C++ Implementation of localized Monte Carlo
on trees

Sebastian Ferrando and Alex Korobchevsky
November 6, 2004

Abstract

This technical report describes the associated C++ library localMC:
A C++ Implementation of localized Monte Carlo on trees. This library
implements some of the algorithms described in the reference [1]. The goal
of the project was mainly to develop the functionality needed to obtain
the numerical output required in that paper.

Contents
1 Goals 2
2 Design 2
2.1 Class hierarchy 2
2.2 Physical file organization.o oo 7
3 Implementation 9
3.1 Algorithms 9
3.2 Utilities o oo e e 10
3.3 Main program e 11
4 Test plan 12
4.1 Random generatortest 12
4.2 Underlyingtest 12
4.3 Testinginlarge 14
5 Installation manual 18
6 User manual 18
7 Developers guide to maintainance 20

1 GOALS 2

1 Goals

The system goal is option pricing by using a variety of underlyings, derivatives
and algorithms. The underlyings implemented so far are binomial and con-
tinium. The derivatives used are European versions of the average strike, fixed
strike and lookback. The algorithms used are Basic Monte Carlo, Exact values
on a Tree, Local Monte Carlo and Local Monte Carlo with fast shift. Let us
describe briefly each of the concepts mentioned above.

From mathematical point of view, an underlying is a relation which receives
an asset value as an argument and returns it’s next value. A continious un-
derlying has an infinite number of outcomes with a given argument where as
a discrete underlying has a finite number of outcomes. Therefore a binomial
underlying has only two outcomes. Obviously, a continious underlying is much
more realistic. For instance, if a stock has a value of a hundred dollars today
it can have any value tomorrow. A binomial model would assume a stock can
either go up or down so the only values it can have is 90 or 110 dollars.

A derivative is a kind of option contract from financial point of view. We
will use only European derivatives i.e. which can be exercised only at the end
of the time period. The derivatives we use so far are average strike, fixed strike
and lookback. Mathematically, we are looking how much each option will pay us
of. Average Strike is an option which pays the difference between end value and
the average along the path if positive, zero othervise. Look back is an option
which pays the difference between end value and the minimum along the path
and always excersiced. However, for the strike we do care about the values along
the path because they make up the average.

The main focus of our research is algorithms. So far we use Basic Monte
Carlo, Local Monte Carlo and Local MC with Fast Shift. Basic Monte Carlo
is based on performing a large number of simulations, accumulating the payoffs
and computing an average option value. This algorithm is very simple and
slow. Most of the CPU time is spent on generating random numbers. We
can generate less random numbers by applying the so called shift techniques.
Generic shift reuses any given by the user amount of random numbers. Fast
shift uses the previous value of the stock to compute the next one. In summary,
shift algorithms are faster but less reliable then standard MC and should be
used when a fast approximation is required.

2 Design

2.1 Class hierarchy

The system we were describing above was implemented in ANSI C++. It was
tested on linux with g++42.96 but hopefully will run on most modern C++
compilers if configured and customized properly. The design is based heavily on
standard OO concepts: classes, inheritance and virtual functions. The extrac-
tor which invokes the g2 library is wriiten in ANSI C and connected to C++

2 DESIGN 3

application by system calls.

The underlying class hierarchy is based on Abstract Base Class underly-
ing which has prototypes for all functions and all variables required by every
particular underlying.

Listing 1: ../Src/Und/Underlying.h [Line 32 to 66]

struct Underlying
{ double U;
double Dj;
double r;
double T;
int N;
double P;
double sigma;

GSL_RandomGen *gen;

[F AR AAKKAAAAKKAKAAKKKKAAKKAE QDT HAAAANHKAAAA A AAAA A AAAA A A A K
Function: next

Purpose: Calculates next stock value

Param: double - Current stock value

Returns: Next stock value

sk ks s o ok ok ok sk s o ok ok ok sk s o ok ok ok ok s s o ok o koK sk K s s ok ok ok ok ok sk s sk o ok ok koK sk s sk s ok ok ok koK sk s s o ok ok ok ks sk sk sk ok ok ok /
virtual double next(double) = 0;

[HRERFAERKAERKKERFKERKKERKKER GeNETALEPATR FHEKFKEKIAKKIALKIAIKIAFKFAK
Function: generatePath
Purpose: Dumps the whole path at once. Forces specified number of ups
Param: int - length of the path

int - number of ups forced in the path
Returns: Array of ups and downs
okokok ook ook ook ko ko ok ok ok ok ok ok ok ok sk ko ook sk ook ok ok sk ko ok sk ko ok ok ok ok ok ok kb ok ok /

virtual double* generatePath(int N, int n) = 0;

};

Please note that this design is subject to change when we introduce more un-
derlyings. In addition to standard underlying parameters a pointer to random
generator is included (an OO concept of composition). Two most interesting
methods are next() and setBranchProb(). Next returns the value of the asset
one time increment later and uses the random generator heavily. setBranch-
Prob() computes the probability of the stock to go up and applies to binomial

2 DESIGN 4

underlyings only. Binom() and Continium() classes implement all methods
from Underlying class. As a remark, in Continium() branch probability doesn’t
depend on ups and downs so setBranchProb() method has an empty body.

As mentioned above, this project is based on using lots of random numbers.
Random generator code was taken from GNU scientific library and encapsulated
into a class.

Listing 2: ../Src/Rng/GSL_RandomGen.h [Line 33 to 126]

class GSL_RandomGen
{ public:

[K EFKEAKKKKKAKKKKKAKKAKFKANK GSL_RANAOMGEN FHHAHAAHKAAH KA A AN KA KA KA K

* Function: Constructor

* Purpose: Creates new generator object

* Param: generator name, seed to start, precision in number of digits after the decimal point
* Returns: N/A

8K 3K 3 o o K KK 3K o o K KK 3K o o oK K 3K 3K o o o K 3K KK 3K o o o 3 K 3K 3K ok o o o o K KK 3K Sk o o o K K KK oK o o o K K KK ok ok ok ok /

GSL_RandomGen(string = "mt19937", long = 1, int = 4);

[REKKEFKKKKKKKKKKKKKKKKFKK “GSL_RANAOMGEN HHH A A A AAA KK AAA KKK KA A KKK K
* Function: Destructor

* Purpose: Dellocates memory by using routine defined in GSL

* Param: N/A

* Returns: N/A

K o ok s o o o o o3k o o K o K ok o K o o K 3K o ok K 3K o K K o o K oK o ok K ok o K oK o ok K oK o Kk ok o K sk o ok K ok o K ok o Kok o ok ok /
“GSL_RandomGen() { gsl_rng free(r.); }

[FKFKAKAKAKAKAKKKKKKKKKKFRN QOLNAME FHKFKHKAKAKAKAKAK KKK KFKAKFKAKA KK
* Function: getName

* Purpose: Accessor to generator name parameter

* Param: N/A

* Returns: generator name

ook ok o o ok ok ok ok o o ok ok sk ok o o ok ok ok ok o o e ok ok ok ok ok o o o o ok sk sk ok o o e ok ok ok sk ok ok s o e ke ok sk sk ok o o ok ok ok sk ok ok ok ok /

string getName() { return gsl rng mame(r.); }

[FEFRFRKKKKKKKKEKEKEKEKEKEN St Seed HEKKKRKRAKAKAIAKEREK KK KK KA KA KA KK
* Function: setSeed
* Purpose: Sets generator seed to specified value
* Param: seed
* Returns: N/A

2 DESIGN)

Listing 2: ../Src/Rng/GSL_RandomGen.h [Line 33 to 126] (continued)

**/

void setSeed(long);

[R EKKEFKKFKKAKKFRKKKKFKKAKKFKKF ET T RKKKFKKFFKFKKAAHKFKKAAK KA KA AN KKK
* Function: next

* Purpose: Returns uniform [0..1] random value

* Param: N/A

* Returns: Uniform random value

sk ok sk o ok sk ok ok sk ok o sk ok o sk ok o Kok ok ok o K ok ok o ok ok o ok ok o ok ok o o sk ok o ok sk o o ok sk ok sk ok o ok sk ok sk ok o ok sk sk ok ok ok ok /

double next() { return gsl rng uniform(r_); }

[REAFAFAFATAIKKKKKKKKKRKNFEN NETTINT FKAKAFAFAF A KA KKK KA KA KKK
* Function: nextInt

* Purpose: Returns random integer in [0..range]

* Param: upper range boundary

* Returns: Random integer

ook ok ok ok ok ok ok kokokskok ok ok ok ok sk ok ok ok ok okokok ok ok ok sk okok ok ok ok Kok ok ok ok ok ok ok ok Kok ok ok /

int nextInt(int range) { return gsl_rng uniform int(r_, range); }

[HRHERKEKRAAKRAAKRKKKRKIKRNAK QQUSS HRRIREKIA KRN KRN KRN FAAF RN KRN K

* Function: gauss

* Purpose: Returns random normal with mean O and given standard deviation
* Param: standard deviation

* Returns: Random double

s ks ke sk ks ok ks ko sk sk ke sk ks ok ok sk ks ks ko sk ks ks ok ok sk ks ke sk ke sk ks sk ke sk ks ke sk sk ks ek e sk ko /

double gauss(double);

[HRFHERKEKRAFKRKAKRKKRKAKRK DTURE KFAFKIAFKKIAFKIAFKIAAKIAFKFAAKFAAK K

* Function: print

* Purpose: Display contents of the Binom Random generator object

* Param: fp - output file stream

* Returns: N/A

koo koo oo ko sk ok sk sk ok o koo s koo sk o ok ok o sk ook o s ko o o o koo o e ko sk ok ok ok /
void print(FILE* fp) { fprintf(fp, "Gen: /s, seed: Jd\n", name_.c_str(), seed.);

private:

}

2 DESIGN 6

Listing 2: ../Src/Rng/GSL_RandomGen.h [Line 33 to 126] (continued)

string name_;
long seed_;
gsl rngx r_;

};

The interface for random generator class includes functions setSeed(), next()
and getName(). The user has three random number generator to chose from:
mnt, taus and gfsr. These three selected generators are bith best performance
ratings from over 60 generators available at GSL. The default random generator
is mnt. The implementation if the generators is hidden from the user.

All derivatives, both path dependents and independents have init() and up-
date() methods. init() is called before sampling the path, update() is called
between the timesteps to change intermediate values (sums or averages). Init()
and update() have empty bodies for path dependent derivatives. There are two
versions of update. The update with final stock, front and initial asset value is
used for fast shift only.

Listing 3: ../Src/Der/Derivative.h [Line 22 to 63]

struct Derivative
L /R RRERAKKARKRKKKIIKIRKE GRET FRFKRARAKIARAF AR TN KA AR AATAK KKK
* Function: init
* Purpose: Initialises utility variables
* Param: N/A
* Returns: N/A
* Note: Empty for path independent derivatives
stk ke sk ks ok ks ok ok ks ok ks ko ok ks ok sk ko ok sk ok sk ko ok ks ok sk ko sk ks ok sk ok ks ks ke sk ks ko ko ok sk ok /

virtual void init() = 0;

[ERRAEKRAFKRAKRATFTRA DAYOF HFRAAFTAATTAATTAATAATTAATAATTAATTAAK KK
* Function: payOff

* Purpose: Returns the option payoff

* Param: Final stock price

* Returns: option payoff

* Precondiion: Underlying and derivative parameter must be initialized
sk ko ok s ks ok o o ok o ok ok ok ok ok ok o o ok o sk R o ok ok o ok o ok sk ok ok o ok s o ok ok ks ks o ok ok ok ok ok sk sk o sk ok ok /
virtual double payOff(double) = O;

/*********************** update A e o e o e o e e e ke ke ke Ak Ak Ak K Ak Ak Ok Ok KOk K

* Function: update

2 DESIGN 7

Listing 3: ../Src/Der/Derivative.h [Line 22 to 63] (continued)

Purpose: Updates the intermidiate values between timesteps for
path-dependent derivatives.

Returns: N/A
Note: Empty for path independent derivatives
seokokoksk ook ok ko ok ko sk ok ok ok ok ko sk ook ok sk ook ok sk ok sk ok ko ok ksl ok ok sk ok ko koo ok ok ok /

*
*
* Param: Stock value at the given timestep
*
*

virtual void update(double) = O;

double min_St;
double sum_St;
};

The algorithm implementation is quite different for every algorithm. But
there is one method each algorithm is required to implement: calcResults()
which computes option value and standard error. An algorithm has one param-
eter: starting asset value. As we already said the algorithms implemented so
far are MC, Shift and Haar.

2.2 Physical file organization

All project files are put in mcRAsum02 directory which has these subdirectories:
Doc, Src, Lib and Exe. Two additional files are there: readme with a brief
project description and regs that performs regression testing. regs compiles and
runs underlying test program and the test application (subject to change). The
Doc directory contains the pdweave file to allow extraction of code fragments
with progdoc. A Makefile processes the pdweaved file with latex and create
dvi and/or postcript versions of the documentation. In Exe subdirectory future
application code will be placed. The Lib subdirectory contains the libraries
used for the project. Each library includes header files, source files in case the
user wishes to recompile the library and a static library file if no recompilation
is needed. Each library has a benchmark to test it’s basic functionality. The
libraries we use so far are MyGSL (adapted from GNU scientific library and
used to generate random numbers), G2 generates plots in PostScript format.
When a maintaince programmer wishes to add a library he is adviced to follow
this pattern.

We need more detailed coverage of Src subdirectory. It has four subdirecto-
ries: Rng contains the random generator code wrapped into a class. We must
mention original GSL is implemented in C but we linked it in C++ and wrapped
into a class for convenience. Und subdirectory contains all the underlying code.
Note that all files are header files since all functions are brief and declared inline.
A test directory includes underlying testing code. Dersubdirectory contains all
the derivative code. All files are header files as in the underlyings but there is

2 DESIGN 8

no test directory since it makes little sense to test derivatives independently.
However, algorithms do have implementation .cpp files since the functions are
too complex to be placed inline. In the Alg directory we have a test subdirectory
which contains current application code and a makefile to run it.

An Exe subdirectory contains the gop, ngop applications, the input, extrac-
tor files. In addition to that, all object files are put there.

Listing 4: ../Src/org [Line 2 to 41]

utilities.h*

Alg:
Algorithm.cpp*
Algorithm.h*
BasicMC.cpp*
BasicMC.hx*
BasicShift.cpp*
BasicShift.h*
GenericShift.cpp*
GenericShift.h*
HaarCVMC. cpp*
HaarCVMC.hx*
HaarNode .h*

Test/
testbinarytree.cpp*
Tree.h

Der:
Derivative.h*
Derivative.h™*
EuropeanCall.h*
EuropeanPut.hx*
EuropeanStrike.h*
sourceLogx*

Rng:
GSL_RandomGen . cpp*
GSL_RandomGen .h*
GSL_RandomGen.h™*
sourceLogx*

Test/

Und:

Binom2.h
Binom.hx*
Test/
Underlying.h
Underlying.h”

3 IMPLEMENTATION 9

Listing 4: ../Src/org [Line 2 to 41] (continued)

3 Implementation
In this section we will go over some non trivial pieces of code in all directories.

3.1 Algorithms

Thats how we implement the exact value continium for the look back option:

Listing 5: ../Src/Alg/ContExactValues.cpp [Line 39 to 42]

double value = S * cumulative(dtwo) -
exp(-r * t) * S * cumulative(dtwo - sd * sqrt(t)) +
exp(-r * t) * (pow(sd, 2) / (2 * r)) * S * (cumulative(-dtwo + 2 * r * sqrt(t) / sd) -

exp(r * t) * cumulative(-dtwo));

Thats how we implement the tree exact value (only critical section is shown):

Listing 6: ../Src/Alg/ExactValues.cpp [Line 33 to 58]

for (int k = 0; k <= binom->N; k++)
{ int* path = new int[binom->N];
for (int i = 0; i < binom->N - k; i++)

path[i] = 0;
for (int i = binom->N - k; i < binom->N; i++)
path[i] = 1;

int comb = combinations(binom->N, k);
for (int j = 1; j <= comb; j++)
{ double ST = S;

ec->init();

ec->update(ST) ;

for (int i = 0; i < binom->N; i++)
{ if (path[i] == 1)
ST *= binom->U;
else if (path[i] == 0)
ST *= binom->D;
ec->update(ST) ;
}

double CT = ec->pay0ff(ST);
sum_CT += CT * logProbability(l - binom->P, binom->N, k) / comb;
permutePath(path, binom->N);

3 IMPLEMENTATION 10

Listing 6: ../Src/Alg/ExactValues.cpp [Line 33 to 58] (continued)

As we mentioned above, Local Monte Carlo has been combined together
with fast shift. Here is the section which includes the generic fast shift. The
minimum is updated for lookback, while the average is updated for the strikes.

Listing 7: ../Src/Alg/LocalMC.cpp [Line 75 to 90]

for (int shifttimes = 0; shifttimes < shift - 1; shifttimes++)
{ ec->sum_St = (ec->sum_St - S) / path[shifttimes] + ST;
if (ST > 8)
ec->min_St = MIN(ec->min_St * path[binom->N - shifttimes - 1], S);
else
ec->min_St = MIN(ec->min_St / path[shifttimes], ST);

double CT = ec->pay0ff(ST);
sum_i[k] += CT;

if (counter[k] > 1)
error[k] = ((counter[k] - 2) * error[k] +
(counter[k] - 1.0) / counter[k] * pow(ST - sum[k] / (counter[k] - 1), 2)) / (counter[k] - 1);
counter [k]++;
sum[k] += ST;
}

Implementation of an error with Local Monte Carlo

Listing 8: ../Src/Alg/LocalMC.cpp [Line 102 to 106]

// Error computation
double varTotal = 0;
for (int k = 0; k <= binom->N; k++)
if (counter[k] > 0)
varTotal += pow(logProbability(l - binom->P, binom->N, k), 2) * error[k] / counter[k];

For implementation details refer to Requirements Document.

3.2 Utilities

Here is a function used by Exact values on Continium. It uses numerical ap-
proximation to normal Cumulative function. Number of steps can be changed
if we would like to have more presicion.

Listing 9: ../Src/utilities.cpp [Line 25 to 40]

double cumulative(double x)
{ double width = x / 10000;
if (width < 0)

3 IMPLEMENTATION

Listing 9: ../Src/utilities.cpp [Line 25 to 40] (continued)

width *= (-1);
double sum = 0;

for (int i = 0; i < 10000; i++)

11

i
{ double value = 1 / sqrt(2 * M_PI) * exp((-1) * (width*i) * (width*i) / 2);
*

sum += value width;
}
if (x > 0)

return 0.5 + sum;

return 0.5 - sum;

Another important function is logarithmic probability function which im-

portant for determining class probability in local Monte Carlo.

Listing 10: ../Src/utilities.cpp [Line 164 to 169]

double logProbability(double pU, int N, int n)
{ double S = 0;
for (int i = 0; i < n; i++)
S += log ((double)(N - i) / (i + 1));
return exp(N * log (1 - pU) + n * log (pU / (1 - pU)) + S);
}

3.3 Main program

The main generic option plotter application is straightforward. It gets data
from the user by using prompts and the input file. We will only demonstrate a
single line that performs the computations. It uses the underlying and derivative
objects created by getting all user input and invoke calcResults on an algorithm
object created already. The ouput results are stored in vectors and saved to

output files.

Listing 11: ../Exe/gop.cpp [Line 165 to 170]

vector<double> cv;

vector<double> se;

cout << "Generator: " << ptr_und->gen->getName() << endl;
long start = clock();

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Call Value " << cv.back() << ", standard error " << se.back() <<

, time = " << (clock()

- start)/1000(

4 TEST PLAN 12

4 Test plan

4.1 Random generator test

The random number generator needs to be chosen from over 60 ones found
in GNU Scientific Library. We are looking for both speed and rondomness.
We need to make sure a number chosen will be uniform in range 0..1 and be
generated as fast as possible. For this reason a benchmark is written which
accepts 3 command line arguments: generator name, fraction and number of
hits. For instance, we generate one million uniform numbers and check how
many are below 0.3. The ideal generator will give 300000 numbers. That’s how
we check the accuracy: how close we get to the theoretical number. To test the
speed standard UNIX time utility can be used to check how long does it take
to generate a million random numbers. Therefore, a trade off needs to be found
between speed and presicion. The generator which performs best is mnt19937.
We confirm that finding by gsl rating of it’s generators.

Listing 12: ../Src/Rng/Test/testgen.cpp [Line 43 to 64]

int main(int argc, char*x argv)
{ if (argec != 4)
{ cout << "Usage: ./testgen generator fraction hits " << endl;
exit(1);
}

GSL_RandomGen gen(argv[i]);
double frac = atof(argv[2]);
long sim = atol(argv[3]);

int count = 0;
for (int i = 0; i < sim; i++)
{ double eps = gen.next();

if (eps < frac)

count++;

}
cout << "Simulations: " << sim << endl;
cout << "Generator: " << argv[1] << endl;
cout << "Fraction: " << frac << endl;
cout << "Hits: " << count << endl;

4.2 Underlying test

To test the binom underlying we hardcode underlying and derivative parame-
ters. Number of timesteps assumed to be 3 and up/down probabilities assumed
identical. So we have 8 paths: UUU, UUD, UDU, UDD, DUU, DUD, DDU,
DDD. Each path needs to have identical number of occurences since it has the

4 TEST PLAN

same probability. If we get that the underlying is working.

Listing 13: ../Src/Und/Test/test.cpp [Line 35 to 102]

int main(int argc, char *xargv)
{ char gen_desc[10];

if (arge == 2)
strcpy(gen_desc, argv[i]l);
else
strcpy(gen_desc, "mt");
Binom binom(gen_desc);

binom.U = 1.2;
binom.D = 0.9;
binom.r = 0;
binom.T = 1.0;
binom.N = 3;
binom.P = 0.5;
int § = 100;

int M = 100000;

/* State counters; array not used for clarity */
int UUU = 0; int UUD = 0; int UDU = 0; int UDD = O;
int DUU = O; int DUD = 0; int DDU = 0; int DDD = O;

cout << "Generator: " << binom.gen->getName() << endl;

for (int j = 1; j <= M; j++)
{ double ST = S;
string status = "";

for (int i = 1; i <= binom.N; i++)
{ double STnew = binom.next(ST);
if (ST < STnew)
status += "U";
else
status += "D";
ST = STnew;
¥

if (status == "UUU")
UUU++;

else if (status == "UUD")
UUD++;

else if (status == "UDU")
UDU++;

else if (status == "UDD")
UDD++;

13

4 TEST PLAN 14

Listing 13: ../Src/Und/Test/test.cpp [Line 35 to 102] (continued)

binom.P) * (1 - binom.P) << e
binom.P) * binom.P << endl;

(1 - binom.P) << endl;
binom.P << endl;

(1 - binom.P) << endl;
binom.P << endl;
binom.P) << endl;

else if (status == "DUU")
DUU++;
else if (status == "DUD")
DUD++;
else if (status == "DDU")
DDU++;
else if (status == "DDD")
DDD++;
}
cout << "Total simulations: " << M << endl;
cout << "Status: UUU, hits: " << UUU << ", prob. = " << (1 - binom.P) * (1 -
cout << "Status: UUD, hits: " << UUD << ", prob. = " << (1 - binom.P) * (1 -
cout << "Status: UDU, hits: " << UDU << ", prob. = " << (1 - binom.P) * binom.P *
cout << "Status: UDD, hits: " << UDD << ", prob. = " << (1 - binom.P) * binom.P *
cout << "Status: DUU, hits: " << DUU << ", prob. = " << binom.P * (1 - binom.P) *
cout << "Status: DUD, hits: " << DUD << ", prob. = " << binom.P * (1 - binom.P) *
cout << "Status: UUU, hits: " << DDU << ", prob. = " << binom.P * binom.P * (1 -
cout << "Status: UUU, hits: " << DDD << ", prob. = " << binom.P * binom.P * binom.P << endl;
return 0;

4.3 Testing in large

System testing is algorithm testing. For more information on testing ideas refer
to Requirements Documents. In test appication we hardcode all underlying
parameters. The binom2 underlying is equivalent so it’s never tested in that
appliction. For each algorithm we try to run all derivatives available. Basic
Monte Carlo can be compared with Brendan’s true values. Generic Shift (and
other variations) must converge to Basic Monte Carlo. Haar gives precise option
values for relatively small number of simulations due to it’s control variate.
The user is encouraged to hardcode other underlying parameters and check the
results. For a large number of simulation the processing time will be large. For
large number of timesteps results might not be exact due to round off errors
especially for Fast Shift and Haar algorithms.

Listing 14: ../Src/Alg/Test/test.cpp [Line 59 to 211]

BasicMC mc;

Algorithm *ptr_a = &mc;
mc.S = 100;

ptr_a->M = 5000;

cout << "Generator: " << binom.gen->getName() << endl;
cout << "Algorithm used: Basic Monte Carlo" << endl;

4 TEST PLAN 15

Listing 14: ../Src/Alg/Test/test.cpp [Line 59 to 211] (continued)

// European Call

EuropeanCall ec(100);

Derivative* ptr_der = &ec;

long start = clock();

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Call Value " << cv.back() << ", standard error " << se.back() << ", time =
//copy(cv.begin(), cv.end(), ostream_iterator<double>(cout, " "));

cv.clear();

// European Strike

AverageStrikeEuropeanCall es(binom.N);

ptr_der = &es;

ptr_a->calcResults(ptr_und, ptr_der, cv, se);

cout << " Strike Value " << cv.back() << ", standard error " << se.back() << endl;
//copy(cv.begin(), cv.end(), ostream_iterator<double>(cout, " "));

cv.clear();

// Look back

LookBack 1b;

ptr_der = &lb;

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Look Back Value " << cv.back() << ", standard error " << se.back() << endl;
//copy(cv.begin(), cv.end(), ostream.iterator<double>(cout, " "));

cv.clear();

// Down Out

DownOut dout (100, 99);

ptr_der = &dout;

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Down Out Value " << cv.back() << ", standard error " << se.back() << endl;
//copy(cv.begin(), cv.end(), ostream_iterator<double>(cout, " "));

cv.clear();

ExactValues ex;

ptr_a = &ex;

ex.S = 100;

cout << "Algorithm used: Exact Values" << endl;

// European Call

ptr_der = &ec;

start = clock();

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Call Value " << cv.front() << ", standard error " << se.back() << ", time
cv.clear();

" << (clock()

" << (clock() - start)/1000(

- start)/100(

4 TEST PLAN 16

Listing 14: ../Src/Alg/Test/test.cpp [Line 59 to 211] (continued)

// European Strike

ptr_der = &es;

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Strike Value " << cv.front() << ", standard error " << se.back() << endl;
cv.clear();

// Look back

ptr_der = &lb;

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Look Back Value " << cv.front() << ", standard error " << se.back() << endl;
cv.clear();

// Down Out

ptr_der = &dout;

ptr_a->calcResults(ptr_und, ptr_der, cv, se);

cout << " Down Out Value " << cv.front() << ", standard error " << se.back() << endl;
cv.clear();

LocalMC 1lmc;
ptr_a = &lmc;
1mc.S = 100;
lmc.shift = 2;
ptr_a->M = 10000;

cout << "Algorithm used: Local Monte Carlo" << endl;

// European Call

ptr_der = &ec;

start = clock();

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Call Value " << cv.back() << ", standard error " << se.back() << ", time = " << (clock() - start)/1000(

cv.clear();

// European Strike

ptr_der = &es;

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Strike Value " << cv.back() << ", standard error " << se.back() << endl;
//copy(se.begin(), se.end(), ostream_iterator<double>(cout, " "));

cv.clear();

// Look back

ptr_der = &lb;

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Look Back Value " << cv.back() << ", standard error " << se.back() << endl;
cv.clear();

4 TEST PLAN 17

Listing 14: ../Src/Alg/Test/test.cpp [Line 59 to 211] (continued)

// Down Out

ptr_der = &dout;

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Down Out Value " << cv.back() << ", standard error " << se.back() << endl;
cv.clear();

Continium cont(arg);
ptrund = &cont;
cont.sigma = 0.3;

ptrund->r = 0.0;

ptround->T = 1.0;

ptr_und->N = 2;

ptround->P = (ptr_und->U - exp(ptr_und->r * ptr_und->T / ptr_und->N)) / (ptr_und->U - ptr_und->D);
//cout << "Down prob. is " << binom.P << endl;

ptr_a = &mc;
mc.S = 100;
ptr_a->M = 1000;

cout << "Underlying: continium " << endl;
cout << "Algorithm used: Basic Monte Carlo" << endl;

// European Call

ptr_der = &ec;

start = clock();

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Call Value " << cv.back() << ", standard error " << se.back() << ", time = " << (clock() - start)/1000(
cv.clear();

// European Strike

ptr_der = &es;

ptr_a->calcResults(ptr_und, ptr_der, cv, se);

cout << " Strike Value " << cv.back() << ", standard error " << se.back() << endl;
cv.clear();

// Look back

ptr_der = &lb;

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Look Back Value " << cv.back() << ", standard error " << se.back() << endl;
cv.clear();

// Down Out

ptr_der = &dout;

ptr_a->calcResults(ptr_und, ptr._der, cv, se);

cout << " Down Out Value " << cv.back() << ", standard error " << se.back() << endl;

6 USER MANUAL 18

Listing 14: ../Src/Alg/Test/test.cpp [Line 59 to 211] (continued)

cv.clear();

5 Installation manual

1. Copy the archive file mcRAsum02.tgz to your account
2. Untar the application tar zvfz mcRAsum02.tgz

3. Copy all unpacked files to some directory on your account.

6 User manual

1. The major application is called gop, which stands for generic option plot-
ter. It generates data files with ouput from simulations. The user has
flexibility to select random generator from the command line by just pass-
ing any of the following arguments to the command line: mt, taus, gfsr
(the default is mt which does not need to be explicitly typed). The un-
derlying, derivative and algorithm are selected by prompting the user,
whereas other parameters are given from the input file.

2. The extractor application is called directly by gop after all computations
are complete. Up to five algorithm can be plotted simultaneously. Two
windows will pop up: one withe error display, the other with option values.

3. Please be sure to give meaningful names to files as they will appear as
labels to the plots. The error files will have the same name as the data
files with the prefix of err.

4. The user might want to use extractor directly after gop has been called. It
receives the following command line arguments (where outputfile will be
a postcript file): Points is the number of points extractor will read from
the inputfiles (starting from beginning). Recall that the file input (used
by gop to create the output data) uses M0, gap and steps.So points is
actually equals to steps, where

M = MO + steps * gap

All these information is in the file E, create dby gop. Here is an example
for this file:

Listing 15: E [Line 2 to 2]

./extractor plots.ps 100 3000 13000 bmc

6 USER MANUAL 19

One small issue is that we may run gop in several windows so F will contain
info only in one of these files. If all windows are run with compatible
information, of course the output can be plotted via extractor. Output
file names from gop are used for plotting and also to create error files.

5. mgop is made by make ngop this program will create data in terms of N. At
the moment is comparing Basic Monte Carlo on the tree and continuous.
It goes from 1 to N, and N is read from input file. For each run (for fixed
N) M0, gap and steps are taken from input.

6. The user can change plot layout by editing any of the parameters below
and recompiling the extractor. To do so, type

make plot

in the command prompt. Here is some option that can be edited,

Listing 16: ../Exe/extractor.c [Line 37 to 44]

#define AXIS_LABELS 10 /* Number of ticks on each azis */

#define SCALE 0.9 /* Relative scale of the plot */

#define TICK_LENGTH 3 /* Size of the ticks on both azis */

#define LAYOUTS 5 /* Number of line formats which represent output
#define X_SIZE 600 /* Horizontal size of the plotting area */

#define Y_SIZE 400 /* Vertical size of the plotting area */

#define X_ORIGIN 150 /* X of lower left corner of the plotting area */
#define Y_ORIGIN 50 /* Y of lower left corner of the plotting area */

Listing 17: ../Exe/extractor.c [Line 69 to 72]

/* Change those wvalues for altering plot layout */

int colors[] = {6, 19, 4, 10, 13}; /* Colors for each graph (0..26)*/
int width[] = {1, 1.3, 1.6, 1.9, 2.3}; /* Line width for each graph */
int dashes[] = {2, 2, 3, 2, 1, 2, 2, 3, 5, 2}; /* Dashes length for each graph */

7. To use exact continium formula for the lookback choose Continium Un-
derlying, and the Ezact Value Continium algorithm.

8. Here we include a shell session when running gop

Listing 18: exampleOfRunningGop [Line 2 to 72]

Select Underlying
1: Binomial Tree
2: Continious

1 //user input
Select Derivative:

7 DEVELOPERS GUIDE TO MAINTAINANCE 20

Listing 18: exampleOfRunningGop [Line 2 to 72] (continued)

European Call
Average Strike
Look Back
Fixed Strike
//user input
Select Algorithm:

N D W N

1: Basic Monte Carlo
2: Exact Values on Tree
3: Local Monte Carlo
4: Local Monte Carlo with Shift
5: Exact Values Continium
1 //user input
Generator: taus
Call Value 5.7202482, standard error 0.18364636, time = 0.03sec
Enter file name
avStBTreeBmc
Compute more options? y/n
n //user input
//END all

To run the test application just change to mcRAsum02/Src/Alg/Test and
type ./test. A command line argument can specify random generator to be
chosen from mnt (default), taus or gfsr. Other parameters can be changed by
only recompiling the code.

7 Developers guide to maintainance

1. To add an underlying extend the abstract base class Underlying. Put the
header file into Src/Und directory.

2. To add a derivative extend the abstract base class Derivative. Put the
header file into Src/Der directory.

3. To add an algorithm extend the abstract base class Algorithm. Put the
header and source files into Src/Alg directory. Add a target to a main
makefile.

4. We have included a shell script to run some benchmarks. Here is the file

Listing 19: ../regs [Line 14 to 28]

cd Src/Und/Test
make

./undtest
./testCont
./testint

REFERENCES 21

Listing 19: ../regs [Line 14 to 28] (continued)

cd ../../Rng/Test
make

make gauss

make testint
./testgen mt 0.4 1000
./testGauss

./testint mt 10 10000
cd ../../Alg/Test
make

./test mt

References

[1] S.E. Ferrando and A. Bernal, Localized Monte Carlo algorithm to
compute prices of path dependent options on trees. Submitted (June
2004) to International Journal of Theoretical and Applied Finance,
21 pages.

