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Abstract. We present a discretization of financial instruments in terms of
martingale expansions constructed using Haar wavelets systems. Expansions
on these bases give the pointwise convergence needed in several applications.
We work out the details of an application to hedging an European portfo-
lio of options and describe natural conditions under which our Haar hedging
strategy can be realized by means of a self financing portfolio consisting of
binary options. The efficiency of the hedging is studied by analyzing the vol-
ume of transactions required to construct the approximating portfolio and by
providing numerical comparisons with delta hedging.
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1. Introduction

Continuous models for the underlying asset are well established although in prac-
tice the hedging of options depending on this underlying is performed through a
time discretization. In delta hedging the underlying itself is used to construct the
portfolio replication, this involves an implicit linear spatial approximation of the
value of the option. This approximate hedging gives a pointwise error the quality of
which depends on the efficiency of this space-time approximation. We note that an
efficient portfolio replication will aim to reduce the number and volume of trans-
actions for a given approximation error. Efficiency is also important in the pricing
of complex path dependent derivatives when using the Monte Carlo technique. In
this situation, an efficient approximation will aim at minimizing the number of
computations maintaining a certain level of error.
As hinted above, the notion of efficiency depends on the application at hand, despite
of this, there are theoretical guidelines on how to approach the problem. The
area of nonlinear approximation (see [7] and [10] and the references given there)
studies efficient representations of functional classes. For specific functional classes,
wavelets have been proven optimal for the task of compression (efficient storage),
noise removal, fast computation, etc.

The use of wavelets techniques in finance has been directed towards time series
processing, (see for instance [13] and [25]) and the fast numerical solution, via the
Galerkin method, of Black-Scholes equation (see [21] and [22] for a recent account of
these issues). These approaches make use of standard constructions of orthonormal
basis of wavelets on the real line or other related higher dimensional (analytical)
spaces. Our approach is different from the above as we carry our wavelet construc-
tion directly on the probability space (Ω,F , P ), where F = {Ft} is the filtration
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generated by a given stochastic process and P a probability measure of interest.
It is possible, and necessary for some of the applications, that the basis functions
{uk} be adapted to F , this allows pathwise approximations which are needed for
the hedging applications and applications to simulations. In our approach, the
functions {uk} will take only two nonzero values, so they will be Haar-like. This
restriction can be relaxed but, in that case, the financial interpretation of the ex-
pansions will be less natural.

In the literature there are several research streams that use Hilbert space basis for
approximation of contingent claims. For example, [5] uses eigenfunction expansions
to price options in a general setting. Reference [18] describes possible uses of a
Hilbert space basis for valuation and hedging. Our contribution is different, the
paper introduces a framework that allows the construction of Hilbert space bases
with the aim to provide efficient approximations. The efficiency is achieved, in part,
thanks to the adaptability (in the sense of measure theory) with respect to the
underlying process and the localization of the basis functions. We show how to use
our approximations to construct portfolios of binary options for hedging general
financial claims and provide bounds for the volume of transactions required to
implement the approximating portfolios. These upper bounds rely on the property
of localization of our basis functions and are presented in Section 5. Some of these
characteristics are in contrast with other approaches to hedging ([1], [6] and [16])
which, similarly to our approach, use portfolios of simple options to hedge complex
portfolios.
To indicate the essence of our approach, we point to (2.1). The right hand side
of (2.1) is just a rewrite of the left hand side in terms of the martingale differences
which always form an orthogonal set. The novelty is in the writing of the condi-
tional expectation as a Fourier expansion, the inner products 〈X,uk〉 are a set of
new coordinates with useful properties and information. In particular, these inner
products can be efficiently computed via the multiresolution analysis algorithm (see
Appendix A). Most importantly, the setting is flexible enough so that the actual
Haar functions {uk} can be chosen via an optimization as proposed in [4] in order to
give efficient representations of X. Efficient representations of functional classes is
a chief concern of computational harmonic analysis, see for example [10], [8] and [9].

The rest of the paper is organized as follows, Section 2 defines H-systems and de-
velops some of the relationships between H-systems and sequences of partitions.
Section 3 summarizes Willinger’s main result on existence of atomic discretization
of stochastic processes and connects them to our setup of H-systems. Section 3.1
introduces a useful example of an H-system in a basic financial setting. Section 4
motivates and develops our main application to hedging a given European portfo-
lio of options, it also outlines other applications. Section 5 presents several upper
bounds for the volume of transactions required to implement the approximating
portfolios described in Section 4. Section 6 presents numerical examples and com-
parissons with delta hedging. Section 7 summarizes the main results of the paper.
Appendix A presents notation and formulae required for a multiresolution analysis
algorithm. Appendix B presents a simple example as a complement. Appendix C
presents tables and figures from the numerical experiments. As a technical note,
and for matters of convenience, we will supress writing a.e. (almost everywhere)
from many statements.
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2. H-Systems

Let (Ω,A, P ) denote an arbitrary probability space. The notation || ||2 = 〈, 〉
stands for the inner product on L2(Ω,A, P ). The following Gundy’s [15] definition
is motivated by the standard Haar system on L2([0, 1]).

Definition 1. An orthonormal system of functions {uk}k≥0 defined on Ω is called
an H-system if and only if for any X ∈ L2(Ω,A, P )

(2.1) XAm ≡ E(X|u0, u1, . . . , um) =
m∑

k=0

〈X, uk〉uk, for all m ≥ 0,

where Am = σ(u0, . . . , um). The intended meaning of k ≥ 0 in the above definition
is to allow the system {uk}k≥0 to be finite or infinite. We also use the notation
A∞ = σ(∪m≥0Am). In applications we will make use of the pointwise convergence
of (2.1) which holds due to the martingale convergence theorem [23]. Moreover, if
p ∈ [1,∞) is a given real number then, for every X ∈ Lp, the sequence XAm

=
E(X|Am) converges a.s. and in Lp to X∞ = E(X|A∞). Convergence to X holds
whenever σ(X) ⊆ A∞.

We caution the reader that we will attach the word Haar to several definitions
and constructions even though they may refer to general H-systems, see also Def-
inition 5. The following proposition, which is proven in [15], gives an alternative
characterization of H-systems equivalent to Definition 1.

Proposition 1. An orthonormal system {uk}k≥0 defined on Ω is an H-system if
and only if the following three conditions hold:

(1) Each uk assumes at most two nonzero values with positive probability.
(2) The σ-algebra Am consists exactly of m + 1 atoms.
(3) E(uk+1|u0, u1, . . . , uk) = 0; k ≥ 0. So the functions uk are martingale

differences.

Corollary 1. Assume {uk}k≥0 is an H-system. Then, for each n ≥ 0, un+1 takes
two nonzero values (one positive and the other negative) only on one atom of An

(hence this atom becomes its support). Consequently, An+1 consists of n atoms
from An and two more atoms obtained by splitting the remaining atom from An.

In view of the above proposition and its corollary, the functions in an H-system are
natural generalizations of classic Haar functions, as the next definition states.

Definition 2. Given A ∈ A, P (A) > 0, a function ψ is called a Haar function on
A if there exist Ai ∈ A, A0 ∩A1 = ∅, A = A0 ∪A1, ψ = a 1A0 + b 1A1 and∫

Ω

ψ(ω) dP (ω) = 0,

∫

Ω

ψ2(ω) dP (ω) = 1.

2.1. Basic Properties of H-Systems. This section introduces some elementary
properties of H-systems and partitions. We also introduce some of the notation to
be used in the rest of the paper. The reader who wishes to see financial applications
first should refer to Section 4.
It should be clear, from Corollary 1, that an H-system naturally defines a binary
tree of partitions, these are formally introduced in the next definition.

Definition 3. A sequence of partitions of Ω, Q := {Qj}j≥0, is called a binary
sequence of partitions if for j ≥ 0, the members of Qj have positive probability,
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Q0 = {Ω}, and for j ≥ 1, A ∈ Qj if and only if it is also a member of Qj−1 or
there exists another member A′ of Qj such that A ∪A′ ∈ Qj−1.

We set A0,0 := Ω, hence Q0 = {A0,0}. For j ≥ 1, if A ∈ Qj and A = Ak,i ∈
Qj−1 then A preserves its index. Otherwise (i.e. A /∈ Qj−1, and not yet indexed)
then there exists Ak,i ∈ Qj−1 and A′ ∈ Qj such that

Ak,i = A ∪A′,

then set Ak+1,2i := A and Ak+1,2i+1 := A′.

The index j in Aj,i will be called the scale parameter (we will also call it the level),
it indicates the number of times A0,0 has been split to obtain Aj,i. Notice that Qj

can have at most 2j members, and if Ak,i ∈ Qj then k ≤ j and 0 ≤ i ≤ 2k− 1. The
figure displayed in Appendix B should clarify the indexation.

Given a binary sequence of partitions Qk, k ≥ 0, define the associated trees

Tn ≡ ∪n
k=0Qk, and T ≡ ∪n≥0Tn.

For every internal node A ∈ T we have, using the indexation introduced in Defini-
tion 3, A = Ak,i and a corresponding Haar function at that node

(2.2) ψA = ak,i1Ak+1,2i + bk,i1Ak+1,2i+1.

Given A ∈ T we have the natural associated tree TA.
The following definition refines Definition 3, it constructs partitions by collecting

atoms with the same scale parameter j. Atoms at lower levels, which complete a
partition and will not be further split, are also included.

Definition 4. A binary sequence of partitions R = {Rj} will be called a mutireso-
lution sequence (of partitions) if each Ak,i belonging to Rj, with j > k, also belongs
to Rj′ for all j′ ≥ j.

Observe that if R is a multiresolution sequence of partitions and Ak,i ∈ Rj with
k < j, Ak,i has not been split since level k and will not be further split, while if
k = j, Aj,i comes from the splitting of an atom of Rj−1. To this type of partitions
we can associate a Multiresolution Analysis algorithm (MRA) (see Appendix A) in
complete analogy with wavelet theory which, in particular, allows the computation
of inner products and the corresponding approximations to be organized by the
scale parameter.
The following sets of indexes will be used throughout the paper and in Appendix
A, consider j ≥ 0 and let

(2.3)
Ij ≡ {i : Aj,i ∈ Rj and Aj,i = Aj+1,2i ∪Aj+1,2i+1}, and

Kj ≡ {(k, i) : Ak,i ∈ Rj }.

Natural binary sequences of partitions are the dyadic ones, these are sequences
{Qj}j≥0 such that each atom of Qj−1 split into two atoms of Qj . Since the usual
Haar wavelet system is associated with this kind of sequences, we introduce the
following general definition.

Definition 5. We say that an H-system {uk}0≤k≤m is a Haar system if m = ∞
(or m = 2J − 1) and each atom of σ(u0, . . . , u2j−1) is the union of two atoms of
σ(u0, . . . , u2j+1−1) for all j (or for all j < J − 1).

The proof of the following result is provided in [4].
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Theorem 1. Every H-system induces naturally a multiresolution sequence of par-
titions and reciprocally.

Indeed, from [4], a multiresolution sequence of partitions{Rj}j≥1 has associated
the H-system given by u0 = φ0,0 ≡ 1Ω and{u2j+i ≡ ψAj,i

: j ≥ 1, i ∈ Ij}.
Remark 1. We will use H-systems to approximate stochastic processes, in fact for
every partition of the time interval [0, T ] we will have a finite H-system. Details
are provided in Section 3.

Section 3 briefly describes general results on atomic approximations of stochastic
processes. These results will guarantee the availability of H-systems for further
developments in the paper. As indicated, optimized constructions of H-systems are
also possible, an approach is fully developed in [4].

3. Atomic Discretizations of Stochastic Processes

In order to explain and justify our use of Definition 1 and Theorem 1 we will
need some results on discrete approximations of continuous stochastic processes.
This is presented in Proposition 2 below, it gives an existence result that can be
employed in our applications. Alternative constructions of H-systems are presented
in [4], reference [14] describes ways to construct H-systems associated with nested
partitions.

Let (Ω,A, P ) be a complete probability space and S = (St : 0 ≤ t ≤ T ) be
a continuous stochastic process defined on this probability space. Let F = {Ft :
0 ≤ t ≤ T} be the filtration where Ft is the completion of σ(Sr : 0 ≤ r ≤ t).
Following W. Willinger [28] and [29], we introduce the notion of skeleton-approach
for stochastic processes.

Definition 6. A continuous-time skeleton approach of S is a triple (Iξ,Fξ, ξ),
consisting of a index-set Iξ, a filtration Fξ = {Fξ

t : 0 ≤ t ≤ T}, the skeleton
filtration, and a Fξ-adapted process ξ = (ξ : 0 ≤ t ≤ T ) such that verifies:

(1) Iξ = {0 = t(ξ, 0) < ... < t(ξ, Nξ) = T}, where Nξ < ∞.
(2) For each t, Fξ

t is a finitely generated sub σ-algebra of Ft, with atomic
partition Pξ

t .
(3) For t ∈ [0, T ] − Iξ, we set Fξ

t = Fξ
t(ξ,k) if t ∈ [t(ξ, k), t(ξ, k + 1))for some

0 ≤ k < Nξ.
(4) For each 0 ≤ t ≤ T , ξt = E(St | Fξ

t ).

Definition 7. A sequence (I(n),F (n), ξ(n)) of continuous time skeletons of S will
be called a continuous-time skeleton approximation of S if the following three prop-
erties hold. The sequence I(n) of index satisfies:

(3.1) lim
n→∞

|I(n)| = 0

where |I(n)| ≡ max{|t(ξ(n), k) − t(ξ(n), k − 1)| : 1 ≤ k ≤ N (n)}, and I ≡ ∪nI(n) is
a dense subset of [0, T ], For each 0 ≤ t ≤ T ,

(3.2) F (n)
t ↑ Ft,

and

(3.3) P ({ω ∈ Ω : lim
n→∞

sup
0≤t≤T

|St(ω)− ξ
(n)
t (ω)| = 0}) = 1.
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The fundamental result of W. Willinger ([28] pp 55, Lemma 4.3.1) is stated next, it
guarantees the existence of continuous-time skeleton approximations for continuous
processes. These discrete pathwise approximations are finite in space and time.

Lemma 1. There exist a continuous-time skeleton approximation for S.

Each continuous time skeleton (I(ξ),Fξ, ξ) of S determines a sequence of nested
finite partitions {Pξ

tm
}. Clearly, there exists a multiresolution sequence of partitions

{Rξ
j}j≥0 such that

(3.4) Rξ
jm

= Pξ
tm

for 0 = j0 < j1 < ... < jN .

Now, we can construct a finite family of H-systems associated to the continuous
time skeleton (I(ξ),Fξ, ξ) of S applying Theorem 1 to the multiresolution sequences
{Rξ

j}j≥0. Clearly, these H-systems are adapted to the filtration Fξ
tm

, that is ψj,i ∈
Fξ

tm
for j ≤ jm.

Proposition 2. Let (Ω,A, P ) be a complete probability space and S = (St : 0 ≤
t ≤ T ) be a continuous stochastic process defined on this probability space. Let F =
{Ft : 0 ≤ t ≤ T} be the filtration where Ft is the completion of σ(Sr : 0 ≤ r ≤ t).
Then there exist a sequence of finite H-systems (H(n) = {ψn

j,i}) and two sequences of
finite indexes (I(n) = {0 = tn0 < ... < tnNn

= T}) and (J (n) = {0 = jn
0 < ... < jn

Mn
})

such that

(1) ψn
j,i ∈ Ftn

m
for j ≤ jn

m.
(2) For each 0 ≤ t ≤ T ,

lim
n→∞

sup{|St − ξ
(n)
t | : 0 ≤ t ≤ T} = 0 a.e.

where ξ
(n)
t =

∑
j≤jn

m
〈St, ψ

n
j,i〉 ψn

j,i for t ∈ [tnm, tnm+1).

Proof. Let (I(n),F (n), ξ(n)) be a continuous-time skeleton approximation of S. Us-
ing Theorem 1 construct for each n an H-system (H(n) = {ψn

j,i}) associated to

the sequence of partitions {R(n)
j }j≥0 in (3.4). In order to conclude the proof

it is sufficient to observe that ξ
(n)
t = E(St | F (n)

t ) =
∑

j≤jn
m
〈St, ψ

n
j,i〉 ψn

j,i for
t ∈ [tnm, tnm+1). ¤

To be clear, we briefly remark on the connection between Proposition 2 and
(2.1). The functions uk appearing in (2.1) are the functions ψn

j,i introduced in
Proposition 2, the key remark being the extra parameter n which corresponds to
the time interval discretizations I(n). Using notation introduced in Definition 1, we
actually have An ≡ σ(A : A ∈ Pξ(n)

tm
,m = 0, . . . , N (n)) and Lemma 1 proves that

F = A∞. This guarantees the pointwise convergence of our approximations (given
by (2.1)) for any X satisfying σ(X) ⊆ F ≡ to the completion of σ(St : t ∈ [0, T ]).

Willinger’s results assume stochastic processes with continuous paths. In prin-
ciple, our developments in the paper do not require completeness of the market
model used, results from [27] could be used to extend our approach to processes
with jumps.
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3.1. Example. An H-System in the Black-Sholes model. We describe a sim-
ple example of an H-system in a familiar financial context. The example is a Haar
system, namely, it is generated by dyadic partitions, see Definition 5. Appendix B,
illustrates an H-system associated to a sequence of binary partitions that is not
dyadic and illustrates the case of multiresolution sequence of partitions.

The example describes how to construct a basic class of Haar systems associ-
ated to the Black-Scholes model. It will follow that these systems can be used to
approximate a general class of options of European type. The underlying process
for the Black-Scholes model is a Brownian motion defined on a probability space
(Ω,F , Q) with filtration (Ft)T0≤t≤T . The splitting of atoms will be performed using
the Brownian motion increments. The price process under the risk neutral measure
P is given by St : Ω → R, T0 ≤ t ≤ T ,

St(ω) = ST0 exp(ν(t− T0) + σ
√

(t− T0) Wt(ω)),

where ν = (r − σ2/2), and we have used the Gaussian random variables Wt ∼
N (0, 1) which are defined on (Ω,Ft, P ).
The construction will be based on two parameters, the first parameter nT will turn
out to be the number of transaction dates during the period [T0, T ] (see Section 6)
and the second set of parameters j1, . . . , jnT will be the scale or space discretizations
associated to each trading date. For simplicity, the splitting of atoms will be in
pieces of equal probability, this constrain can be easily removed. It is convenient
to introduce first a “purely static” Haar system, considering nT = 1, which is
applicable to path independent European options. This system will be the building
block for the more general construction with nT ≥ 1. Therefore, we first concentrate
on the sigma algebra σ(ST ) = S−1

T (B(0,∞)), due to σ(ST ) = σ(S−1
T ((a1, a2]), 0 <

a1 < a2 < ∞), the following equation specifies P on σ(ST ), let B = S−1
T ((a1, a2))

P (B) =
1

σ
√

2π(T − T0)

∫ a2

a1

exp



−

(
ln( s

ST0
)− ν(T − T0)

)2

2 σ2(T − T0)


 ds

s

From our previous notation, WT : Ω → R

P (W−1
T (A)) =

1√
2π

∫

A

e−
y2

2 dy,

for any Borel subset A ⊂ R. This equation gives P on σ(WT ) = W−1
T (B(R)) ⊆ FT ,

clearly, σ(ST ) = σ(WT ). Denote the cumulative standard normal distribution by

Φ(z) =
1√
2π

∫ z

−∞
e−

y2

2 dy.

Given an integer j, define the numbers −∞ = cj
0 < cj

1 < . . . < cj
2j = ∞ such that

Φ(cj
i+1)− Φ(cj

i ) =
1
2j

, for all i = 0, . . . , 2j − 1.

Whenever encountered, the inequality ≤ ∞ should be interpreted to mean < ∞.
We define the binary splitting of atoms inductively by setting A0,0 = Ω and for



8 S. E. FERRANDO, P. J. CATUOGNO, AND A. L. GONZALEZ

given j consider 0 ≤ i ≤ 2j − 1,
(3.5)
Aj+1,2i = {w ∈ Aj,i| cj+1

2i < WT (ω) ≤ cj+1
2i+1} = {w| cj+1

2i < WT (ω) ≤ cj+1
2i+1},

Aj+1,2i+1 = {w ∈ Aj,i| cj+1
2i+1 < WT (ω) ≤ cj+1

2i+2} = {w| cj+1
2i+1 < WT (ω) ≤ cj+1

2i+2}.
Note that Aj,i = Aj+1,2i ∪ Aj+1,2i+1, therefore we have defined a dyadic sequence
of partitions P = {Pj}j≥0 with Pj = {Aj,i}, i = 0, . . . , 2j − 1, where the atoms
satisfy

P (Aj,i) =
1
2j

.

Setting m = 2j and Am = σ({Aj,i : i = 0, . . . , m− 1}) gives A∞ = σ(∪m≥0Am) =
σ(ST ). Notice that the above atoms correspond to partitioning the range of ST .
It follows from Theorem 1 that there is a Haar system capable of approximating
any random variable in L2(Ω, σ(ST ), P ), choosing a sufficiently large J .
We are now ready to describe the construction of a finite Haar system for an
arbitrary nT ≥ 1. The idea is simply to construct a Haar dyadic system by a con-
catenation of several Haar systems, each of them analogous to the case nT = 1 but
this later one now restricted to smaller time intervals. Given an arbitrary sequence
of times T0 = t0 < t1 < . . . < tnT−1 < tnT

= T , we consider the Brownian motion
increments

√
ti+1 − ti Wti,ti+1 where the random variables Wti,ti+1 ∼ N (0, 1) are

independent. Fix a corresponding sequence of scales {ji = jti}nT
i=1, we will define

the splitting of atoms on stages according to the time intervals {ti, ti+1}. For the
first stage {t0, t1} we define the binary splitting of atoms inductively by setting
A0,0 = Ω and for 0 ≤ j < j1, i = 0, . . . , 2j − 1, Aj+1,i as in (3.5), using Wt0,t1

instead of WT .
For the second stage {t1, t2}, and as a model for the subsequents, consider 0 ≤ j < j2
and i = 0, . . . , 2j1+j−1 as usual, let p and 0 ≤ q < 2j+1 be respectively the quotient
and residue in the integer division of i by 2j+1, then define inductively the sets

Aj1+j+1,2i = {w ∈ Aj1+j,i| cj+1
2q < Wt1,t2(ω) ≤ cj+1

2q+1}

= {w ∈ Aj1,p| cj+1
2q < Wt1,t2(ω) ≤ cj+1

2q+1}

Aj1+j+1,2i+1 = {w ∈ Aj1+j,i| cj+1
2q+1 < Wt1,t2(ω) ≤ cj+1

2q+2}

= {w ∈ Aj1,p| cj+1
2q+1 < Wt1,t2(ω) ≤ ct+1

2q+2}.
Notice that P (Aj1+1,i) = 1/2j1+1 by independence of Wt0,t1 and Wt1,t2 .
The completion of a generic stage {tk, tk+1}, 1 ≤ k ≤ nT − 1 is done setting
Jk = j1 + . . . + jk. Consider 1 ≤ j ≤ jk+1 and i = 0, . . . , 2Jk+j − 1, let i = p2j + q
(p and q are respectively the quotient and the residue in the integer division of i
by 2j). Then define the sets

AJk+j,i = {ω ∈ AJk,p | cj
q < Wtk,tk+1(ω) ≤ cj

q+1}.
We have defined a dyadic sequence of partitions {Pj}j≥0 with Pj = {Aj,i}, i =
0, . . . , 2j − 1 and consequently, following the steps in the proof of Theorem 1, there
is a Haar system {uj}2

J−1
j=0 associated with it.
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4. Application to Hedging

This section illustrates how H-systems can be applied in financial mathematics.
It develops in detail a theory of hedging based on binary options, the martingale
property of the H-system is put to work in this theory. There is also a brief descrip-
tion of the use of our approximations as control variate for Monte Carlo simulations
and an outline of an application to American options. For the sake of simplicity,
we will work in a market model (Ω,F , (Ft)T0≤t≤T , P ) with the usual assumptions,
we refer to [2] for background. Let B = (B(t) = ert) be the bond and a non-
negative adapted continuous stochastic process S = (St)T0≤t≤T , the price process.
We assume that P is the risk neutral measure, that is, the discounted price process
(e−r(T−t)St) is a martingale. Let R = {Rj}j≥0 be a sequence of multiresolution
partitions as described in Definition 3, associated, via Theorem 1, with the H-system
{φ0,0, ψj,i} defined on Ω, and an European derivative X in L2(Ω, σ(∪j≥0Rj), P ).

4.1. Haar Hedging.

Motivations and Meaning: A sample of references describing hedging with op-
tions is given by [1], [6] and [16]. In contrast to previous results, our approach is
general, in the sense that allows for general underlyings and options types, and,
more importantly, our approximations address the issue of the number and volume
of transactions. We would like to mention that the idea of using binary options for
approximations has been previously treated in [24].

Let us explain the basic idea in this section, the simple functions uk, the Haar
functions, are an orthonormal set in L2(Ω,F , P ), where (Ω,F) is the sigma alge-
bra generated by the price process and P is the risk neutral measure. The sigma
algebra Am is generated by u0, . . . , um and contains m+1 atoms, these atoms give
a space-time discretization of the process and, under natural conditions, can be re-
alized financially via binary options. It follows that (2.1) can be realized by means
of a dynamic portfolio of binary options. The left hand side of (2.1) is a martin-
gale which, under appropriate conditions, converges to X almost everywhere (a.e.).
Therefore, we have a portfolio of binary options converging a.e. to X, moreover
this portfolio can be implemented dynamically, via financial transactions, in a self
financing way due to the martingale property. In short, we have a discrete, self-
financing, hedging strategy to replicate X. This hedging strategy will be referred
to as Haar hedging below.

Assuming the cost of a transaction is δ-proportional to the volume of transac-
tions, the following definition is meaningful when studying transaction costs.

Definition 8. Let w ∈ Ω, and Π1 and Π2 be two approximating hedging portfolios
for X. We say that Π1 is more efficient than Π2 (at w) if

|Π1(ω)−X(ω)| ≤ |Π2(ω)−X(ω)| and V T (Π1)(ω) ≤ V T (Π2)(ω),

where V T (Πi)(ω) is the volume of transactions necessary to implement the portfolio
Πi at w.

Clearly, the above definition can be easily modified to require the inequalities to
hold with large probability or in the mean. Section 5 provides the definitions of
V T (Π) for the approximating portfolios Π put forward in this paper.
We now explain the empirical meaning of the representation (2.1) and compare it
with “static” hedging and briefly comment on the relationship to delta-hedging.
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Usually, static option replication involves hedging an option X with other options,
see for example [6]. For simplicity, consider an option X that initiates at T0 and
expires at T with VT0(X) denoting the risk neutral price of X. Lets study an
example that shows a key problem with the standard static hedging. Consider a
digital option with payoff X = 1ST≥K , approximate this digital option with the
following portfolio

Π =
1

K2 −K1
(X1 −X2)

where we go long on a European call X1 = (ST −K1)+ with strike K1 and short
on a European call X2 = (ST − K2)+ with strike K2, and K1 < K < K2. We
obtain a better and better approximation to X by considering (K2 −K1) → 0. By
risk neutrality we then have VT0(X) ≈ VT0(Π) but the volume of transactions for
Π (which in this static example is a constant) is equal to

V T (Π) =
1

K2 −K1
[VT0(X1) + VT0(X2)]

which can be arbitrarily large as (K2 − K1) → 0. In short, when decreasing the
error of approximation we have the undesirable effect of increasing the volume of
transactions. This is due to the fact that the approximation X ≈ Π is obtained by
cancellation of (unbounded) terms and each term entering in this approximation
will contribute separately to the volume of transactions. The discontinuity in X
just exacerbates this phenomena.

We now explain how our proposed Haar hedging overcomes the above type of
problem. First note that u0 = 1Ω and therefore, it can be implemented by means of
the bank account, the Haar functions are of the form uk = a 1A0 + b 1A1 where A0

and A1 (A0∩A1 = ∅) are atoms of Ai for some i ≤ k and A = A0∪A1 is an atom of
Ai−1. The simple functions uk, for k ≥ 1, are wavelets, namely

∫
Ω

uk(ω) dP (ω) = 0,
which under natural conditions can be realized by means of binary options, involving
short selling. It is clear that 〈X,uk〉 uk approximates the oscillations of X−EA(X)
on A (the support of uk) where EA(X) denotes the expectation on A. In general, the
events A0 and A1 will be level sets of financially relevant random variables, hence
the wavelet uk captures fluctuations in X due to these two financial events. In short,
the financial meaning of (2.1) is the use of the bank account to capture the mean
value of X and the use of binary options (involving short selling) to capture the
oscillations of X about this mean value. Even though Haar hedging uses (binary)
options to build the replicating portfolio, it will be misleading to call it a static type
of hedging as we explain next. In general, each uk is localized to its support, say
the atom A, this atom will be localized in time to same interval [sa, ta] (essentially,
this means that A is generated by the random variables {St}sa≤t≤ta) and will also
be localized in space (it will be the level set of some appropriate random variable).
This localization of the Haar functions, and hence of the binary options, has the
effect that for a given unfolding path w ∈ Ω only the Haar functions in (2.1) whose
support contain this w have to be implemented by the Haar hedging portfolio. This
is the essence of dynamic hedging. The localization property opens the possibility,
through the dynamic conditioning on the unfolding path, of obtaining efficient Haar
hedging portfolios for general options X. This localization is also the key for our
approximations to have a small volume of transactions, see Section 5. It is also
recognized in signal processing applications that localization of wavelets is a key
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property to represent discontinuities efficiently [8]; this insight is reflected in our
Proposition 5, see also the explanations at the end of Section 5.

4.2. Formal Developments. As a sufficient condition for the atoms in a multires-
olution sequence to be used in a dynamic hedging portfolio we will impose a natural
association between the martingale property of the H-system and a sequence of re-
balancing times. In particular, in order to define dynamic hedging strategies, we
will use the concept of time support of events.

Definition 9. Let E ∈ FT , set sE = sup{s ∈ [T0, T ] : E ∈ σ(Sr : r ≥ s)} and
tE = inf{t ∈ [T0, T ] : E ∈ Ft}. We then say that E is localized to the time interval
[sE , tE ] and call [sE , tE ] the time support of E. We denote the time support of E
by t− supp(E).

The following definition is an extension to partitions of the notion of time localiza-
tion of events.

Definition 10. Let P ⊂ FT be a partition of Ω. P is said to be localized (in time)
to the interval [a, b] if there exist B ∈ P such that t − supp(B) ⊂ [a, b], and for
all B ∈ P t − supp(B) ⊂ [a, b] or t − supp(B) ⊂ [T0, a]. Moreover, define the
t− supp(P) as the intersection of the all intervals [a, b] such that P is localized to
that interval.

The definition below is the cornerstone of our dynamic hedging strategy based on
H-systems.

Definition 11. Let R = {Rj}J≥j≥0 be a sequence of multiresolution partitions, we
say that R is localized to the time sequence t0 = T0 < . . . < tn = T if there exists
a sequence j1 < . . . < jn = J such that t− supp(Rjs) = [ts−1, ts] for s = 1, . . . , n.
We call the sequence j1, . . . , jn the levels of localization of R.

The financial blocks underlying R are the binary options

(4.0) Bj,i = (1Aj,i(t) ≡ 1[ts+1,T ](t)1Aj,i), js ≤ j ≤ js+1,

which are acquired at time ts and reach its maturity at time ts+1. These binary
options have payoff 1Aj,i at time ts+1.
To have a financial realization of the hedging we are proposing we need to assume
R to be admissible as defined in the next definition.

Definition 12. Assumption on Financial Realization: The multiresolution
partition R is called admissible if for any integer j and each atom Ak,i ∈ Rj the
binary options Bk,i are available for trading, in particular, short selling is possible.

For clarity of exposition, when defining the Haar hedging portfolio, we will further
define the Haar obligations as follows: Ψj,i = (Ψj,i(t) ≡ 1[ts+1,T ](t)ψj,i), with
js ≤ j ≤ js+1 which are obligations at time ts+1 that are acquired at time ts.
Obviously, the Haar obligation Ψj,i is realized in terms of the binary options Bj+1,k,
k = 2i, 2i + 1.

Next we will define two hedging strategies via self-financing portfolios, of static
and dynamic types, to replicate an European option using H-systems. One of the
strategies, denoted by HΠ, is associated to Haar obligations and the other strategy,
denoted by BΠ, is associated directly to binary options. The constructions require
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the availability of R = {Rj}, a multiresolution sequence of partitions, localized in
the sequence of times t0 = T0 < . . . < tn = T , and X ∈ L2(Ω, σ(∪j≥0Rj), P ).
Notation from Appendix A will be used.

Haar Hedging Portfolio. HΠR(X) = (HΠR(X)t) will be a predictable, vector
valued, stochastic processes constant on the intervals ts−1 ≤ t < ts. The portfolio
HΠR(X)t is re-balanced at times ts−1 replicating e−r(T−ts)E(X|σ(Rjs

)) for s =
1, . . . , n. As previously indicated, this portfolio approximates fluctuations of the
option about its mean value by means of the Haar functions. Taking n = 1 the
construction gives, as a special case, an example of static hedging. At each time ts−1

we will specify how much to invest in the bond and how much to invest in the Haar
obligations available at that re-balancing time, this will specify the coordinates of
the vector HΠR(X)t. Here are the coordinates of HΠR(X)t for t ∈ [t0, t1)

e−r(T−t0)E(X) invested in the bond and

(4.1) e−r(T−t1) dj [i] invested in Ψj,i j = 0, . . . j1 − 1, i ∈ Ij ,

where the coefficients dj [i] are given by (A.3).
Observe that the purchasing value of this portfolio is Vt0(HΠR(X)) = e−r(T−t0)E(X).
The following (inductive) step will be to re-balance the portfolio at time ts−1, as-
sume that at this time we are in the event Ak0,i0 with (k0, i0) ∈ Kjs−1 , and the
value of this portfolio is e−r(T−ts−1)xk0 [i0] (where we used the notation from (A.7)).
There are two cases to consider, the event is split or not at the next level.

I) In the case Ak0,i0 splits, k0 = js−1 (see the comment after Definition 4), the
coordinates of HΠR(X)t for t ∈ [ts−1, ts) are

e−r(T−ts−1)xk0 [i0] invested in the bond and

(4.2) e−r(T−ts) dj [i] invested in Ψj,i j = js−1, . . . js − 1, i ∈ Ii0
j ,

where Ii0
j = Ij ∩ [2(j−js−1)i0, 2(j−js−1)(i0 + 1)− 1]. Recall that the obligations Ψj,i

expire at time ts.

II) In the second case, we need only to invest

(4.3) e−r(T−ts−1)xk0 [i0],

in the bond, and this specifies the portfolio for all future times i.e. t ∈ [ts−1, T ).
The quantity of Haar obligations involved in this dynamic portfolio is at most
2j1 + 2j2−j1 + . . . + 2jn−jn−1 . Now we are in conditions to establish the following
theorem.

Theorem 2. The portfolio HΠR(X)t is self-financing and replicates
e−r(T−ts) E(X|σ(Rjs)) at s = 1, . . . , n.

Proof. We proceed by induction on s. For s = 1 the portfolio HΠR(X)t is given
by (4.1) when t ∈ [t0, t1). It is clear from (A.2) that HΠR(X)t0 replicates
e−r(T−t1)E(X|σ(Rj1)) and is self-financing because Vt0(HΠR(X)t0) = e−r(T−t0)E(X)
since E(ψj,i) = 0.
For convenience, we will use the notation t− = t− ε, ε > 0. For the inductive step,
at time ts−1 the process is in some event Ak0,i0 with (k0, i0) ∈ Kjs−1 , and assume

Vts−1(HΠR(X)t−s−1
)(ω) = e−r(T−ts−1) E(X|σ(Rjs−1))(ω) = e−r(T−ts−1)xk0 [i0]
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for ω ∈ Ak0,i0 . The re-balancing of HΠR(X)t at ts−1 is given by (4.2), for all
t ∈ [ts−1, ts), if Ak0,i0 splits at the next level or by (4.3) with t ∈ [ts−1, T ] if Ak0,i0

does not split any further. The purchasing of HΠR(X)ts−1 is self-financing since
the value of the portfolio given by (4.2) or (4.3) is e−r(T−ts−1)xk0 [i0]. Consider
again case I), and t = ts, by (A.5) and (4.2) we compute

Vts(HΠR(X)t−s ) = (e−r(T−ts−1)xk0 [i0] er(ts−ts−1) 1Ak0,i0
+

e−r(T−ts)

js−1∑

j=js−1

∑

i∈I
i0
j

dj [i] Vts
(Ψj,i(ts)) =

(e−r(T−ts)xk0 [i0] 1Ak0,i0
+ e−r(T−ts)

js−1∑

j=js−1

∑

i∈I
i0
j

dj [i] ψj,i =

e−r(T−ts)E(X|σ(Rjs
)) a. e. on Ak0,i0 .

For the case II), we have

Vts(HΠR(X)t−s ) = (e−r(T−ts−1)xk0 [i0] er(ts−ts−1)1Ak0,i0
=

e−r(T−ts) E(X|σ(Rjs)) a. e. on Ak0,i0 .

¤

Characteristic Functions Portfolio. We will show how to construct a self-
financing portfolio BΠR(X)t to hedge X. The portfolio BΠR(X)t will be also re-
balanced at times t0, . . . , tn−1, replicating e−r(T−ts)E(X|σ(Rjs)) for s = 1, . . . , n.
We recall that the samples xk[i] are the coefficients of X in the basis {1Ak,i

: (k, i) ∈
Kj}, see (A.7).
We formalize BΠR(X)t as a vector valued process which is constant on the intervals
ts−1 ≤ t < ts. At time t0 it is defined, for t ∈ [t0, t1), by specifying its coordinates,
namely how much to invest in each of the binary options,

e−r(T−T0) xk[i] Bk,i where (k, i) ∈ Kj1 .

The cost of purchasing this portfolio is Vt0(BΠR(X)) = e−r(T−t0)E(X) = e−r(T−t0)x0[0].
The inductive step will be to re-balance the portfolio at time ts−1. Assume that
at this time the price process is in the event Ak0,i0 with (k0, i0) ∈ Kjs−1 , and the
value of this portfolio is e−r(T−ts−1)xk0 [i0]. There are two cases to consider, the
event splits or it does not split at the next level. In the first case, for ts−1 ≤ t < ts,
we need to specify the coordinates of BΠR(X)t, namely,

e−r(T−ts−1) xk[i] Bk,i where (k, i) ∈ Ki0
js

,

and Ki0
js

= {(k, i) ∈ Kjs : 2js−js−1i0 ≤ i ≤ 2js−js−1(i0 + 1)− 1}.
In the second case, we invest the value of the current portfolio in the bond, namely

e−r(T−ts−1)xk0 [i0],

and this specifies BΠR(X)t for all t ∈ [ts, T ). In an analogous way to the done for
HΠR(X) is easy to prove that the strategy BΠR(X) is self-financing and replicates
e−r(T−ts)E(X|σ(Rjs)) at s = 1, . . . , n. It should be clear that the hedging strategies
BΠR(X) and HΠR(X) can be intermixed at different time intervals [ts−1, ts).
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It is a simple exercise to apply the above theory to the example in Section 3.1 and
to the example from Appendix B.

4.3. American options. This section illustrates how H-systems can be applied
in financial mathematics to evaluate American options. We consider the previous
setting of a frictionless market model with the usual assumptions, and an American
derivative Z = (Zt). We know that there exists a continuous-time skeleton approx-
imation for S. We will use it in order to approach the value of Z. In fact, we have
that there exist a sequence of finite indexes (I(n) = {0 = tn0 < ... < tnNn

= T}) and
filtrations (Fn

tn
m

) such that

(1) I(n) ⊂ I(n+1) and ∪nI(n) is dense in [0, T ],
(2) Fn

tn
m
⊂ Fn+1

tn
m

⊂ Ftn
m

,
(3) For each 0 ≤ t ≤ T ,

lim
n→∞

sup{|St − ξ
(n)
t | : 0 ≤ t ≤ T} = 0 a.e.

where ξ
(n)
t = E(Stn

m
| Fn

tn
m

) for t ∈ [tnm, tnm+1).

Let Zn
j ≡ E(Ztn

j
|Fn

tn
j
). We can consider (Zn

j ) as the American option obtained by
projection of Z into the finite market (Ω,Fn

tn
j
, P ). Recall that the value of this

option is calculated by the backward algorithm, Un
Nn

= Zn
Nn

and

Un
j+1 = max(Zn

j , er(tn
j+1−tn

j )E(Un
j+1|Fn

tn
j
)).

The numerical problem is to calculate the conditional expectation E(Uj+1|Fn
tj

). It
is here where the H-system can be of help. In fact, if we have the Haar-Fourier
expansion of Uj+1 it is then easy to compute the conditional expectation. In the
case that we want to calculate this conditional expectation by montecarlo, we only
need to compute the Haar expansion along the sampled path, this involves a small
number of Haar functions (proportional to the length of the path) thanks to their
localization.

4.4. Pathwise Simulation. We want to compute the value of E(X|Ft) via Monte
Carlo simulation. We only provide the general references [11] and [17]. By Propo-
sition 2 we know there exists a sequence of finite H-systems (H(n) = {ψn

j,i})
and two sequences of finite indexes (I(n) = {0 = tn0 < ... < tnNn

= T}) and
(J (n) = {0 = jn

0 < ... < jn
Mn
}) such that

(1) ψn
j,i ∈ Fn

tn
m

for j ≤ jn
m.

(2) (ψn
j,i)tn

j ≤t is an orthonormal basis of L2(Ω,Fn
t , P ).

We replace Ft by Fn
t and we will concentrate in computing E(X|Fn

t ). Using the
H-system, we have the representation

E(X|Fn
t ) =

∑

tn
j ≤t

〈X,ψn
j,i〉ψn

j,i.

In order to calculate the coefficients 〈X, ψn
j,i〉, we construct the Monte Carlo esti-

mator

an
MC(j, i,M) =

1
M

M∑
m=1

X(wm)ψn
j,i(w

m),
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where wm are the sampled paths and m is the sampling index. Finally, we obtain
the following Monte Carlo estimator for E(X|Fn

t ),

An
MC(X, t, M) =

∑

tn
j ≤t

an
MC(j, i, M)ψn

j,i.

5. Volume of Transactions

Here we describe upper bounds, in the mean and pointwise, for the volume of
transactions. We believe the quality of these upper bounds provide evidence of the
efficiency of our approximations as far as volume of transactions are concerned. A
discussion concerning the meaning as well as the quality of our upper bounds is
provided at the end of the present Section.

We will assume the existence of a skeleton approximation (and, hence, continuity
of St will be assumed) as described in Section 3, this assumption is to make sure
we have available an H-system that approximates the process. The results provide
upper bounds, in the mean and pointwise, for the volume of transactions required
to implement the portfolios BΠ and HΠ (introduced in Section 4). They rely on
the following structural aspects of our approximations: they approximate the rele-
vant conditional expectations, the martingale property is used in the self financing
nature of the portfolios and the orthogonality of the martingale differences, and the
localized property of the basis functions is used throughout (as in (5.10)).

Fix an arbitrary sequence of times ts, s = 0, . . . , N and let Fn
ts

, n being vari-
able, represent the discrete skeleton atomic sigma algebras approximating Fts (see
Definition 7). Notice that the parameter N was implicit in the skeleton approxi-
mations from Section 3, here N will be fixed and n can increase to ∞ providing the
pointwise convergence E(.|Fn

ts
) → E(.|Fts) for all s = 1, . . . , N . Fixing N apriori

in such a way assumes the time discretization is fine enough in order to provide a
good approximation to E(X|Ft) at all times t ∈ [0, T ]. This is possible given that
we are assuming St has continuous paths and so (3.3) is available.

We also assume t0 is the initial time and Ft0 the trivial sigma algebra and
tN = T - the final time. We will use {Al,ts}, l = 0, . . . , Ln

ts
, to denote the collection

of atoms generating Fn
ts

. We will take Ln
ts

= 2jn
s − 1, where we have used the

notation from Proposition 2, notice that Ln
t0 = 0 and A0,t0 = Ω.

In order to simplify the notation and developments, we assume that the given
sets Al,ts split in the next level.

Definition 13. Consider the the binary options Bk,ts = (1Ak,ts
(t) ≡ 1[ts−1,T ](t)1Ak,ts

),
k = 0, . . . , Ln

ts
as described in (4.0). The volume of transactions at time ts−1, de-

noted V Tts−1 , necessary to implement a portfolio Π made up as a linear combination
Π =

∑
ak,tsBk,ts of such binary options, is given by

(5.1)
V Tts−1(Π)(w) =

∑
|ak,ts | V Tts−1(Bk,ts) ≡

∑
|ak,ts | e−r(ts−ts−1) E(1Ak,ts

|Fts−1)(w).

Note that, as defined above, the volume of transactions for a random variable
Π depends on the representation, i.e. using different binary options, providing an
equivalent representation of Π, will result on a different value for the volume of
transactions.
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Lemma 2. Given the binary option Bk,ts = 1Ak,ts
, with Ak,ts ∈ Fn

ts
and Ak,ts ⊆

Al,ts−1 ∈ Fn
ts−1

, then

(5.2) E(1Ak,ts
|Fn

ts−1
) =

P (Ak,ts
)

P (Al,ts−1)
1Al,ts−1

and so,

(5.3) E
(
V Tts−1(Bk,ts

)− e−r(ts−ts−1)E(1Ak,ts
|Fn

ts−1
)
)

= 0.

Proof. The proof follows by noticing that Al,ts−1 is an atom of the atomic sigma
algebra Fn

ts−1
. ¤

We will analyze the volume of transactions needed to implement the binary port-
folio (BΠ) and the Haar portfolio (HΠ) introduced in Section 4.2. The notation
will be designed, as much as possible, so the developments cover both cases simul-
taneously. When stating results that apply to both portfolios we will designate
either of them by Π.

Define
Dts−1,ts ≡ E(X|Fn

ts
)−E(X|Fn

ts−1
), s = 2, . . . , N,

and
Dt0,t1 ≡ E(X|Fn

t1)−E(X|Fn
t0) for the HΠ portfolio and

Dt0,t1 ≡ E(X|Fn
t1) for the BΠ portfolio.

Lemma 3. The following expression provides the volume of transactions required
for a financial implementation of the portfolio(s) Π.

(5.4) V Tt0(Π)(w) =
N∑

s=1

Ln
ts−1∑

l=0

1Al,ts−1
(w) V Tts−1(Dts−1,ts)(w).

Proof. To establish (5.4) for the HΠ portfolio, we argue by induction. Recall
that At0 = Ω, given that e−r(T−t0)E(X) is invested in the bond; at time t1 the
Haar portfolio provides the approximation E(X|Fn

t1). Therefore, only the difference
Dt0,t1 requires a financial realization using binary options; the associated volume of
transactions is given by V Tt0(Dt0,t1)(w). Reasoning inductively, at time ts−1, the
value of the Haar hedging strategy is E(X|Fn

ts−1
). Therefore, in order to achieve the

approximation E(X|Fn
ts

) at time ts, only the difference Dts−1,ts requires a financial
realization using binary options; the associated volume of transactions is given by
V Tts−1(Dts−1,ts)(w). This completes the inductive argument and gives (5.4). An
analogous reasoning provides the argument for the case of the BΠ portfolio. ¤

In order to obtain pointwise upper bounds be will need to replace E(1Ak,ts
|Fts−1)(w)

by E(1Ak,ts
|Fn

ts−1
)(w) in the expressions for V Tts−1(Dts−1,ts)(w). The resulting

expressions for V Tt0(Π) and V Tts−1(Dts−1,ts) will be denoted by ˆV Tt0(Π) and
ˆV T ts−1(Dts−1,ts), these values will be called approximate values. Notice that we

have pointwise convergence

(5.5) lim
n→∞

ˆV T ts−1(Dts−1,ts) = V Tts−1(Dts−1,ts)

for all s = 1, . . . , N . Similarly for ˆV Tt0(Π) and V Tt0(Π). Therefore we can concen-
trate in establishing pointwise error bounds for the approximated quantities.
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Equation (5.3) will be used in several instances to justify the equality E(V T (Dts−1,ts)) =
E( ˆV T (Dts−1,ts)), from which E(V Tt0(HΠ)) = E( ˆV T t0(HΠ)) follows.

5.1. Characteristic Functions Representations. Introducing the orthonormal
system

(5.6) φk,ts
≡ 1√

P (Ak,ts)
1Ak,ts

,

we can write

(5.7) Dts−1,ts(w) =

Ln
ts−1∑

l=0

∑

{k,Ak,ts⊆Al,ts−1}
〈Dts−1,ts , φk,ts〉 φk,ts .

From (5.6), (5.7) and (5.1) we obtain the following Lemma.

Lemma 4. For w ∈ Al,ts−1

(5.8)

V Tts−1(Dts−1,ts
)(w) = e−r(ts−ts−1)

∑

{k,Ak,ts⊆Al,ts−1}

|〈Dts−1,ts
, φk,ts

〉|√
P (Ak,ts

)
E(1Ak,ts

|Fts−1)(w).

The following is a mean upper bound for the total volume of transactions asso-
ciated to the portfolio BΠ.

Theorem 3.

(5.9) E(V Tt0(BΠ)) ≤
N∑

s=1

e−r(ts−ts−1)

∫

Ω

|Dts−1,ts |.

Proof. Notice that

(5.10) ∪{k,Ak,ts⊆Al,ts−1}Ak,ts = Al,ts−1 ,

and

(5.11) ∪Ln
ts−1

l=0 Al,ts−1 = Ω,

Ak,ts ∩Ak′,ts = ∅.
Integrating

∑Ln
ts−1

l=0 1Al,ts−1
(w) V Tts−1(Dts−1,ts) in (5.4) over Ω and making use

of (5.3) gives

(5.12) E(

Ln
ts−1∑

l=0

1Al,ts−1
(w) V Tts−1(Dts−1,ts)) =

e−r(ts−ts−1)(

Ln
ts−1∑

l=0

∑

{k,Ak,ts⊆Al,ts−1}
|〈Dts−1,ts , φk,ts〉|

√
P (Ak,ts))

≤ e−r(ts−ts−1)(

Ln
ts−1∑

l=0

∑

{k,Ak,ts⊆Al,ts−1}

∫

Ak,ts

|Dts−1,ts(w)| dP (w)

= e−r(ts−ts−1)

∫

Ω

|Dts−1,ts(w)| dP (w).

Adding up this equation over s = 1, . . . , N we obtain (5.9). ¤
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Corollary 2.

(5.13) E(V Tt0(BΠ)) ≤ ||E(X|Fn
T )−E(X)||

√√√√
N∑

s=1

e−2r(ts−ts−1).

Proof. Notice that the martingale differences Dts,ts+1 are orthogonal, hence

(5.14)
N∑

s=1

||Dts−1,ts
||2 = ||

N∑
s=1

Dts−1,ts
||2 = ||E(X|Fn

T )−E(X)||2.

Applying the Cauchy-Scwartz inequality twice
N∑

s=1

e−r(ts−ts−1)

∫

Ω

|Dts−1,ts
(w)| dP (w) ≤

N∑
s=1

e−r(ts−ts−1)

√∫

Ω

|Dts−1,ts
(w)|2 dP (w) ≤

√√√√
N∑

s=1

||Dts−1,ts
||2

√√√√
N∑

s=1

e−2r(ts−ts−1),

therefore (5.9) combined with (5.14) gives (5.13). ¤

Equation (5.13) growths with N and it is not clear that
∑N

s=1 e−r(ts−ts−1)
∫
Ω
|Dts−1,ts |,

in equation (5.9), can be bounded independently of N .

Proposition 3. Consider an arbitrary path Als ≡ Als,ts for a set of indexes ls
s = 1, . . . , N . Let C1 be an upper bound for the martingale differences along this
path, i.e. |Dts−1,ts(w)| ≤ C1 a.e. on ∩Als , then

(5.15) ˆV T t0(BΠ)(w) ≤ C1

N∑
s=1

e−r(ts−ts−1) a.e. on ∩Als .

Proof. From the definition of approximate values for the volume of transactions we
have,

(5.16) ˆV T t0(BΠ)(w) =
N∑

s=1

Ln
ts−1∑

l=0

1Al,ts−1
(w) ˆV T ts−1(Dts−1,ts)(w) =

N∑
s=1

Ln
ts−1∑

l=0

e−r(ts−ts−1) 1Al,ts−1
(w)

∑

{k,Ak,ts⊆Al,ts−1}

|〈Dts−1,ts , φk,ts〉|√
P (Ak,ts)

E(1Ak,ts
|Fn

ts−1
)(w).

It follows from (5.16) and (5.2) that the associated approximate pointwise volume
of transactions for w in the given path, i.e. w ∈ ∩N

s=1Als,ts , is:

ˆV T t0(BΠ)(w) =
N∑

s=1

e−r(ts−ts−1)
∑

{k,Ak,ts⊆Als−1}

|〈Dts−1,ts , φk,ts〉|√
P (Ak,ts)

E(1Ak,ts
|Fn

ts−1
)(w) =

N∑
s=1

e−r(ts−ts−1)

P (Als−1)

∑

{k,Ak,ts⊆Als−1}
|
∫

Ak,ts

Dts−1,ts(w) dP (w)|.

Now, using |Dts−1,ts(w)| 1Ak,ts
≤ C1 for almost every w ∈ ∩N

s=1Als,ts and (5.10)
we obtain (5.15). ¤
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5.2. Haar Functions Representation. The previous bounds for the volume of
transactions did not use the Haar coefficients. In this section we deal with the Haar
portfolio HΠ, this amounts to represent the martingale differences using the Haar
functions instead of the characteristic functions. We will use the following notation,
let TAl,ts−1

be the tree with root at atom Al,ts−1 , moreover, nodes in TAl,ts−1
are

elements from Fn
ts
\ Fn

ts−1
. We will write A ∈ TAl,ts−1

to indicate that A is one of
the nodes of the tree (possible its root) but not a leaf. Noticing that the disjoint
atoms Al,ts−1 , l = 0, . . . , Ln

ts−1
generate Fn

ts−1
, we have the decomposition:

(5.17) Dts−1,ts(w) =

Ln
ts−1∑

l=0

∑

Aj,i∈TAl,ts−1

〈Dts−1,ts , ψAj,i〉 ψAj,i ,

where, of course ψAj,i
= aj,i 1Aj+1,2i

+ bj,i 1Aj+1,2i+1 is the Haar function at node
Aj,i (we have used notation introduced in (2.2)).

The volume of transactions associated to such a decomposition is given by:
(5.18)

V TH
ts−1

(Dts−1,ts)(w) = e−r(ts−ts−1)

Ln
ts−1∑

l=0

1Al,ts−1
(w)

∑

Aj,i∈TAl,ts−1

|〈Dts−1,ts , ψAj,i〉|×

(|aj,i|E(1Aj+1,2i |Fts−1)(w) + |bj,i|E(1Aj+1,2i+1 |Fts−1)(w)
)
.

As previously indicated, the volume of transactions depends on the representation
and we have used the notation V TH to highlight this fact. The approximate version
of (5.18) is ˆV T

H

ts−1
(Dts−1,ts) and is obtained by replacing Fts−1 by Fn

ts−1
in (5.18).

In the computations that follow we assume that our approximating martingale
is regular ([26]), namely for all parents nodes Aj,i and its children we have:

P (Aj+1,k) ≤ δP (Aj,i) , k = 2i, 2i + 1,

where δ > 0 is the same for all nodes. In order to exploit the representation in
terms of Haar functions, and obtain improved upper bounds for the volume of
transactions, we will need to assume certain decay of the H-system inner products.
The scope of these assumptions as well as the relevance of the results obtained will
be explained at the end of the present section.

Here is our first result on pointwise bounds for HΠ.

Proposition 4. Assume the approximating martingale given by the H-system is
regular with 1

2 ≤ δ ≤
√

2
2 , and that the coefficients |〈Dts−1,ts , ψAj,i〉| satisfy

(5.19)
|〈Dts−1,ts , ψAj,i〉| ≤ C2 P (Aj,i)3/2, at all nodes Aj,i ∈ TAl,ts−1

and all roots Al,ts−1

then

(5.20) ˆV T t0(HΠ)(w) ≤ 2 δ C2

1− 2δ2

N∑
s=1

e−r(ts−ts−1)

Ln
ts−1∑

l=0

1Al,ts−1
(w) P (Al,ts−1).

Proof. Using the approximated version of (5.18), the regularity assumption and the
constraints E(ψ) = 0 and E(ψ2) = 1 we obtain:

(5.21) ˆV T
H

ts−1
(Dts−1,ts)(w) ≤ 2 δ e−r(ts−ts−1) ×
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Ln
ts−1∑

l=0

1Al,ts−1
(w)

P (Al,ts−1)

∑

Aj,i∈TAl,ts−1

√
P (Aj,i) |〈Dts−1,ts , ψAj,i〉|.

Using (5.19), we obtain

(5.22)
∑

Aj,i∈TAl,ts−1

√
P (Aj,i) |〈Dts−1,ts , ψAj,i〉| ≤ C2

∑

Aj,i∈TAl,ts−1

P (Aj,i)2.

Under the assumption 1
2 ≤ δ ≤

√
2

2 and considering rs = jn
s − jn

s−1 (as indicated
previously, we make use of notation introduced elsewhere in the paper, see (3.4)
and Theorem 2), we obtain

(5.23)
∑

Aj,i∈TAl,ts−1

P (Aj,i)2 ≤
rs∑

j=0

2j−1∑

i=0

(
δjP (Al,ts−1

)2
= P (Al,ts−1)

2
rs∑

j=0

(2δ2)j

≤ P (Al,ts−1)
2 1
1− 2δ2

.

Finally, using (5.21), (5.22) and (5.23)

(5.24) ˆV T
H

ts−1
(Dts−1,ts)(w) ≤ 2 δ C2

(1− 2δ2)
e−r(ts−ts−1)

Ln
ts−1∑

l=0

1Al,ts−1
(w) P (Al,ts−1).

Equation (5.20) then follows by using (5.4). ¤

Corollary 3. Consider the same hypothesis as in Proposition 4, then

E(V Tt0(HΠ)) ≤ 2 δ C2

(1− 2δ2)2
.

Proof. Using (5.3) allows to reduce the problem for computing an upper bound for
E(V Tt0(HΠ)) to computing an upper bound for E( ˆV T t0(HΠ)), to this end we will
make use of (5.20). Here is the computation

E(V Tt0(HΠ)) = E( ˆV T t0(HΠ)) ≤ 2 δ C2

1− 2δ2

N∑
s=1

e−r(ts−ts−1)

Ln
ts−1∑

l=0

P 2(Al,ts−1) ≤

2 δ C2

1− 2δ2
(1 + (2δ2)jn

1 + . . . + (2δ2)jn
N ) ≤ 2 δ C2

(1− 2δ2)2
.

¤

The upper bound (5.20) for a single path w ∈ ∩Als , amounts to dropping the

sum
∑Ln

ts−1
l=0 in (5.20). This fact plus a computation similar to the one employed

in Corollary 3 gives the following result.

Corollary 4. Consider an arbitrary path Als ≡ Als,ts for a set of indexes ls,
s = 1, . . . , N , w ∈ ∩Als,ts and the same hypothesis as in Proposition 4 (in this case
(5.19) is only required at the nodes of the given path), then

ˆV T t0(HΠ)(w) ≤ 2 δ C2

1− 2δ2

N∑
s=1

e−r(ts−ts−1) P (Als−1,ts−1) ≤
2 δ C2

(1− 2δ2)(1− δ)
.
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The following result uses a weaker assumption on the decay of the inner products
|〈Dts−1,ts

, ψAj,i
〉|. The result relies on the underlying tree Tn associated to the

approximating H-system, see the text surrounding (2.2).

Proposition 5. Consider the same hypothesis as in Proposition 4 but relaxing
(5.19) as follows: assume (5.19) holds at all nodes but for each ts, s = 1, . . . , N ,
there are nodes Ak

l,ts
, k = 1, . . . , K (where K an absolute constant), which are

atoms in Fn
ts

, satisfying: for each such a node there is at most a path of nodes
Ar+1

ts
⊆ Ar

ts
, A0

ts
≡ Ak

l,ts
, Ar

ts
∈ TAk

l,ts
and for each k = 1, . . . ,K we have

(5.25) |〈Dts−1,ts
, ψAr

ts−1
〉| ≤ C3 P (Ar

ts−1
)1/2, holds for all Ar

ts−1
in such a path.

then

(5.26) ˆV T t0(HΠ)(w) ≤ 2 δ C3

1− δ

N∑
s=1

e−r(ts−ts−1)
K∑

k=1

1Ak
l,ts−1

(w)+

2 δ C2

1− 2δ2

N∑
s=1

e−r(ts−ts−1)
∑

Al,ts−1 6=Ak
l,ts−1

P (Al,ts−1) 1Al,ts−1
(w),

where the notation
∑

Al,ts−1 6=Ak
l,ts−1

excludes summation over the atoms Ak
l,ts−1

,

k = 1, . . . ,K. Moreover,

(5.27) E (V Tt0(HΠ)) ≤ 2 δ K C3

(1− δ)2
+

2 δC2

(1− 2δ2)2
.

Proof. Consider Ak
l,ts−1

∈ Fn
ts−1

and rs ≡ jn
s − jn

s−1 we estimate (the sets Ar
ts−1

are
the path elements with root Ak

l,ts−1
as described in the hypothesis)

(5.28)
∑

Ar
ts−1

⊆A0
ts−1

≡Ak
l,ts−1

√
P (Ar

ts−1
) |〈Dts−1,ts , ψAr

ts−1
〉|

≤ C3 P (Ak
l,ts−1

)
rs∑

j=0

δj ≤ C3 P (Ak
l,ts−1

)
1

1− δ
.

Finally, adding over s, using (5.21) (5.20), (5.28) and (5.4) we obtain (5.26).
The mean upper bound (5.27) follows by integrating (5.26) and noticing that∑N

s=1 P (Ak
l,ts−1

) ≤ ∑N
s=1 δjn

s ≤ 1
1−δ . ¤

We comment next on the relevance and meaning of the hypothesis employed
in Propositions 4 and 5. Notice first that (5.25) holds under the assumption that
Dts−1,ts is bounded, we may assume this hypothesis is satisfied in practice as one
could consider a bounded approximation to the payoff X which holds in a large
portion of the space.

Our hypothesis on the inner products’ decay reflects well known results in wavelet
theory, in particular the usual case of Haar wavelets on an interval [a, b] (which
are a special case of our setup). We will briefly explain the meaning of these
results and the relationship to our context. The results we are referring to relate
smoothness and singularities of the function to decay of inner products. In our
context singularities and smoothness of the functions involved are notions defined
by viewing these functions as dependent on Sts , where St is the underlying process.
Define γ(x) ≡ Dts−1,ts(w) where x ≡ Sts(w). Theorem 6.4 in [20] says that if γ
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is Lipschitz of order α = 1, Haar wavelet’s inner products decay as s3/2 where s
is the scale parameter. In particular, this result applies if γ has one continuous
derivative. The inner products will decay as s1/2 in the presence of singularities (in
particular if the derivative is discontinuous). These results are local and make use
of the wavelets being localized to the extent of their scales s. A location at which
there is a singularity will have the effect that inner products of wavelets having
support at this location will have a decay of order s1/2, this is the reason for our
hypothesis (5.25) to hold for an atom and all of its children along a single path.

Notice that the above wavelet results rely on analytical tools such as translations
and dilations, which are available in R, and its relation to Lebesgue measure. The
decay (5.19) is not easily related to smoothness properties of γ(x) in our general
setup. The reason being that the H-systems we have considered in the paper are
generated by general partitions. Constructing H-systems with the property that the
decay of its inner products reflects the smoothness of the function being analyzed
is under present investigation.

The localization of our approximations provide already interesting bounds like
(5.9). Bounds like the ones in Corollaries 3 and 4 are excellent and exploit the Haar
representation. Proposition 5 shows that the Haar representation can incorporate
singularities in a localized way and at the same time continue taking advantage
of faster decay of inner products away from singularities. These properties are
not available in delta hedging where discontinuities creates several problems with
hedging (see, for example, [12]).

6. Numerical Examples

In this section we present output from a computer implementation (detailed in [3])
based on the Brownian motion example from Section 3.1. More specifically, we
concentrate on the case where we have a Haar system, Definition 5, whose sequence
of dyadic partitions Pj = {Aj,i} are constructed via the increments of the Brownian
motion and are characterized through the parameters nT and j1, . . . , jnT

. We will
also use compression as described below and some of the definitions and notions
introduced elsewhere in the paper.
We analyze the error of the approximations as well as the volume of transactions.
To indicate the potential improvements that can be expected for this example we
will only consider the case of nT = 1, therefore, all the atomic sigma algebras
An are included in σ(WT ) and A∞ = σ(WT ). The case nT > 1 is essentially a
concatenation of several steps where each step is algorithmically equivalent to the
case nT = 1. Errors along these steps accumulate as is the case with delta hedging.
General expressions for the volume of transactions for our portfolios are presented
in Section 5.

Compression: Let uki , i = 0, . . . be a new indexing for our Haar system {uk}, k =
0, . . ., such that |〈X, uki+1〉| ≥ |〈X, uki〉|. So our m-term compressed approximation,
which we will denote by Xc

(m), is given by

(6.1) Xc
(m) =

m−1∑

i=0

〈x, uki〉uki .

We compare the errors in the approximations as well as the volume of transactions
as a function of the number of transactions. We find generic cases where Haar
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systems outperform delta hedging, moreover, in these examples, the improvements
have a simple intuitive financial meaning. Our numerical output uses the parame-
ter m, as introduced above, m is (essentially) equal to the number of Haar hedging
transactions plus one. This is just a peculiarity of our software and it can be un-
derstood by noticing that the bank account u0 may or may not be chosen during
the compression step (in practice it is one of the largest contributing inner prod-
ucts). In short, the parameter m is equal to the number of times the Black-Scholes
portfolio is rebalanced when performing delta hedging and equals the number of
Haar functions used in the final approximation when performing Haar hedging. We
rebalance the Black-Scholes portfolio at uniformly spaced time intervals.
Here we will give the initial data for the MRA (see Appendix A for some information
on this algorithm and associated notation) for the H-system {u2j+i} associated to
geometric Brownian motion described in Section 3.1 and X an European option.
Computations can be carried out by specifying the finest scale J . We will then
perform compression by only keeping the m Haar functions, including also u0, with
the largest inner products.

Fixed an acceptable error ε > 0, we approximate X specifying the finest scale J ,
in such way that the conditional expectation satisfies

sup |X(ω)−E(X|σ({AJ,i : 0 ≤ i ≤ 2J − 1))(ω)| < ε,

this is possible because every bounded random variable can be approximated by
simple functions supported on atoms of probability 1

2J . As a matter of convenience,
according to computational costs, we have used J = 14 or J = 16. The input to
the MRA is obtained by computing

xJ [i] = 2J

∫

AJ,i

X(ω)dP (ω),

or, more conveniently, for the case of continuous X(ω) = X(ST (ω)), by first com-
puting

(6.2)

sJ [i] = 2J
∫

AJ,i
ST (ω)dP (ω) =

= 2J√
2π

∫ cJ
i+1

cJ
i

ST0e
(ν(T−T0)+σ

√
(T−T0) y) e−

y2

2 dy =

= ST0e
(ν(T−T0)) e

b2
2 2J

(
Φ(cJ

i+1 − b)− Φ(cJ
i − b)

)
,

where b = σ
√

(T − T0) and ν = (r− σ2

2 ). Therefore, by taking J sufficiently large,
we can use the approximation xJ [i] ≈ X(sJ [i]). We recall that pJ [i] = P (AJ,i) =
1
2J .
For the sake of clarification, consider the European call X(ω) = (ST (ω)−K)+ where
T ≡ tn is the time of exercise and K is the strike price. Clearly X is unbounded,
but limc→∞X1{X≤c} = X a.e., hence one can always consider an approximation
of a desired quality.
Next we comment on the output displays; numerical values were obtained by sam-
pling ST (ω), the limited range in these values (x-axis on most displays) corre-
spond to these sampled values (after sorting). Consider first a single European call
X(ω) = (ST (ω) − K)+ as above, values of parameters are indicated in the text
surrounding the figures. In Figures 1, 2 and 3 we present the Black-Scholes and
Haar approximations with m = 1, 2, 20 respectively. Notice how Figure 1 shows
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the Haar approximation with u1 = 1/2 (1A1,0 − 1A1,1) which happens to give the
largest inner product. Figure 2 shows the Haar approximation when u0 is added,
giving the second largest inner product in this example. Figure 4 shows the esti-
mation of the L2 norm of the errors as a function of m. Table 1 indicates the effect
of optimizing the number of transactions (i.e. compression, as described above),
for example we obtain a smaller error 0.10, by chosing m = 16 -Haar functions
out of 216 basis elements, than the error 0.14, obtained by choosing m = 64 -Haar
functions out of 26 elements.
As a second example we consider a portfolio built as a linear combination of Euro-
pean calls and puts as follows, X = (ST −K1) + (ST −K2)− (ST −K3), values of
parameters are indicated in the text surrounding Figure 5. Finally, Figure 6 shows
the estimation of the L2 norm of the errors as a function of m.
Tables 2 and 3 show the volume of transactions for the Haar hedging portfolio HΠ,
and for the binary hedging portfolio BΠ (see Section 4.1), which for the case nT = 1
are both constant quantities, and the volume of transactions for the Black-Scholes
portfolio. Using the notation Xc

(m) from (6.1), it is easy to show that the volume
of transactions for the Haar hedging portfolio (as defined in Section 5), is equal to
(6.3)

V Tt0(HΠ) = e−r(T−T0)||Xc
(m) −E(X)||L1 = e−r(T−T0)

∫

Ω

|Xc
(m)(ω)−E(X)|dP (ω).

The volume of transactions for the portfolio of binary options is

(6.4) V Tt0(BΠ) = e−r(T−T0)||Xc
(m)||L1 = e−r(T−T0)

∫

Ω

|Xc
(m)(ω)|dP (ω).

Expressions for (6.3) and (6.4) when nT > 1 can be obtained from the general
developments in Section 5. On the other hand, letting

ϕti =
∂Vti(X)

∂Sti

,

the volume of transactions for a Black-Scholes portfolio with rebalancing dates
{ti}, i = 0, . . . , m− 1 is

(6.5)
m−1∑

i=0

[ |ϕti − ϕti−1 | Sti + (Bti −Bti−1e
r(ti−ti−1))+ ],

with ϕt−1 = Bt−1 ≡ 0. We have used equally spaced rebalancing dates starting
at t0 = T0. Given that (6.5) is a random quantity we will report the average
(AverageVolTrBS) over many samples.
The smaller the oscillations of X around E(X) the smaller V T (HΠ) will be com-
pared to V T (BΠ). Notice the difference in magnitudes with AverageVolTrBS. The
volume of transactions offer a clear numerical evidence of the different nature be-
tween Haar hedging and delta hedging, a detailed analytical analysis is provided in
Section 5.
We now comment on our choice of examples. It is expected, and it is confirmed by
our experience with numerical examples, that the Haar approximation outperforms
(in the sense of smaller error for equal value of m) the Black-Scholes approximation
whenever the payoff, or its derivative, contains discontinuities. Moreover, the Haar
functions can be adapted to these discontinuities, for instance, we can choose u1

such that it is supported in the union of A1,0 = {ST < K} and A1,1 = {ST ≥ K} for
the case of the European call. Our examples reflect these choices, for example ST0
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was taken close to K so as the discontinuity in the first derivative of the European
call becomes problematic for Black-Scholes approximation and can be reproduced
efficiently by the Haar expansion. An extreme example of this kind will be the
case of a digital option where, of course, the Haar expansions have no bearing as a
hedging tool.
Naturally, it is easy to find situations where delta hedging ouperforms Haar hedging
as, for example, a position in a European call which is well in or out of the money.
This is a situation where the linear approximation in delta hedging becames very
efficient. It may be interesting to see under what conditions delta hedging and Haar
hedging are complementary and to investigate how to combine both techniques.

7. Conclusions and Extensions

We have introduced a basic and general new framework to represent contingent
claims. Key ingredients are the flexibility given by the possible space and time
discretizations which can be adapted to a given class of options and the potential
for financial realization of these discretizations. From a theoretical point of view,
the approach is as fundamental as delta hedging and it is reasonable to think that
can be extended to other settings where this last technique is available. Some of the
computational tools introduced can also be used even when an actual financial real-
ization (of the approximation) is not available, pricing computations is an example.
A main goal of the paper is to bring forward the importance of efficient hedging
strategies, these alternatives representations should be contrasted with delta hedg-
ing in order to compare trade offs and limitations of this last technique. To this
end, the paper emphasizes efficiency in relation to volume of transactions and gives
theoretical as well as numerical evidence that the suggested new hedging strategy
has several advantages over delta hedging.
Further empirical and theoretical work is needed to assess the realm of applications
where the new constructions offer a financial or computational advantage. The
techniques could also be extended to the setting of higher dimensional models.

Appendix A. Multiresolution Analysis Algorithm

First we introduce notation and algebraic relationships needed to set up computa-
tions in the multiresolution algorithm and elsewhere in the paper.

Let R := {Rj}j≥0 be a sequence of multiresolution partitions of Ω. We will now
introduce the natural orthonormal basis of characteristic functions at level j. For
each Ak,i ∈ Rj , let

φk,i ≡
1Ak,i√
P (Ak,i)

.

Given a random variable X, our next aim is to study the relationship between the
coefficients in this basis, which are proportional to samples at level j, with the
coefficients in the H-system {φ0,0, ψj,i} associated with R in Theorem 1.

For X ∈ L2(Ω) and j ≥ 0, for simplicity set

(A.1) Xj ≡ XRj ≡ E(X|σ(Rj)).
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Then we have the following expansions

(A.2) Xj(ω) = c0[0] φ0,0(ω) +
j−1∑

k=0

∑

i∈Ik

dk[i] ψk,i(ω) =
∑

(k,i)∈Kj

ck[i] φk,i(ω)

where

(A.3) ck[i] = 〈Xj , φk,i〉 and dk[i] = 〈Xj , ψk,i〉.
Given that the conditional expectation Xj of X is constant on each Ak,i, we have
that for w ∈ Ak,i

(A.4) ck[i] = 〈Xj , φk,i〉 =
1√
pk[i]

∫

Ak,i

XjdP =
1√
pk[i]

∫

Ak,i

XdP = 〈X,φk,i〉,

where we have made use of the array notation pj [i] ≡ P (Aj,i). Analogously, we
have that dk[i] = 〈X,ψk,i〉. Moreover, we can state the following proposition.

Proposition 6. Given X ∈ L2(Ω,A, P ) and a sequence of multiresolution parti-
tions R = {Rj}J

j=0. Then for each j′ < j ≤ J , the following holds

(A.5) Xj = Xj′ +
j−1∑

k=j′

∑

i∈Ik

dk[i]ψk,i

and

(A.6)
∑

(k,i)∈Kj

c2
k[i] =

∑

(k,i)∈Kj′

c2
k[i] +

j−1∑

k=j′

∑

i∈Ik

d2
k[i].

For a proof of the above Proposition and further details of the multiresolution
algorithm for H-systems, see [4]. The algorithm is an adaptation of the well known
algorithm for wavelet theory given for S. Mallat [19] to our probabilistic setting.
This algorithm produces a relation between the samples of X, namely,

(A.7) xk[i] = Xj(ω), ω ∈ Ak,i, for (k, i) ∈ Kj ,

and the coefficients dk[i].

Appendix B. Complements

1. Haar-Systems for the binomial model:

Let S the price of an stock and t0, t1, ..., tn the trading dates. The price Sti = S(ti),
i = 0, 1, ..., n, varies according to the rule

Sti+1 = StiHi+1, i = 0, 1, ..., n− 1,

where {Hi}n
i=1 is an independent set of random variables such that

Hi =
{

U with probability p
D with probability q

,

where 0 < D < 1 < U and p+ q = 1. The setting can be formalized in terms of the
probability space (Ω,A, P ), where Ω := {ω : {t1, ..., tn} → {U,D}}, A ≡ P(Ω) and
P the corresponding product probability measure. Then S : Ω×{t0, t1, ..., tn} → R,
S0(ω) := S(ω, t0) = S0 and St(ω) := S(ω, t) = S0

∏
ti≤t ω(ti).
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Let us consider the sets Aj,i, 0 ≤ j ≤ n− 1 and 0 ≤ i ≤ 2j − 1 defined by A0,0 = Ω
and

(B.1) Aj+1,2i+1 = Aj,i ∩ {ω(tj+1) = U}, Aj+1,2i = Aj,i ∩ {ω(tj+1) = D}.
From independence, it is clear that P (Aj+1,2i) = q P (Aj,i) and P (Aj+1,2i+1) =
p P (Aj,i), consequently P (Aj,i) = pi0 · · · pij q1−i0 · · · q1−ij where i =

∑j
l=0 il2l is

the binary representation of i (with j + 1 digits).
Define now, for j = 0, ..., n− 1 ; i = 0, ..., 2j − 1 the normalized functions

(B.2)
u0 ≡ 1,

u2j+i = 1√
P (Aj,i)

(
√

p
q 1Aj+1,2i −

√
q
p 1Aj+1,2i+1),

From Theorem 1 it follows that {uk}0≤k≤2n−1 is an H-system for L2(Ω,A, P ).
Observe that for each j ≥ 0 the atoms of σ(u0, . . . , u2j−1), are {Aj+1,i : i =
0, ..., 2j+1 − 1} it follows that {uk}0≤k≤2n−1 is also a Haar system. Particularly
the sub-system {u0, . . . , u2j−1} is an orthonormal basis of L2(Ω,Ftj , P ), where
Ftj = σ(St0 , ...Stj ).

Example of non Haar-System for the binomial model:
Here we present another H-system for the binomial model. This time associated
with a particular partition of the final σ-algebra σ(Stn). Let J be the smallest
integer such that n + 1 ≤ 2J , then for 0 ≤ j ≤ J and 0 ≤ i ≤ 2j − 1 we define the
sets Aj,i, as follows. For i 6= 0,

(B.3) Aj,i = {ω ∈ Ω :
i

2j
<

1
n
|ω|U ≤ i + 1

2j
}

whenever this set is not empty, and for i = 0

(B.4) Aj,0 = {ω ∈ Ω : 0 ≤ 1
n
|ω|U ≤ 1

2j
}

where |ω|U is the number of ti’s such that ω(ti) = U . The probabilities of the
atoms are

P (Aj,i) =
∑

i

2j < s
n≤ i+1

2j

(
n

s

)
psqn−s for i 6= 0

and

P (Aj,0) =
∑

0≤ s
n≤ 1

2j

(
n

s

)
psqn−s.

It is important to observe that Aj,i = Aj+1,2i ∪ Aj+1,2i+1 or Aj,i = Aj+1,i. The
corresponding H-system is given, by using Theorem 1, namely by

(B.5)
v0 ≡ 1,

vj,i = 1√
P (Aj,i)

(
√

P (Aj+1,2i+1)
P (Aj+1,2i)

1Aj+1,2i −
√

P (Aj+1,2i)
P (Aj+1,2i+1)

1Aj+1,2i+1)

if Aj,i = Aj+1,2i ∪Aj+1,2i+1. It results in a Haar system only if n = 2J − 1.
The tree illustration below corresponds to the H-system with n = 5. We have la-
belled the atoms of the final σ-algebra to clarify the situation, with e.g. < DDDDU >=
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{(D, D, D, D, U), (D, D, D, U, D), (D, D, U, D, D), (D, U, D, D, D), (U, D, D, D, D)}.
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• A0,0

• A1,0 • A1,1

• A2,0 • A2,1 • A2,2 • A2,3

• A3,0
< DDDDD >

• A3,1
< DDDDU > < DDDUU >

• A3,6
< DDUUU > < DUUUU >

• A3,7
< UUUUU >

• A2,1 • A2,2

Observe that A3,2 = A2,1 and A3,4 = A2,2 because A3,3 = A3,5 = ∅.
Appendix C. Figures and Tables

Table 1. L2 norm for errors, between X and Xc
(m), in terms of

number of transactions and scales. Single European Call. Values
of parameters as in Figure 1.

No. of Transactions J=6 J=8 J=10 J=12 J=14 J=16
R = 8 0.22 0.22 0.22 0.22 0.22 0.22
R = 16 0.15 0.10 0.10 0.10 0.10 0.10
R = 32 0.14 0.08 0.06 0.05 0.05 0.05
R = 64 0.14 0.08 0.05 0.03 0.02 0.02
R = 128 x 0.07 0.05 0.03 0.02 0.01
R = 256 x 0.07 0.05 0.03 0.01 0.00

Table 2. Volume of Transactions for single European Call. Values
of parameters as in Figures 1-4. VT0(X) = 0.797.

No. of Transactions (R) V T (BΠ) V T (HΠ) AverageVolTrBS
R = 5 0.78 0.88 53.32
R = 10 0.79 0.93 107.1
R = 15 0.78 0.96 157.2
R = 20 0.75 0.91 213.8
R = 25 0.71 0.91 258.8
R = 30 0.74 0.93 317
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Figure 1. Approximations to single European Call using delta
hedging and the Haar system constructed via Brownian motion
increments. Values of the parameters used: m = 1, ST0 = 20, r =
0.05, σ = 0.1, T − T0 = 1, K = 21.
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Figure 2. Same as in Figure 1 except m = 2.
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Figure 3. Same as in Figure 1 except m = 20.
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structed via Brownian motion increments. Values of the param-
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