging are retrieved from the general
path using Htimes and BStimes.

Each option has its own expiration time. This expiration time should belong
to the intersection set of Htimes and BStimes. We only do Haar hedging along
the subpath for Haar Hedging, wich means we Hedge at the time defined in
Htimes from 0 to option’s expiration time. The same rule applies to Black and
Schole Hedging.

Holding portfolio will be computed along the general path. At least one
option will expire at the end of the general time, otherwise the time after all
options have expired is meaningless. Finally, we achieve three different payoffs
from three different ways, holding portfolio, Haar Hedging and Black and Schole

Hedging.

The simulation is done M times, so we will get 3 same-size vectors that
contains M values of payoff computed by three different methods. The program
will sort the vectors based on the simulation final stock price and plot out the
three vectors.

There are some properties needed to be considered;

1. Time issues:

The vector times contains all the time(date) in a path, including the
t0(0) and t_N(T). It contains N+1 elements.

The vector BStimes contains all the time(date) in a path for black &
schole hedging, including the t0(=0), and the expiration time of an
option. The vector has N_BS number of elements.

The vector HHtimes contains all the time(date) in a path for haar
hedging, including the t0(=0), and the expiration time of an option.
The vector has N_H number of elements.

At least one of the options has expiration time at the last date, means
the last element in times vector.

At any time, there might be one call option, or one put option, or
one call and one put options expire at a given time, but there weren’t
be 2 calls or 2 puts expiration at the same time.

2. Path issues:

The path simulated by a stock is the most general path. It contains
N+1 spots from 0 to T(t.0 to t_T). The general path is used for
computing value of holding portfolio.

The path for hedging is part of the general path. It can be subtracted
from the general path using adequate algorithm described in section
2 on page 8. There are 2 kinds of subpath: Haar Hedging and Black
and Schole Hedging path.

The hedging subpath obtained above is for general hedging path. An
option’s heding path actually is part of the general hedging path,
but it is not computed explicitly. An individual path ends at its
expiration time which might be less than T (final time).

2 Class design and Structure

2.1 General

1. Classes and class diagram

When some operations are strongly tight to an object, a class is created.
There are 6 classes defined in the system, and they are named as Path,
Stock, Option, EuCall, EuPut and Portfolio.

A path class has a vector of time, prices and jump numbers. Its operation
includes generating a subpath and computing the index of a given time in
the path.

A stock class has the ability to simulate a random path at each time in
the time vector which is passed as parameter. A stock class has initial
stock price,volatility, and the non-risk bank interest.

An option class has the ability to compute its expiration value and its value
at any given time. Europan Call and Put otion class are the subclass of
option class. As a subclass, both European Call and Put class inherite all
the attributes that an general option has. They implement some virtual
functions defined in parent class.

A portfolio object, which is consisted by European Call and Put options,
has the ability to compute Haar Hedging payoffs, Black & Schole payoffs
and holding portfolio.

A Haar class is able to run some haar algorithms, such as analysis, com-
pression and synthesis. It contains a vector of items for haar operations
and two integer J and j to identify the size of haar matrix and the current
position of haar vector respectively. When a portfolio class is computing
Haar Hedging payoff, it needs to construct a haar object to finish the
above haar algorithms.

HHAssess class is used to read input from two input files. Then it con-
structs objects of the above classes to run hedging operations. Finally it
writes output on text file and ps file.

The relationships between classes in this system is showed in Figure 1
below. The haar class, HHAssess class and some other libraries are not
shown on the figure. Further considerations about designing of classes and
their relationship will be discussed in the next session.

Libraries

Some functionalities are very general regarding an finacial application,
such as getIndex, cumulative. They should belong to an algorithm group.
Like Math class in Java or C++, I group these special functions into a file
called falgorithm.h, and it might be considerd as a tool.

The similar idea is to realize the plotting functions; I just group the func-
tions into plotting.h file. Plotting.h is an easy-to-use interface to draw
lines and curves for applications with a lot of data to handle.

Class Definition

1. Stock:

A stock class contains stock’s current value, which is the price before

/

EuCall

P ath

prices ; vector<double=
Lalldumps : wector<doubla®
Gtimes: wectarsdaubles

By bpathil

/! %
/

4 \

A

St
/ 2510 : Double

& Double
Ssigma : Double

BsimulateF atho)
’oneStepUnderlyian
QoneSiepUnderlyingEO
S0
‘haarunderlyingo

Optian

Letock : Stodk
4P Double

\ Stime : Double
BHaldingPartfolion

VESP otfol o)
RHHF avoti)
'\ralueo
‘evalue(_j
Bgetdin
[getdzn
Sgat_phi)
‘exactPriceO

Fortfolio

Lecalls i vectorddouble:
Geputs; wectar<double>

B=ampleBSPartfolial
'sampleHoIdingPorIfolioO
‘sampleHHPavoﬁO

Figure 1: Class Diagram

EuFut

we run any hedging algorithm. It also contains variable o(sigma), which
means the volatility of the stock. ¢ is assume to be a constant for one

kind of stock.
Note:

Interest r is also included in the stock class due to simplification. Actually,

it might be part of a bank object.

The definition of a stock object is shown below:

Listing 1: ../source/stock.h [Line 22 to 38]

class Stock{

public:
double St0; //current price
double r; //interest

double sigma; //variarity

//constructors
Stock(double theSt0,double theR,double theSigma);
Stock();

Path simulatePath(vector<double> times);
Path simulatePath(vector<double> times,int seed);

vector<double> oneStepUnderlyingi(int J_H,double currentPrice,double deltaT);

vector<double> oneStepUnderlying2(int J_H,double currentPrice,double deltaT);

vector<double> haarUnderlying(int J_H,vector<double> times);

vector<double> rp(int J_H,double deltaT);
};

The operations that a stock can have include:

e Simulate a path given a vector of time

e Simulate a one step stock haar underlying given the current price

of stock, the time period, and the partition size. The vector of un-
derlying represent the posible stock price after a time period based
on stock price’s lognormial distribution at a fixed time. We have
two ways of imlementation, one is based on lognormal distribution
directly, another one is base on the abstract concept rp, which is de-
scribed below. Currently, the system used the first way to ompute
Haar Hedging payoff.

Compute a rp vector reference to ”HH Handout III”. This vector
doesn’t use information of the current stock price, and it is like an ab-
strack tion of lognormal distribution. The vector is computed based
on partition size and time period.

Simulate a multi step stock haar underlying given the partition size
and multi time period used the rp vector obtain above.

2. Path:

A path class is used to represent a simulated path for a stock, so it should
have a price at a corresponding time. However, the price was simulated by
generated a random number between 0 and 1, then an inverse cumulative
number is calculated based on Normal Distribution. This inverse cumu-
lative number is called jump numbers. Therefore, a path class contains 3
member variables, a vector of times, a vector of prices and a vector of all
jumps.

A path is independent to a stock, but it is part of a stock. We only con-
sider to simulate paths for a stock, so it’s not neccessary and possible to
keep these simulated paths in a stock object. Instead, we might define a
real path element for a stock, but it is beyond this application. In addi-
tion, we will never record a real path for study. The information of a path
is used to compute payoff of a stock, then this path will be discarded and
another path will be simulated.

The definition of a path object is shown below:

Listing 2: ../source/stock.h [Line 10 to 18]

class Path{
public:

};

vector<double> prices;

vector<double> allJumps;

vector<double> times;

Path(vector<double> thePrices,vector<double> theJumps, vector<double> times);
Path subPath(vector<double> subtimes);

int timeIndex(double time);

The operation that a path class has includes:

e subpath

A general path is used to simulate the real path of a stock in a given
time period, and the time period is divided in N intervals. However,
either HH or BSP won’t perform an operation at every time spot.
This create the necessity to generate a subpath for HH or BSP. Time
spots and corresponding prices are copied one by one the sub path.
If the subpath skip several spots in the general path, the allJump
values at these spots are summed up and divided by square root of
the number of skippedspots. The value obtain in this way is the
allJjump number for the subpath at this time spot.

There are 4 kinds of paths used in this system. A general path
is simulated by a stock. The subpath for computing the holding
portfolio is same as the general path, i.e. we will compute holding
portfolio at every time point. The path used for HH or BSP are all
subpath of the general path, and these two paths are independent of

each other, and they might have a common set and a difference set.
The subpaths at least contain the first and the last element of the
general path.

e timeindex
The payoff of HH or BSP might be checked at any time before the
expiration time. The time to check the payoffs is called assesstime.
Since we need to compare the hedging payof with holding portfolio,
and the path for hedging might be a subpath of the path for holding
portfolio. We need to know the relative position (index) in the time
vector of the subpath given the assesstime.

3. Haar:
A Haar class contains a vector of items and 2 integers j and J. J is used to
identify the size of the Haar Matrix, which means the number of colums
and rows of the matrix is 27 and (J41) respectively. The vector in a Haar
object stores the element in one row, and j which identify in which row
the vector contain the elements. So, the vector has 27 elements and the
domain for j is from 0 to J. See the definition below:

Listing 3: ../source/haar.h [Line 11 to 32]

class Haar

{

public:
vector<double> haarItems;//The vector for haar operation that contain 2°J elements
int j,J;

Haar(vector<double> theltems,int the_J, int the_j);
Haar();

Haar haarAnalysis(int numberOfCalls);

Haar haarSynthesis(int numberQOfCalls);

Haar thresholdCompression(double threshold, int &Rt);
Haar RCompression(int R);

Haar SORCompression(int R);

void printHaarVector();

double energy();

private:
Haar oneStepHaarAnalysis();
Haar oneStepHaarSynthesis();
};

The operations a Haar object has includes analysis, synthesis and com-
pression.

The compression criteria might be the threshold for energy or R for the
number of nonzero elements in the compressed haar vector. In our system,

we analysize the haar vector J times, compresse it and then synthetize it
back to original position. For compression, we have 2 options: one is
keeping the first element SO unchanged, and another one is modifying SO
to 0. In our system, we will always set SO = 0. The detailed explanation
will be found in HH payoff algorithm in the next session.

. Option:

Option is a super abstract class, which is supposed to have all common
properties of heterogeneous options. It contains four members: a stock,
an expiration time, an expiration price (strike price) and an amount.

Listing 4: ../source/option.h [Line 13 to 34]

class Option{

public:
Stock stock;
double etime; //ezpiration time

};

double P; //ezpiration (strike) price

double amount;

Option(Stock theStock,double theTime,double strikePrice,double amount);

Option();

virtual
virtual
virtual
virtual
virtual
virtual

double exactPrice() {I};

double value(double stockPrice,double time) {};

double evalue(double stockPrice) {};

double get_phi(double di) {};

vector<double> BSPortfolio(Path path) {};

vector<double> HHPayoff(int j_H,double stockPrice,
double time,double deltaT){};

double get_di(double stockPrice,double time);
double get_d2(double di,double time);
vector<double> holdingPortfolio(Path path);

There are 3 public fuctions that can be inherited by subclass of option.

e get_dl and get_d2: Both are basic functions used to compute holding
value and BS portfolio. For a given option, the value of d1 and d2
depends on the current stock price and current time.

e holdingPortfolio: It returns the vector of option values along the
path.

There are six virtual member functions. They are defined inside option
class. These funcions must be implemented in subclass EuCall and EuPut.

e exact price: Compute the exact price for the option at final time in
theory.

10

value: Return the option’s value at a given time.
evalue: Compute the option’s value at expiration time.

get_phi: compute the stock investment for a portfolio. And it is based
on d1’s value. It has different formulars for Call and Put options.

HHPayoff: compute the HH payoff at the current time for an option,
the payoff depends on j_H, which identify how complexity we are
doing the haar algorithm, and it is corresponding to the J in Haar
class. The payoff also depends on the current stock price and the
current time. And it also depends on the time interval for Haar
Hedging. It return a vector of size 2/-# at current time.

BSPortfolio: Compute the BS portfolio for an option, it only depends
on the path. It is different from HHPayoff from that it will return a
vector along the path, and HHPayoff returns the vector for the cur-
rent time. This function can’t be used in portfolio class to compute
BS payoff, since the value of (and ¢ are computed step by step. It
considers the whole effect of all options, and we can’t simply add the
BS payoff for individual options together to get a total payoff for a
portfolio.

5. EuCall and EuPut:
Subclass of Option. They inherit four member variables from parent class
and three public functions. They need to implement the six virtual func-
tions.

Listing 5: ../source/option.h [Line 38 to 50]

class EuCall:public Option{

public:

EuCall(Stock theStock,double theTime,double strikePrice,double amount);
EuCall();

double
double
double
double

exactPrice();

value(double stockPrice,double time);
evalue(double stockPrice);
get_phi(double d1);

vector<double> BSPortfolio(Path path);
vector<double> HHPayoff(int j_H,double stockPrice,double time,double deltaT);
vector<double> HHPayoff(int j_H,vector<double> times);

};

Listing 6: ../source/option.h [Line 54 to 64]

class EuPut:public Option{

public:

EuPut (Stock theStock,double theTime,double strikePrice,double amount);

11

Listing 6: ../source/option.h [Line 54 to 64] (continued)

EuPut();

double exactPrice();

double value(double stockPrice,double time);

double evalue(double stockPrice);

double get_phi(double di);

vector<double> BSPortfolio(Path path);

vector<double> HHPayoff(int j_H,double stockPrice,double time,double deltaT);

6. Portfolio
In this system, we only consider European call and put, so, a portfolio
class contains a vector of European calls and a vetor of European puts.

Listing 7: ../source/portfolio.h [Line 12 to 23]

class Portfolio{
public:
vector<EuCall> ecs;
vector<EuPut> eps;

Portfolio(vector<EuCall> theEcs,vector<EuPut> theEps);
Portfolio();

vector<double> sampleBSPortfolio(Path path);

vector<double> sampleHoldingPortfolio(Path path);

vector<double> sampleHHPayoff(Path path,int j_H,int R);
};

The portfolio class has the ability to compute Black and Schole, Haar
Hedging and Holding payoff along a simulated path. The paths for these
3 algorithm might be the same or not. The path for holding portfolio is
the same as the general path, whish is simulated by a stock and is under
the consideration. The path for BS and HH is subpath of the general path,
but they must contain the first and last spot in the general path.

2.3 library definition

The system has two main libraries, The first is used for plotting, and the second
is use to contain some general algorithm for financial.

1. Plotting
I define a structure Point,which contains x and y coordinates of a point,
to help pass the plotting information. The major plotting function is
plottingCurve, which will plot a bare curve. Some fuctions can be consider
as private functions,such as valuesComparing, defineColors. Users are
not required to know these fuctions to plot curves. The 4 vectorPlotting
functions are supposed to be interfaces for user.

12

Listing 8: ../source/plotting.h [Line 17 to 53]

#define PAPERSIZE g2_A4

#define MAX_PX 800

#define MAX_PY 600

#define EDGE 60

#define MOD1 15 //for non symetric X edge
#define MOD2 30 //for note area in Y
#define TE 26 //modification

struct Pointq{
double x;
double y;

};

void

void

void

void

void
void

void

void

void

plottingCurve(vector<Point> vector, int id,double coeff_ax,double coeff_ay,

double coeff_bx,double coeff_by);
valuesComparing(double& max_x, double& min_x,double& max.y ,double& min_y,double max_xi,

double min_x1,double max_yl ,double min y1);

extremeValues(double& max_x, double& min_x,double& max_y ,double& min_y,

const vector<Point> vectorl,const vector<Point> vector2);
coefficient(double& coeff_ax, double& coeff_bx,double& coeff_ay ,double& coeff_ by,

double max_x,double min_x,double max_y,double min y);

drawRectangle(int id,double max_x,double min x,double max_y,double min_y);
defineColors(int id,vector<int> &color);

getPointVector(vector< vector<Point> > &pointVectors,
const vector< vector<double> > yvectors,const vector<double> xvector);
readVector(vector<double> & approximationVector,
vector<double> &MValues,ifstream &result,int length);
vectorPlotting(const double exactValue,
const vector < vector<Point> > vectors,char *names[],int style);

//interface

void
void

void

void

vectorPlotting(const vector< vector<Point> > vectors,char *names[]);
vectorPlotting(const double exactValue,const vector < vector<Point> > vectors,char *names[]);
vectorPlotting(const vector < vector<double> > yvectors,
const vector<double> xvector,char *names[]);
vectorPlotting(const double exactValue,const vector < vector<double> > yvectors,
const vector<double> xvector,char *names[]);

In order to plot, user provide either a vector of type Point vectors, or a
vector of x values and a vector of vectors of y values. If the function of
the curves has a common exact value, this value can be put as the first
parameter and the exact horizonal line for the curves will be plotted. The
overloaded plotting functions are to provide convenience for plotting in
different cases.

The functions that this library has are described below:

e plottingCurve: This function plots a curve given the vector of points
for the curve. We use g2 package to plot curves, and g2 process

13

coordinates using its own coordination system. Therefore we need to
transfer real the coordinates of the plotting curve into g2 coordinate
system. The coefficient for this transformation are passed to this
function.

e valuesComparing: This function compares 4 pairs of extreme values
for 2 vectors, max for x, min for x, max for y, min for y. And it
updates the real extreme values based on the comparation.

e extremeValues: This function computes the extreme values for sev-
eral curves. The curves are represented by a vector of points. The
purpose for computing the extreme values is to find out the coeffi-
cients so that all curves will be plotted in one screen.

e coefficient: This function is used to compute the coefficients for 4
known extreme values.

o drawRectangle: This function draws a rectangle to wrap the curves.
e defineColors: It defines the colors used to plot the curves.

e getPointVector: It transfers the curves represented in y vectors and
x vector in point vectors.

e readVector: It reads from standard input device, and puts data into
vector

e vectorPlotting: It plots out the curves represented by x vector and y
vectors.

2. Financial Algorithms
The functions defined in this library can be classified into 2 categories. The
first category is about some simple algorithm that can be implemented in
one function. The second is about sorting, and the difference between
sorting in this system and the normal sorting is that we need to sort a
vector but keep the orignal index for the elements in this vector.

When we plot several vectors together, we need to do this kind of sorting
based on the order of one vector. Normally, the basic vector contains the
data for x dimension. The elements in these vectors are corelated to each
other in this system. The element at the same position are obtained from
the same condition. Only one vector will be sorted, and other vectors are
reordered according the new order of the sorted vector. Therefore, the
index of the sorted vector should be kept.

The process for Haar compression is sorting the item vector first, then
remove the elements from the smallest end, and place elements back to
their original position. The information of index of each element need to
be kept during sorting too.

Listing 9: ../source/falgorithm.h [Line 10 to 32]

double cumulative(double z);

14

Listing 9: ../source/falgorithm.h [Line 10 to 32] (continued)

double inverseCumulative(double u);
vector<double> partitiate(int J_H);
int getIndex(vector<double> spots,double value);

vector<double> matrixProduct(vector<double> rpl,vector<double> rp2);

struct indexItem

{

double item;

int index;

};

vector<indexItem> getIndexItems(vector<double> vectorl);

vector<indexItem> mergeSort(vector<indexItem> vectorCompress);

vector<indexItem> merge(vector<indexItem> vectorl, vector<indexItem> vector2);

void reorderVector(vector<double> &vectoril,vector<int> indexes);

vector<int> sortVector(vector<double> &vectorl);

void
void
void

void

sortVectors(vector<double> &vector(0,vector<double> &vectorl);

sortVectors(vector<double> &vector(0,vector<double> &vectorl, vector<double> &vector2);
sortVectors(vector<double> &vector(,vector<double> &vectorl, vector<double> &vector2,

sortVectors(vector<double> &vector(0,vector<double> &vectorl, vector<double> &vector2,

vector<double> &vector3);

vector<double> &vector3,vector<double> &vector4);

The operation’s defined in this library are explained in detail below:

cumulative and inversecumulative: They are used in many places in-
side the system. I want to mention that inverse cumulative fuction
was implemented by ” Author” in his published book. We suppose
that the probability distribution is normal. the cumulative of a dou-
ble z means the area under the probability distribution curve from
-00 to z, and inversecumulative does the inverse operation.

partitioning: It seperate the Y dimention line into 2/-# intervals that
has the same cumulative probability if the probability distribution is
normal.

getIndex: It returns the position index of the parameter value in the
vector.

matrixProduct: It retuns the product of 2 double vector.

structure indexItem: It is defined for sorting a vector, which can be
a member of a Haar object.

getIndexItems: It returns a vector of indexItem based on the param-
eter, a vector of doubles.

mergeSort: It sorts the vector of idexItem by comparing the values
of items.

merge: It merges 2 sorted vector of double.

15

e reorderVector: It reorder a vector based on the given order of an
index vector.

e sortVector: It sorts one vector and returns the ondered index.

e sortVetors: It sorts several vectors based on the order of first vector.

3 Activity specification

I will summarize the formulars and algorithms used in computation. I separated
these algorithms into three categories.

3.1 General Algorithm

1. Cumulative
cumulative(double z), see handout ”RA2003 III Page 3”

®(2) = 1/2(1 + erf(z/V2))

z - a double value on the y dimension line

erf() - error function provided by the unix system

The fuction returns the cumulative value from -oo to z provided the dis-
tribution function is normal.

Listing 10: ../source/falgorithm.c [Line 12 to 15]

double cumulative(double z)

{
return 0.5 * (1 + erf(z/sqrt(2.0)));

}

2. Partition
participate(int j_H), see handout "RA2003 III Page 5”

G =27 (k/2Y)

C,’;‘H - The participation spots along the Y dimension line

j-H - Haar factor

k - index, range from 1 to 2/-# —1

The funtion participates y dimension line into 27/~ parts and return a
vector that contains 2/~ — 1 values representing ordered spots in the
dimension line.

Listing 11: ../source/falgorithm.c [Line 72 to 92]

vector<double> partitiate(int J_H)

{

16

Listing 11: ../source/falgorithm.c [Line 72 to 92] (continued)

double spot;
vector<double> spots;
int length = 1<<J_H;

for(int i=1; i < length/2; i++)
{
spot = inverseCumulative(1.0%i/length);
spots.push_back(spot);
T

spots.push_back(0); //C{2°{J-1}-1}"J

for(int i = 1; i < length/2; i++)
{
spot = (-1) * spots[length/2 - 1 - i];
spots.push_back(spot);
}

return spots;

3. Sorting
Standard Temperate LIbrary (STL) in C++ doesn’t define the sorting
algorithm while keeping the index information, so we have to develop our
own code. The core algorithm used here is merging.

o getIndexItems: It saves the index for each element in the passed
vector, and returns a new created vector contains indexItems.

Listing 12: ../source/falgorithm.c [Line 108 to 121]

vector<indexItem> getIndexItems(vector<double> vectorl){
int length = vectorl.size();

indexItem alndexItem;
vector<indexItem> indexVector;

for(int i=0; i < length; i++)
{
alndexItem.item = vectori[i];
alndexItem.index = ij;
indexVector.push_back(aIndexItem);
}

return indexVector;

3

e mergeSort:
The merge function merges two sorted vectors into one sorted vector.

17

The standard algorithm for this case is used to do the operation. The
first while loop is used to compare the items in two vectors. It puts
the greater item in the temp vector, and it increase both iterators for
temp vector and the vector that has the greater item. The second
2 while loop copies the rest elements in the vectorthat contains the
greatest item. The return temp vector contains a descent sorted
vector which includes all element in two input vectors.

Listing 13: ../source/falgorithm.c [Line 124 to 149]

vector<indexItem> merge(vector<indexItem> vectorl, vector<indexItem> vector2)

{

vector<indexItem>::iterator first,firstl,first2,lastl,last2;
vector<indexItem> temp(vectorl.size() + vector2.size());

first = temp.begin();
firstl = vectorl.begin();
lastl = vectorl.end();
first2 = vector2.begin();
last2 = vector2.end();

while((firstl < lastl) && (first2 < last2))
{
if(fabs(firstil->item) > fabs(first2->item))
*(first++) = *x(firsti++);
else
*(first++) = *(first2++);
}
while(firstl < lastl)
*(first++) = *(firsti++);

while(first2 < last2)
*(first++) = *(first2++);

return temp;

The mergeSort is used to sort a vector. It devides the vector into
two vectors and sorts the subvectors. Then it merges both sorted
vectors. This is a recursive function, so the division will continue
until the subvector only contains one element.

Listing 14: ../source/falgorithm.c [Line 153 to 176]

vector<indexItem> mergeSort(vector<indexItem> vectorCompress)

{

int i,half,whole;
vector<indexItem> vectorl, vector2;
vector<indexItem> sortedVectorl,sortedVector2;

18

Listing 14: ../source/falgorithm.c [Line 153 to 176] (continued)

// compressItem temp;
if (vectorCompress.size() > 1)
{
whole = vectorCompress.size();
half = whole/2;

for(i=0;i<half;i++)
vectorl.push_back(vectorCompress[i]);
for(i=half;i<whole;i++)
vector2.push_back(vectorCompress[i]);

sortedVectorl = mergeSort(vectorl);
sortedVector2 = mergeSort(vector2);
return merge(sortedVectorl,sortedVector2);
}
else

return vectorCompress;

e sortVector: The vector is passed by reference. This function applies
the mergesort fuction to sort the vector. The index vector, which
records the index of the unsorted vector is returned.

Listing 15: ../source/falgorithm.c [Line 179 to 193]

vector<int> sortVector(vector<double> &vectoril)q{
vector<indexItem> indexedVector;
vector<int> indexes;

indexedVector = getIndexItems(vectorl);

indexedVector = mergeSort(indexedVector);

int length = vectorl.size();
for(int i=0;i<length;i++){
vectori[i]l = indexedVector[length-1-i].item;
indexes.push_back(indexedVector[length-1-i].index);
}

return indexes;

e reorderVector: The vector is passed by reference, and the index vector

is passed too. The destination vector is ordered by the index vector.
g

19

Listing 16: ../source/falgorithm.c [Line 224 to 231] (continued)

Listing 16: ../source/falgorithm.c [Line 224 to 231]

void reorderVector(vector<double> &vectorl,vector<int> indexes){
vector<double> tempVector;
int length = vectorl.size();
for(int i=0;i<length;i++)
tempVector.push_back(vectori[i]);
for(int i=0;i<length;i++)
vectori[il= tempVector[indexes[il];

e sortVetors: It sorts more than one vector.

Listing 17: ../source/falgorithm.c [Line 214 to 221]

void sortVectors(vector<double> &vector(,vector<double> &vectorl, vector<double> &vector2,
vector<double> &vector3,vector<double> &vectord)q
vector<int> indexes = sortVector(vector();
reorderVector(vectorl,indexes);
reorderVector(vector2,indexes);
reorderVector(vector3,indexes);
reorderVector(vector4,indexes);

4. Plotting
g2 package is included to plot the output for this system. To plot a curve,
I use g2_poly_Ine from g2 library. I assume the g2 library will choose the
proper points to represent the curve if too many points were passed to
this function.

e plottingCurve: Parameters inlude Vector of points in the curve, and 4
double coefficients to compute the pixel value. I pass device id, length
and an array of points to g2_poly_line according to its signature.

Listing 18: ../source/plotting.c [Line 13 to 27]

void plottingCurve(vector<Point> vector, int id,double coeff_ ax,
double coeff_ay,double coeff_bx,double coeff_by)

int i,length;

length = vector.size();
double points[length*2];

for(i=0; i < length; i++)

20

Listing 18: ../source/plotting.c [Line 13 to 27] (continued)

{
points[2*i] =
points[2*i+1] = coeff_ay * vector[i].y + coeff_ by;

}

g2_poly_line(id,length,points);

coeff_ax * vector[i].x + coeff_bx;

}

e extremeValues: It computes the extreme values for several vectors.
These values include max x,min_x, max_y,min_y. The algorithm is
simple, which is getting extreme values for one vector, and then com-
paring with those of another, and keeping the greatest one. Repeat
the process.

Listing 19: ../source/plotting.c [Line 64 to 80]

void extremeValues(double& max_x, double& min x,double& max.y ,
double& min_y,const vector< vector<Point> > vectors)

double max_yl,min_y1;

max_x = vectors[0] [vectors[0].size() - 1].x;

min_x = vectors[0][0].x;
extremeY(max_y1,min_y1, vectors[0]);
max.y = max.yl;

min_y = min_y1;

for(int i=0; i < vectors.size(); i++){
extremeY(max_yl,min y1, vectors[i]);
valuesComparing(max_x,min_x,max_y ,min_y,
vectors[i] [vectors[i].size() - 1].x, vectors[i][0].x, max_yl, min_y1);

e coefficient: It computes the coefficient based on extreme values. These
coefficient are used to transfer the actual values for x and y coordi-
nate into the x,y coordinate tha fit in the window.

Listing 20: ../source/plotting.c [Line 84 to 92]

void coefficient(double& coeff_ax, double& coeff_bx,double& coeff_ay ,
double& coeff_by,double max_x,double min_x,double max_y,double min_y)

coeff_ax (MAX_PX - 2 * EDGE)/(max_x - min x);
coeff bx = (max_x * (EDGE+MOD1) - min_x * (MAX_PX - EDGE+MOD1))/(max_x - min_x);

coeff_ ay = (MAXPY - 2 % EDGE - MOD2)/(max_y - min_y);
coeff by = (max_y * EDGE - miny * (MAX_PY - EDGE - MOD2))/(max_y - min_y);

21

Listing 20: ../source/plotting.c [Line 84 to 92] (continued)

e vectorPlotting: This is the general vector plotting fuction. It is sup-
posed to be used by other vector plotting fuctions,since it tries to
cover all cases of plotting. A user has to decide the exact value and
style in order to call this fuction. But it’s hard to understand the
meanings of these parameters and then to use it properly. Instead,
user can use other vector plotting function which only require xvec-
tor and yvectors. The detailed names can be found in session 2.3
definition on page 12.

Listing 21: ../source/plotting.c [Line 151 to 220]

void vectorPlotting(const double exactValue,const vector < vector<Point> > vectors,
char *names[],int style)

double max_x,max_y,min_x,min_y;
double coeff_ax, coeff_bx,coeff_ay, coeff_ by;

int id,id_PS, id X11;
char *filename = "./QOutput/result.ps",str[20];

double px_0,py-0;
double px_1,py-1;

vector<int> color;
double dashes[3];

extremeValues(max_x,min_x,max_y,min_y,vectors);
//maz_y += 0.15 * (maz_y - min_y);

coefficient(coeff_ax,coeff_bx,coeff_ay,coeff _by,max x,min x,max_y,min_y);

//open devices

id = g2_open_vd();

id_X11 = g2 open_X11((int)MAX_PX, (int)MAX_PY);
id_PS=g2_open_PS(filename,PAPERSIZE,g2_PS_land);
//attach z11 and ps to visual device
g2_attach(id,id_X11);

g2_attach(id,id_PS);

//draw rectangle
drawRectangle(id,max_x,min_x,max_y,min_y) ;

//draw the ezact line

if(style == 1){
px0 = coeff ax * min x + coeff_bx;

22

Listing 21: ../source/plotting.c [Line 151 to 220] (continued)

px-1 = coeff_ax * max_x + coeff_bx;

py-0

py-1 = py0;

g2_line(id,px_0,py-0,px_1,py-1);

if (exactValue == 0)
g2_string(id,px_0 - 15,py_0,"0");

coeff_ay * exactValue + coeff_by;

else

{
sprintf(str, "exact value=}-8.6f",exactValue);
g2_string(id,px_1 - 160,py_0+10,str);

T

g2_set_line_width(id,2);

defineColors(id_PS,color);
defineColors(id_X11,color);

dashes[0]=15.0;
dashes[1]=5.0;
dashes[2]=5.0;

for(int i=0; i < vectors.size(); i++){
g2_set_dash(id,i*5,dashes);
g2_pen(id,color[il);

g2_line(id, (2 + i*4) * EDGE, MAX_PY-EDGE-M0D2+%0.5,(3 + i*4) * EDGE, MAX_PY-EDGE-MOD2%0.5);
g2_string(id, (3.2 + i*4) * EDGE, MAX_PY-EDGE-M0OD2%0.7, names[i]);

plottingCurve(vectors[i], id,coeff_ax,coeff_ay,coeff bx,coeff _by);

g2_flush(id);
getchar();
g2_close(id);

3.2 Basic Algorithm

1. underlying
oneStepUnderlyingl (int J_H,double currentPrice,double deltaT), see hand-
out "RA2003 ITI Page 6”, I replace the T-TO as §T, so the underlying just
compute a small step.
Sy _m(i) = ae” ?27-H(&(CIH - b) — d(C{-H - b))

2

where
a = ST() e’Y(T_TO)

23

b=oco (]1—-1b)
y=r—0%/2

haarUnderlyingl(int J_H,vector < double > times);

Listing 22: ../source/stock.c [Line 46 to 67]

vector<double> Stock::oneStepUnderlyingl(int J_H,double currentPrice,double deltaT){
vector<double> underlying;

double nu = r - pow(sigma,2.0)/2.0;

double a = currentPrice * exp(nu * deltaT);
double b = sigma * sqrt(deltaTl);
vector<double> spots = partitiate(J_H);

int length = spots.size()+1;

double c[length+1];

c[0]=0;
c[length]=1;
for(int i=1;i<length;i++)
{
c[il=cumulative(spots[i-1] - b);
¥

for(int i=0;i<length;i++)
underlying.push_back(a * exp(pow(b,2)/2) * length * (c[i+1] - c[il));

return underlying;

2. Haar analysis
Haar Haar::oneStepHaar Analysis(), see handout ”RA2003 I P.3”
Transform S;(i)(i = 0,1,2,...,29 — 1) to
(Sj-1(9),dj—1(4))i = (0,1,2,...,2071 — 1)

dj-1(3) = 1/V/2(S; (2 +1) — 5(20))Sj1 (i) = V25 (24) — dj1(3)
The fuction return a vector contains the next row in the haar matrix.

Haar Haar::haarAnalysis(int numberOfCalls), see handout "RA2003 1 P.3”

The function analysize the haar vector numberOfCalls times. It calls the
oneStepHaarAnalysis numberOfCalls times, and returns the vector con-
tains the numberOfCalls row in the haar matrix for the original vector.
The greatest value for numberOfCalls is J if the caller haar vector is orig-
inal.

24

Listing 23: ../source/haar.c [Line 23 to 54]

Haar Haar::oneStepHaarAnalysis(){
int p=1 << (j-1);
Haar OV(haarItems,J,j-1);

vector<double>::iterator OV_first_ptr = OV.haarItems.begin();
vector<double>::iterator 0V_second_ptr = OV_first_ptr + p;

double d;
for(int i=0; i < p; i++)
{
d = (1/sqrt(2.0)) * (haarItems[2*i + 1] - haarItems[2*i]);
*(0V_second_ptr++) = d;
*(0V_first_ptr++) = sqrt(2.0) * haarItems[2%i] + d;
}

return 0V;

//transform haar vector numberOfCalls steps by call oneStepAnalysis

Haar Haar::haarAnalysis(int number0fCalls){
if (number0fCalls > j){
cout<<"Too much times of Analysis'<<endl;
exit(1);
}

Haar OV(haarItems,J,j);

for(int i=0;i < number0fCalls; i++)

0V = 0V.oneStepHaarAnalysis();

return 0V;

3. Haar compression
Haar compression means replacing some of elements in the haar vector
with 0.0 based on some cretiria. Normally, we only keep the greatest R
elements which have higher absolute values. The last row of the matrix is
compressed, and this vector is computed by haar sysnthesis.

When we compute the sample haar hedging payoff for an option, we use
the same input for Haar Hedging and J Hedging, and this initial input
is the holding portfolio at t0. The SO in the last row of the haar matrix
actually represent the total average of the original haar vector, so we set

S0=0 if we want to use the holding portfolio at t0.
a

25

Listing 24: ../source/haar.c [Line 102 to 123] (continued)

Listing 24: ../source/haar.c [Line 102 to 123]

Haar Haar::RCompression(int R){
vector<indexItem> indexVector = getIndexItems(haarItems);

indexVector = mergeSort(indexVector);

vector<double> v(1<<J,0.0);
Haar 0V(v,J,j);
vector<double>::iterator 0OV_ptr;

for(int i=0; i < R; i++)
{
OV_ptr = OV.haarItems.begin();
0V_ptr += indexVector[i].index;
*0V_ptr = indexVector[i].item;
}

return 0V;

X

Haar Haar::SORCompression(int R){
haarItems[0] = 0;
return RCompression(R);

}

4. Haar synthesis

Haar Haar::oneStepHaarSynthesis(), see handout ”RA2003 II P.1”

Transform (S;(i),d;(4))(i = 0,1,2,...,29 — 1) to
Sj-i—l (7’)(7' = 03 1723 ey 20+ — 1)

Sj+1(20) = 1/V2(8; (i) — d;())Sj1 (20 + 1) = Sj11(20) + V24 (7))

The fuction return a vector contains the next higher row in the haar

matrix.

Haar Haar::haarSynthesis(int numberOfCalls), see handout "RA2003 IT

Page 1”

The function SYNTHESIZE the haar vector numberOfCalls times.
returns the vector contains the next higher numberOfCalls row to the
original vector in the haar matrix. The greatest value for numberOfCalls

is J if the caller haar vector is bottom one(j=0).

Listing 25: ../source/haar.c [Line 69 to 98]

Haar Haar::oneStepHaarSynthesis(){
Haar OV(haarItems,J,j+1);

26

Listing 25: ../source/haar.c [Line 69 to 98] (continued)

vector<double>::iterator QOV_ptr = OV.haarItems.begin();
int p = 1<<j;

double d;
for(int i=0; i < p; i++)
{
d = haarItems[p + i];
*0V_ptr = (1/sqrt(2.0)) * (haarItems[i] - d);
*(0V_ptr+1) = *0V_ptr + sqrt(2.0) * d;
0V_ptr +=2;
T

return 0V;

//transform vector number0fCalls steps by call oneStepAnalysis
Haar Haar::haarSynthesis(int number(0fCalls){
if (number0fCalls > J-j)o{
cout<<"Two much times of systhesis'<<endl;
exit(1);
}

Haar OV(haarItems,J,j);
for(int i=0;i < number0fCalls; i++)

0V = 0V.oneStepHaarSynthesis();
return 0V;

5. path simulation
simulatePath(), see Pathwise MRA handout T P.1

Sh-+1 — Sh- * e’Y*(hi+1—hi)+<7*\/ (hi+1—hi)*Whi,hi+1
where
Whi,hi+1 ~ N(Oa 1)
y=r—0%/2

A vector of times is passed to this function, and it contains N+1 ordered
time spots, i.e. including 0 as t0. A Path Object will be returned.

Listing 26: ../source/stock.c [Line 19 to 38]

Path Stock::simulatePath(vector<double> times){
double drawNumber,NDNumber;
double deltaT;
double ST = St0;

27

Listing 26: ../source/stock.c [Line 19 to 38] (continued)

vector<double> prices,allJumps;

prices.push_back(ST);
allJumps.push_back(1.0);
for(int i=1;i<times.size();i++)
{
drawNumber=rand()/(double) (RAND_MAX) ;
NDNumber = inverseCumulative(drawNumber);

allJumps.push_back(NDNumber) ;
deltaT = times[i] - times[i-1];
ST = ST * exp((r - pow(sigma,2.0)/2) * deltaT + NDNumber * sigma * sqrt(deltaT));
prices.push_back(ST);
¥

return Path(prices,alljumps,times);

}

6. subpath generation
Subpath is a relatively simple algorithm. A vector of subtimes is passed to
the function. The path object will generate a subpath object by extracting
information from the general path at the time difined in subtime vector.
It’s very useful for computing Haar Hedging and A Hedging.

Note: When several steps are skipped, skipped elements in allJumps,
which is member vector of a path, are summed up and then divided by
the number of elements skipped. The result jump number is push into the
allJump vector of the generating subpath.

Listing 27: ../source/stock.c [Line 132 to 149]

Path Path::subPath(vector<double> subtimes){
vector<double> thePrices,theJumps;
double jump; int j,m=0;

for(int i=0;i<subtimes.size();i++){
jump = 0.0;
for(j=m;j<times.size();j++){
jump += allJumps[j];
if(times[j] == subtimes[i]){
thePrices.push_back(prices[j]);
theJumps .push_back(jump/sqrt (j-m+1.0));
break;
T
T
m = j+1i;
}

return Path(thePrices,theJumps,subtimes);

28

Listing 27: ../source/stock.c [Line 132 to 149] (continued)

7. d1
get_d1(), see HH Handout IT P10, and HH Handout V P.7

d1(S;) = ln(Stj/P)(:_ (:T+—J:32) (T —t5)

where

j - index of time spots, j = 1 ... N(N_H or N_BS)
Sy; - sample stock price at time t;

P - strike price

T - the whole time period

t; - the time period up to spot j

o - market volatility for the stock

r - non-risk bank interest

(T —t;) - the time from the spot j to expiration spot

Listing 28: ../source/option.c [Line 36 to 40]

double Option::get_di(double stockPrice,double time)
{
return (log(stockPrice/P) + (stock.r + pow(stock.sigma,2.0)/2.0) * (etime - time))
/ (stock.sigma * sqrt(etime - time));

8. d2
get_d2(), see HH Handout II Page 10

d2(St;) = d1(St;) — o/ (T = Tj)

Listing 29: ../source/option.c [Line 44 to 47]

double Option::get_d2(double di,double time)
{
return dl - stock.sigma * sqrt(etime - time);

}

9. option value

29

double value(double stockPrice,double time), double value(double stock-
Price,double time), see B & S Approximation Detail P.4

V(Y (Si, ti)) = a x (Spi * ®(d1(Sy, ti)) — P x e ") &« $(d2(Sy, 1))

V(Z(Su,ti)) = ax (Pxe "0 4« §(—d2(Sy, i) — Sis % B(—d1(Su, ti)))

where

V(Y (S, ti)) - value for a European Call option
V(Z(Sg;,11)) - value for a European Put option
i - index of time spots, i = 1 ... N(N_H or N_BS)
Sii - sample stock price at time ti

P - strike price

t; - the time period up to spot i

r - non-risk bank interest

a - The amount of an option

Listing 30: ../source/option.c [Line 74 to 80]

double EuCall::value(double stockPrice,double time){
double d1 = get_dl(stockPrice,time);

double d2 = get_d2(di,time);

double value = amount * (stockPrice * cumulative(dil)

}

- P x exp(-stock.r * (etime - time)) * cumulative(d2));

return value;

10.

Option value at a given time depends on non-risk bank interest and its
expiration time and price. It also depends on the stock price at that given
time and the given time itself. The value interval for the given time is
from 0 to the time before its expiration time. When the given time is
equal to its expiration time, the option will be realized, and its value is
expiration value.

option expiration value

double evalue(double stockPrice), double evalue(double stockPrice)

V(Y (St)) = a * maz(0,St — P)
V(Z(ST)) = a *xmazx(0, P — St)

where

V(Y (ST)) - expiration value for European Call option

30

V(Z(Sr)) - expiration value for European Put option

Listing 31: ../source/option.c [Line 84 to 86]

double EuCall::evalue(double stockPrice){
return amount * max(0.0,(stockPrice - P));

}

3.3

The value of an option at expiration time should be computed by these
2 formulars. The formulars at the above section are used to compute
premature option value.

Specific Algorithm

. computing holding portfolio

sampleHoldingPortfolio(Path path), see B & S Approximation Detail P.4,10
Value of holding portfolio at ti:

Cti Pn’
Vio(X1) =3 V(Y (Sii, ti)) + > V(Z(Sui, i)

where
V(Y (S, ti)) - value of an European Call Option.

V(Z(S4i,ti)) - value of an European Call Option. Both value might be
computed as a premature option or as an expired option.

ti - the time when the option value is calculated. It ranges from t0 to T,
which is the common final time.

Ct - the number of call options at time ti. It includes the premature
options and the option expired at the time ti, but it dosen’t include the
option expired before time ti.

P? _ the number of Put options at time ti. It includes the premature
options and the option expired at the time ti, but it dosen’t include the
option expired before time ti.

The sum of values of options at each spots is called the holding value of the
portfolio. The option that expired at the spot is computed by expiration
value formular. The value of premature options are computed by option
value formular. The computation implementation of value and expiration
value for an option is inside the option class.

This fucion will return a vector contains N values corresponding to the
spots in the passed parameter path. We don’t have a holding value for
the last spot, at which spot time = T.

31

Listing 32: ../source/portfolio.c [Line 77 to 97]

vector<double> Portfolio::sampleHoldingPortfolio(Path path){
vector< vector<double> > hdps;
vector<double> HDP;
HDP.assign(path.times.size(),0.0);

if(ecs.size()==0 && eps.size()==0){

}

cout<<"No options in the porfolio error'<<endl;
exit(1);

for(int i = 0; i < ecs.size(); i++)

hdps.push_back(ecs[i].holdingPortfolio(path));

for(int i = 0; i < eps.size(); i++)

hdps.push_back(eps[i].holdingPortfolio(path));

for(int i = 0; i < hdps.size(); i++)

for(int j = 0; j < hdps[i].size(); j++)

HDP[j] += hdps[il[j];

return HDP;

2. computing Black and Schole portfolio

sampleBSPortfolio(Path path), see handout B & S Application for multi-
time Porforliio.

This function computes value of a portfolio along a simulated stock path
using Black and Schole algorithm, whih is § hedging. The parameter path
is particularly for Black and Schole Hedging, and it can be achieved from
the general path. We rebalance the portfolio at each spot on the path,
and some options will expire at some of the spots on the path.

The function returns a vector that contains the BS values at each spot.
The vector also contain the initial value of the holding portfolio at the be-
gining(t0). Then we compute the value of the portfolio at t1,t2,t3,...T(last
point at the path). We rebalance the portfolio at each spot except T spot.
When computing the value of the BS portfolio at ¢;, we rebalance the
portfolio at ¢;—;. If any option expires at a spot t;_1, the payoff of the
option is subtracted from the the rebalance value £. Suppose we have
Nps + 1 spots in the sample path(including the first spot st0), we will get
Nps values in the vector returned by this function.

e Value of a call option at time spot ¢;:
VCX(Sy,) = ax (S, ®(dL(S,)) — Pe " T=t)&(d2(Sy,)))
o Value of a put option at time spot t;:
VPX(S;;) = ax (Pe "(T=t)&(—d2(S;,)) — Sy, ®(—d1(Sy,)))

32

a - amount of the option

e Total value of the call and put options:(value of the holding portfolio)
VX(S;) = S0, (ai * VXi(St))
I - number of options

e Initial portfolio:

Initialy, value of the holding portfolio equals to the value of the hedg-
ing portfilio.

BSP(Sy) =V Xr(Sto)
e Two coefficient ¢ and &:

¢ and & means the cash on the bank account and the number of
shares of the stock respectively.

¢cj1 = ®(d1(Sy;)) (for a call option)
¢p;j—1 = —®(—d1(Sy;)) (for a put option)
$j1 = Lz (@i * $ij—1)
§j—1 =BSP(Sy;) — ¢j-15t;
e Recursive computation of BSP:(rebalance update)
BSP(S;,) = &j_1e"ti~ti-1) + ¢ 1 Sy,

Listing 33: ../source/portfolio.c [Line 19 to 73]

vector<double> Portfolio::sampleBSPortfolio(Path path){
vector<double> BSPs;
double BSP=0;
if(ecs.size()==0 && eps.size()==0){
cout<<"No options in the porfolio error'<<endl;
exit(1);
}

for(int i = 0; i < ecs.size(); i++){
BSP += ecs[i].value(path.prices[0], 0.0);
}
for(int i = 0; i < eps.size(); i++){
BSP += eps[i].value(path.prices[0], 0.0);
}
BSPs.push_back(BSP); //black and schole value at t0

double deltaT;

double d1,phi,xi,epayoff; //expire payoff

for(int i=1; i < path.times.size(); i++){
deltaT = path.times[i] - path.times[i-1];
phi = 0;
epayoff = 0;

for(int j = 0; j < ecs.size(); j++){

33

Listing 33: ../source/portfolio.c [Line 19 to 73] (continued)

}

if(path.times[i-1] < ecs[j].etime){
dl = ecs[j].get_di(path.prices[i-1],path.times[i-1]);
phi += ecs[j].get_phi(di);

}

//else if(path.times[i-1] == ecs[j].etime)

//epayoff += ecs[j].evalue(path.prices[<-1]);

}

for(int j = 0; j < eps.size(); j++){
if(path.times[i-1] < eps[j].etime){
dl = eps[j].get_di(path.prices[i-1],path.times[i-1]);
phi += eps[j].get_phi(dil);
¥
//else if(path.times[i-1] == eps[j].etime)
//epayoff += eps[j].evalue(path.prices[i-1]);
}

xi = BSP - phi * path.prices[i-1];
//zi = BSP - phi * path.prices[i-1] - epayoff;
double interest;
if(ecs.size()>0) //at least one option
interest = ecs[0].stock.r;
else
interest = eps[0].stock.r;
BSP = xi * exp(interest * deltaT) + phi * path.prices[i];

BSPs.push_back(BSP) ;

return BSPs;

3. computing Haar Hedging payoff

sampleHHPayoff(Path path,int j_H,int R), see Handout ”Draft for HH for
multitime option”

Haar Hedging will be performed along the HH path extracted from the
general path, and the number of times is N_H. We will get N_H+1 values
of HH payoffs (hpa in handout). Input at t0 is identical to the first holding
portfoliio.

Input at t1 for a Call option is computed by
Yiu(2) = (Su (i) — K)+

where

Si1 is the underlying vector of this stock at t1, and i is the index value
corresponding the random jump value at t1. See basic algorithm ”under-

lying”.

34

k is the strike price for this option.
Bottom Script + means the result should be either 0 or a posive number.

Input at later time spots for a call option is computed by
Yi;(i) = e7" T~ (e’ 2 B(8;) (1)) (1~ B(C(S; (i) —a)) K (1-B(C(Sy;) (i)

where

Sij is the stock underlying at tj, i is th index value

ais o04/T — tj, and T is the option’s expiration time.

B(S1;)(i) = 5y (i)elr=" /21

C(Sy)(i) = 1/ax In(K/B(Sy;)(0))

The code for computing payoff for one European Call option is listed

below:

Listing 34: ../source/option.c [Line 112 to 135]

vector<double> EuCall::HHPayoff(int j_H,double stockPrice,double time,double deltaT){
if(time >= etime){
cout<<"Hedging time should not greater or equal to option’s expiration time'<<endl;
exit(1);
}

vector<double> underlying = stock.oneStepUnderlyingl(j_H,stockPrice,deltaT);
vector<double> Xis;
double Xij;
// cout<< abs((time + deltaT) - etime) <<endl;
if(abs((time + deltaT) - etime) < 0.001){
for(int j=0;j<underlying.size();j++){
Xi = amount * max(0.0,underlying[j] - P);
Xis.push_back(Xi);
}
}
elseq{
for(int j=0;j<underlying.size();j++){
Xi = value(underlying[j],time+deltaT);
Xis.push_back(Xi);
¥
}

return Xis;

For computation of HH payoff for a portfolio. I calculate the input for
every option at each step using the above algorithm. I will get m vectors,
and m is the number of options not been expired at the step. Then I add
all m vectors together to get the total payoff vector.

The haar algorihm is applied on the total payoff vector. We perform haar

35

analysis, haar compression, and haar synthesis on the vector. For t0, We
use Holding payoff as the Haar hedging payoff, and this initial payoff will
be further iterated in the later haar operations. Therefore, we keep SO =
0 while compression. Otherwise, the average will be cumulated. For haar
algorithm, please see the basic algorithm section.

The corresponding index to the holding and B&S algorithm is computed
based on the allJump numbers inside the generated path. In this system,
We only simulate one general path. the paths for B&S and HH are all
a subpath of the general path. HoW to compute a subpath for HH is
explained in Basic Algorithm for subpath.

Listing 35: ../source/portfolio.c [Line 101 to 174]

vector<double> Portfolio::sampleHHPayoff(Path path,int j_H,int R){
vector<double> HHPs;
double HHP=0;
double Xi;
vector<double> Xis;
vector< vector<double> > payoffs;

double interest;

if(ecs.size()>0) //at least one option
interest = ecs[0].stock.r;

else

interest = eps[0].stock.r;

if(ecs.size()==0 && eps.size()==0){
cout<<"No options in the porfolio error'<<endl;
exit(1);

}

for(int i = 0; i < ecs.size(); i++){
HHP += ecs[i].value(path.prices[0], 0.0);
}
for(int i = 0; i < eps.size(); i++)q
HHP += eps[i].value(path.prices[0], 0.0);
}
HHPs .push_back (HHP) ;
//at this point HHP contains V_{t_0}(X~{t_0})
//with this initialization we should take s_0[0] =0

//here we compute/load the input to Haar analysis
// HHP =0; //FOR DEBUGGING
for(int k=0; k<path.times.size()-1; k++){ //start of big loop
payoffs.clear();
for(int i = 0; i < ecs.size(); i++){
Xis.clear();
if(path.times[k] < ecs[i].etime)q{
Xis = ecs[i] .HHPayoff (j_H,path.prices[k],path.times[k],path.times [k+1]
O

36

Listing 35: ../source/portfolio.c [Line 101 to 174] (continued)

- path.times[k]);
payoffs.push_back(Xis);
}
}

for(int i = 0; i < eps.size(); i++){
Xis.clear();
if (path.times[k] < eps[i].etime){
Xis = eps[i] .HHPayoff (j_H,path.prices[k],path.times[k],path.times [k+1]
- path.times[k]);
payoffs.push_back(Xis);
¥
}

//sum up contributions of all options
Xis.clear();
for(int i = 0; i < payoffs[0].size(); i++){
Xi = 0;
for(int j = 0; j < payoffs.size(); j++)
Xi += payoffs[jl[il;
Xis.push_back(Xi);
}

Haar h(Xis,j_H,jH);

h = h.haarAnalysis(j_H);

h = h.SORCompression(R); //this compression sets s_0[0]=0

//h = h.RCompression(R);//this compression DOES NOT force s_0[0]=0
h = h.haarSynthesis(j_H);

vector<double> spots = partitiate(j_H);
int index = getIndex(spots,path.allJumps[k+1]);
HHP = HHP * exp((path.times[k+1]-path.times[k]) * interest) +
h.haarItems[index];
HHPs . push_back (HHP) ;
}//end of big loop
return HHPs;

}

4 Test Plans

Testing is very important to make sure that each unit, module, and whole system
work can work properly. If no bugs are found during some testing, it give us
onfident of the software.

37

4.1 Unit Test

Considering the unit testing, I developed four independent testing codes. The
plotting library has been used and tested by other software, therefore I didn’t
write specific code to test its functionality. However, it’s a tool to show the
computation result, so it functionality is tested each time when I run a test for
other unit.

Here are the four test stubs:

1. Test Haar class The operations of haar analysis, symthesis, and compres-
sion are tested. The input data, which should be a vector, is from reference
1.

Listing 36: ../source/test/haarTest.c [Line 10 to 54]

int main(int argc, char *xargv)
{

vector<double> transformVector;

transformVector.push_back(56);
transformVector.push_back(40);
transformVector.push_back(8);

transformVector.push_back(24);
transformVector.push_back(48);
transformVector.push_back(48);
transformVector.push_back(40);
transformVector.push_back(18);

Haar IV(transformVector,3,3);
Haar OVl = IV.haarAnalysis(3);

int R=3,Rt=0;
double threshold = 0.95;

//Haar 0V2 = 0V1.RCompression(R);

Haar 0V2 = 0V1.thresholdCompression(threshold,Rt);
cout<<"Rt = "<<Rt<<endl;

Haar 0V3 = 0V2.haarSynthesis(3);

Haar 0V4 = 0V1.haarSynthesis(3);

char *names[20];
vector<double> xvector;
vector< vector<double> > yvectors;

for(int i=0; i<8;i++)

xvector.push_back(i * 1.0);

yvectors.push_back(IV.haarItems);

38

Listing 36: ../source/test/haarTest.c [Line 10 to 54] (continued)

yvectors.push_back(0V3.haarItems);
yvectors.push_back(0V4.haarItems);

names[0] = "Original';
names[1] = “Compressed";
names[2] = “Non-compressed";

vectorPlotting(yvectors,xvector,names);

return 0;

2. Test Stock class The stock class is tested regarding its ability to generate
a path and simulate an underlying at a fixed point.

Listing 37: ../source/test/stockTest.c [Line 11 to 59]

int main(int argc,char *argv[]){
if(arge !=2){
cout<<"stockTest 1(path)/2(underlying)/3(compare underlying algorithms)'"<<endl;
exit(1);
}
double St0=20.0,interest=0.2,sigma=0.2;
Stock stock(St0, interest, sigma);

vector<double> times;
for(int i = 0; i<4;i++)
times.push_back(i*0.1);

char *names[20];
vector<double> xvector;
vector< vector<double> > yvectors;

if(atoi(argv[1]) == 1){
names [0] = "All jumps";
names [1] = "All prices";
Path path = stock.simulatePath(times);

Xxvector = path.times;
yvectors.push_back(path.allJumps);
yvectors.push_back(path.prices);
}
else if(atoi(argv[1]) == 2){
names [0] = "Haar underlying";
vector<double> underlying = stock.haarUnderlying(4,times);

for(int i=0; i<underlying.size();i++)

39

Listing 37: ../source/test/stockTest.c [Line 11 to 59] (continued)

xvector.push_back(i * 1.0);
yvectors.push_back(underlying);

}

elseq{
names [0] = "underlying v1";
names [1] = "underlying v2";

vector<double> underlyingl = stock.oneStepUnderlyingl(10,5t0,times[1]-times[0]);
vector<double> underlying2 = stock.oneStepUnderlying2(10,5t0,times[1]-times[0]);

for(int i=0; i<underlyingl.size();i++)
xvector.push_back(i * 1.0);

yvectors.push_back(underlyingl);

yvectors.push_back(underlying2);

vectorPlotting(yvectors,xvector,names);
return 0;

3

3. Test Option class The code below is used particularly to test the HHPayoff
of an option. The result for a Call and a Put option are compared and
plotting out.

Listing 38: ../source/test/optionTest.c [Line 13 to 60]

int main(int argc, char **argv){
double St0=21.0,interest=0.2,sigma=0.2;
double timel1=0.9,time2=0.9,strikePrice=20.0,amount=1.0; int optionType=1;
vector<double> times;
for(int i = 0; i<10;i++)
times.push_back(i*0.1);

Stock stock(St0, interest, sigma);
EuCall ec(stock, timel, strikePrice, amount);
EuPut ep(stock, time2, strikePrice, amount);

Path path = stock.simulatePath(times);

cout<<"Times are: ";

for(int i =0; i<times.size();i++)
cout<<times[i]<<" ";

cout<<endl;

cout<<"Path is: ";

for(int i =0; i<path.prices.size();i++)

cout<<path.prices[i]<<" ";

40

Listing 38: ../source/test/optionTest.c [Line 13 to 60] (continued)

cout<<endl;

int k=7, j_H=4;
vector<double> hhpayoffi= ec.HHPayoff(j_H,path.prices[k],path.times[k],
path.times[k+1] - path.times[k]);

vector<double> hhpayoff2 = ep.HHPayoff(j_H,path.prices[k],path.times[k],
path.times[k+1] - path.times[k]);

char *names[20];
names[0] = "Call HH Payoff";
names[1] = "Put HH Payoff";

vector<double> xvector = times;
vector< vector<double> > yvectors;
yvectors.push_back(hhpayoffl);
yvectors.push_back(hhpayoff2) ;

cout<<hhpayoffil.size()<<" '"<<hhpayoff2.size()<<endl;
for(int i =0; i<hhpayoffl.size();i++)
cout<<hhpayoffi1[i]<<" "<<hhpayoff2[i]<<" "<<endl;

vectorPlotting(yvectors,xvector,names);

return 0;

4. Test Portfolio class I test different portfolio value along a path. The
path is generated randomly, But the system gives us the same sequence
of random numer each time we want a path. To solve this problem,I
developed a member function with a random seed to be called for testing.
This fuction won’t be used by normal use of the system. Some typical
input and output are described below.

Listing 39: ../source/test/portfTest.c [Line 14 to 95]

int main(int argc, char **argv){
double St0=21.0,interest=0.2,sigma=0.2;
double timel=1,time2=0.5,strikePrice=21.0,amount=1.0;
int seed=3;
vector<double> times;
for(int i = 0; i<=10;i++)
times.push_back(i*0.1);

Stock stock(St0, interest, sigma);

EuCall ec(stock, timel, strikePrice, amount);
EuPut ep(stock, time2, strikePrice, amount);

41

Listing 39: ../source/test/portfTest.c [Line 14 to 95] (continued)

Path path = stock.simulatePath(times,seed);

cout<<"Times are: '";

for(int i =0; i<times.size();i++)
cout<<times[i]<<" ";

cout<<endl;

cout<<"Path is: ";

for(int i =0; i<path.prices.size();i++)
cout<<path.prices[i]<<" ";

cout<<endl;

vector<EuCall> ecs;
vector<EuPut> eps;

ecs.push_back(ec);
//eps.push_back(ep) ;

Portfolio p(ecs,eps);
vector<double> bsps = p.sampleBSPortfolio(path);

vector<double> hdps = p.sampleHoldingPortfolio(path);
vector<double> hhps = p.sampleHHPayoff(path,10,1);

vector<double> rebalanceTimes;
for(int i=0;i<times.size();i++)
rebalanceTimes.push_back(times[i]);

cout<<bsps.size()<<" "<<hdps.size()<<" "<<hhps.size()<<endl;
for(int i =0; i<bsps.size();i++)
cout<<bsps[i]<<" "<<hdps[i]<<" '}<<hhps[i]<<endl;

vector<double> xvector = rebalanceTimes;
vector< vector<double> > yvectors;

int option=0;

if(argec==2)
option=atoi(argv[il);

if (option==0){
char *names[20];
names [0] = "BS portfolio";
names[1] = "Holding Porfolio";
names [2] = "HH Payoff";

yvectors.push_back(bsps);

yvectors.push_back(hdps);
yvectors.push_back(hhps);

42

Listing 39: ../source/test/portfTest.c [Line 14 to 95] (continued)

vectorPlotting(yvectors,xvector,names);
}
else {
vector<double> vi,v2;
double hherror=0,bserror=0;
for(int i=0;i<hdps.size();i++){
vl.push_back(bsps[i]-hdps[i]);
v2.push_back(hhps[i]-hdps[il);
bserror += pow(bsps[i]-hdps[i],2.0);
hherror += pow(hhps[i]-hdps[i],2.0);
T
cout<<"Average BSP Error = "<<sqrt(bserror/hdps.size())<<endl;
cout<<"Average HHP Error = "<<sqrt(hherror/hdps.size())<<endl;
char *names[20];
names[0] = "BSP Error";
names[1] = "HHP Error";
yvectors.push_back(vl);
yvectors.push_back(v2);
vectorPlotting(O,yvectors,xvector,names);
}

return 0;

e Test the case that the portfoliio contains no options. It should give
an error message

e Test the case that The porfolio contains only one option.

e Test the case that The porfolio contains two options,one is Eupean
Call and another is European Put option.

e Test the case that The porfolio contains arbitrary nuber of options,
whih might be Call or Put option.

e Test the case R = 0,1, 10, 2/-F~1 and 27-7 — 1.

4.2 System Testing

The testing technique we used are Functional testing or called Black box testing.
Since this application is developed for research, the expected result is not clear.
Professor Ferrando contribute a lot of his time to test the functionality of the
system with me.

43

5 User’s guide

5.1 Installation and Compilation

The Software will be distributed by a tar file, name finance.tar. The platform
required to run this soft ware include:

1. Hardware must at least Pentium III with 256 MB memory and 1G free
hard Drive space

2. Operating system is Linux 7.0 up or Unix.

3. g2 must be installed in the platform. Information about g2 can be found
on http:www.ap.univie.ac.at /users/ljubo/g2.shtml.

User should create a working directory for this software first, then type tar -xf
finance.tar under this working directory. The Makefile, input files and source
files will be generated. Under the working directory, then, user just type make
command. The excuable file will be generated and is named HHAssess.

5.2 Running

In order to run the program properly, user need to have two parameter files
named parameter.txt and outputops.txt. Both 2 files must be put in the work-
ing directory. The meaning of parameters for program are explained in the
requirement session. The format of parameters must follow the sample input
files supplied below.

1. File:parameter.txt

Listing 40: sampleOutput/parameter.txt [Line 2 to 25]

18 0.2 0.2
12 50

1

o » O =

1

1

01

100 333

11

21.9852 1 1
21.9852 0 1

double St0,interest,sigma;

int j_H,R;
int N;

44

Listing 40: sampleOutput/parameter.txt [Line 2 to 25] (continued)

vector<double> times;
int N_H;

vector<double> Htimes;
int N_BS;
vector<double> BStimes;

int M,seed;

callNum putNum

vector<double> SPrice,amount,Stime;

2. File:outputops.txt

Listing 41: sampleOutput/outputops.txt [Line 2 to 15]

10

1

int hedgingMethod, errorOption, double assessTime

HedgingMethod:
0 -- coputing both HH and BS portfolio
1 -- only HH

-1 -- only BS portfolio

errorQOption:

0 -- output sample values

1 -- output errors

assesstime:

output the value at the assesstime, greater than t0 and less than T

5.3

Concepts

1. holding portfolio: consist of call and put options

hedging portfolio: consist of cash on bank account and number of shares
of stock

rebalance time: The time to operate a Haar hedging or 6 Hedging. The
rebalance times are listed in Htimes and BSPtimes, which are subsets of
the general time.

HHAssess: Assesses the Haar Hedging algorithm, and compare its result
with § Hedging.

45

6 Sample output

We have a huge number of combinations of input, so we can’t have the sample
output for each possible input. Some typical input combinations are chose and
they are supposed to give users visual perception of how the system works and
what is the result to run the system.

Each time when HHAssess is runned, 6 files will be generated. The first one
is result.ps, which visually shows the result. The second file result.txt contains
all the detailed information for the plotting. The other 4 files contains part of
the result.txt, such as data for Haar Hedging.

The first part of the result.txt contains the input parameters. I will present
all this input data and the plotting ps file for the following typical input and
output conditions. I don’t present all the output data. There are two excep-
tions. For the first case, I put partial detail output data, and for the pathwise
assessment, I present all the data along the path.

6.1 Final, one Eucall, one step

This means the final time output for one European Call with one step Hedging.
This is the most typical and common case for this system. The result of this
case can be compared with the work done before.

1. Input parameters:

Listing 42: sampleOutput/1/result.txt [Line 15 to 27]

18 0.2 0.2
12 1

o r O KR O R
[

1

300 1

11

21.9852 1 1
21.9852 0 1
001

2. Qutput data:

Listing 43: sampleOutput/1/result.txt [Line 31 to 34]

samplePrices sampleHD sampleBSP sampleHH
12.499736 0 -3.369314094 4.897162607e-09

46

= Hld Payail’ == = BE ekl TR

295414

S33603

Figure 2: Final, one Eucall, one step

Listing 43: sampleOutput/1/result.txt [Line 31 to 34] (continued)

12.5847186 0 -3.323437739 4.897162607e-09
12.71316329 0 -3.254099144 4.897162607e-09

3. Continue...

Listing 44: sampleOutput/1/result.txt [Line 326 to 336]

31.65891236 9.673712358 6.973428514 5.942693648
32.42117203 10.43597203 7.38492092 5.942693648
33.024691 11.039491 7.710719967 5.942693648
33.15145343 11.16625343 7.779150424 5.942693648

33.21785623 11.23265623 7.814996803 5.942693648
34.96215062 12.97695062 8.756623284 5.942693648
38.08937872 16.10417872 10.44480208 5.942693648
39.80859523 17.82339523 11.37289072 5.942693648
51.56658394 29.58138394 17.72023303 5.942693648

Average BSP error = 1.473737084
Average HH error = 2.085187971

4. Plottig ps file(Figure 2):

47

6.2 Final, one Eucall, several steps

This means the final time output for one European Call with several steps Hedg-
ing. This case is more advanced than the first case, and we have some previous
knowledge about the result that is going to achieve. The only difference is that
it adds a little bit complexity.

1. Input Parameters:

Listing 45: sampleOutput/2/result.txt [Line 14 to 26]

18 0.2 0.2

10 100

10
00.10.20.30.40.50.60.70.80.91
10
00.10.20.30.40.50.60.70.80.91
5

00.10.20.30.41

300 1

11

21.9852 1 1

21.9852 0 1

001

2. Plottig ps file(Figure 3):

6.3 Final, one Eucall, one Euput, several steps

This means the final time output for one European Call and one European Put
with several steps Hedging. This case is more advanced than the second case,
and we also have some previous knowledge about the result that is going to
achieve.

1. Input Parameters:

Listing 46: sampleOutput/3/result.txt [Line 15 to 27]

18 0.2 0.2

10 100

10
00.10.20.30.40.50.60.70.80.91
10
00.10.20.30.40.50.60.70.80.91
5

00.10.20.30.41

300 1

48

Listing 46: sampleOutput/3/result.txt [Line 15 to 27] (continued)

11

21.9852 1 1
21.9852 1 1
001

2. Plottig ps file(Figure 4):

6.4 Final, three Eucall, four Euput, several steps

This means the final time output for three European Call and four European
Put with several steps Hedging. This case is the genearl case for assissing the
HH and BSP.

1. Input Parameters:

Listing 47: sampleOutput/4/result.txt [Line 15 to 32]

18 0.2 0.2

10 100

10
00.10.20.30.40.50.60.70.80.91
8
00.10.30.40.50.60.80.91
5

00.10.20.30.41

100 5

3 4

2211

2111

2011

1911

1811

1711

16 1 1

001

2. Plottig ps file(Figure 5):

6.5 Pathwise,one Eucall, several steps

This means Pathwise comparation for an European Call with several steps Hedg-
ing. If a user like to get the pathwise comparation, he can achieve his goal by
setting the simulation variable M to 1. Now the parameter seed,right after the
M, will be use to generate a special path to test.

49

= Hld Payail’ == == BSpwiulic el HIH Py

Figure 3: Final, one Eucall, several steps

= Hld Payail’ == == BSpwiulic el HIH Py

13500y

Figure 4: Final, one Eucall, one Euput, several steps

50

. — [l Payal == == BSpriiilio —= == e

Figure 5: Sample output

1. Input Parameters:

Listing 48: sampleOutput/5/result.txt [Line 14 to 26]

18 0.2 0.2

10 100

10
00.10.20.30.40.50.60.70.80.91
8
00.10.30.40.50.60.80.91
5

00.10.20.30.41

15

11

21.9852 1 1

21.9852 0 1

001

2. QOutput data:

Listing 49: sampleOutput/5/result.txt [Line 30 to 43]

samplePrices sampleHD sampleBSP sampleHH

0 1.433820847 1.433820847 1.433820847

0.1 1.031916312 1.075472393 1.461958605

0.2 0.3551616064 0.2582965476 1.729426426

0.3 1.321034317 0.8888572309 1.729426426

0.4 0.52195253563 -0.01868495885 0.7324208736

0.5 0.1810353356 -0.01868495885 0.2631587558

0.6 0.02250787266 -0.01868495885 -0.001526888825
0.7 0.00292128223 -0.01868495885 -0.001526888825
0.8 0.0002134226676 -0.01868495885 -0.1070220127
0.9 3.129062507e-07 -0.01868495885 -0.1129147203
1 0 -0.8165911525 -0.1153869787

Average BSP error = 0.3302788325
Average HH error = 0.4601903078

= Hld Payail’ == = BE ekl TR

Figure 6: Final, three Eucall, four Euput, several steps

Listing 50: sampleOutput/6/result.txt [Line 14 to 26]

18 0.2 0.2

10 100

10
00.10.20.30.40.50.60.70.80.91
8
00.10.30.40.50.60.80.91
5

00.10.20.30.41

100 5

11

21.9852 1 1

21.9852 0 1

000.3

2. Plottig ps file(Figure 7):

6.7 Final,one Eucall, several steps,HH only,error only

This case is similar to the second case, but it only the error for Haar Hedging.
This option can be achieved by put both the hedging method option and error
option to 1 in the outputops.txt file. To compute Black & Schole portfolio only,
the hedfging method option should be set to -1.

52
1. Input Parameters:

Listing 51: sampleOutput/7/result.txt [Line 14 to 26]

18 0.2 0.2

10 100

10
00.10.20.30.40.50.60.70.80.91
8

00.10.30.40.50.60.80.91

5

00.10.20.30.41

AN

i —— —=- -— BSporlio —-—- e
-

r
2
e ;

) “l ‘/‘

'/"_ "\4 /./
LB At
ol h,.',",\ FEo
‘ RN
{ ,f':’ all l, by
Ul okl i
4 X
= g, 1S ‘;'
s =l]
Foio, =™ "‘ Ilzj' l
;
Figure 7: Fixed,one Eucall, several steps
L Il Paalt
-2RUA2

Figure 8: Final,one Eucall, several steps,HH only,error only

53

References

[1] John C. Hull: Futures and OPtions Markets, Prentice Hall, 2001

54

