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ABSTRACT. We present a new discretization of financial instruments in terms
of martingale expansions constructed using Haar wavelets systems. Examples
of these systems are constructed which illustrate the discrete, space-wise, na-
ture of the approximations. Expansions on these bases give the pointwise con-
vergence needed in several applications, in particular, we work out the details
of an application to hedging an European portfolio of options. We describe
natural conditions under which our Haar hedging strategy can be realized by
means of a self financing portfolio consisting of binary options. We emphasize
the issue of efficient approximations and formalize a notion of optimality to
approximate portfolios of options.

1. INTRODUCTION

Continuous models for the underlying asset are well established although in prac-
tice the hedging of options depending on this underlying is performed through a
time discretization. In delta hedging the underlying itself is used to construct the
portfolio replication, this involves an implicit linear spatial approximation of the
option. This approximate hedging gives a pointwise error the quality of which de-
pends on the efficiency of this space-time approximation. We note that an efficient
portfolio replication will aim to reduce the number and volume of transactions for
a given approximation error. Efficiency is also important in the pricing of complex
path dependent derivatives when using the Monte Carlo technique. In this situa-
tion, an efficient approximation will aim at minimizing the number of computations
maintaining a certain level of error.

As hinted above, the notion of efficiency depends on the application at hand. De-
spite of this, there are theoretical guidelines on how to approach the problem under
a variety of settings. The area of nonlinear approximation (see [7] and [11] and
the references given there) studies efficient representation of functional classes. For
specific functional classes, wavelets have been proven optimal for the task of com-
pression (efficient storage), noise removal, fast computation, etc.

Presently, the use of wavelets techniques in finance has been directed towards
time series processing, (see for instance [14] and [33]) and the fast numerical so-
lution, via the Galerkin method, of Black-Scholes equation (see [28] and [29] for
a recent account of these issues). These approaches make use of standard con-
structions of orthonormal basis of wavelets on the real line or other related higher
dimensional (analytical) spaces. Our approach is different from the above as we
carry our wavelet construction directly on the probability space (2, F, P), where
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F = {F:} is the filtration generated by a given random process and P a probability
measure of interest. It is possible, and necessary for some of the applications, that
the orthonormal basis {ur} be adapted to F, this allows pathwise approximations
which are needed for the hedging applications and applications to simulations. In
our approach, the functions {uy} will take only two nonzero values, so they will be
Haar-like. This restriction can be relaxed but, in that case, the financial interpre-
tation of the expansions will be less natural.

This paper introduces a framework that allows the construction of Hilbert space
bases which give optimal speed of convergence for the space of portfolios associated
to a given collection of financial options. To achieve this optimality, we exploit
the adaptability (in the sense of measure theory) of the options with respect to
the underlying process. As an application, we construct approximating portfolios
of binary options for hedging general financial claims. The approximations are
efficient in the sense that they require a small number and volume of transactions.
This is achieved thanks to the property of localizations of our wavelets. Some of
these characteristics are in contrast with other approaches to hedging ([1], [6] and
[22]) which, similarly to our approach, use portfolios of simple options to hedge
complex portfolios.

In the literature there are several research streams that use Hilbert space basis
for approximation of contingent claims. For example, [5] uses eigenfunction expan-
sions to price options in a general setting. Reference [26] describes possible uses of
a Hilbert space basis for valuation and hedging. Our contribution is different from
these approaches as we emphasize the following (related) topics for our approxi-
mations: efficiency, the approximations are given by an orthonormal basis (with
respect to the probability measure of interest), our basis can be adapted to a col-
lection of options or underlying process, they are martingales and the computations
can be assembled in a convenient algorithm. Moreover, the basis elements can be
easily interpreted in terms of basic financial instruments and transactions and they
can be optimized, for the sake of efficiency, for specific tasks. Our approach can
be succinctly characterized by indicating that we are interested in the construction
of approximating set of functions for efficient representation and computation of
financial instruments.

To indicate the essence of our approach, we point to (2.1). The right hand side
of (2.1) is just a rewrite of the left hand side in terms of the martingale differences
which always form an orthogonal set. The novelty is in the writing of the condi-
tional expectation as a Fourier expansion, the inner products (X, u,) are a set of
new coordinates with useful properties and information. In particular, these in-
ner products can be efficiently computed via the multiresolution analysis algorithm
(see Appendix A). Moreover, the setting is flexible enough so that the actual Haar
functions u,, can be chosen via some optimization, see Section 5, in order to give
efficient representations of X. Efficient representations of functional classes is a
chief concern of computational harmonic analysis, see for example [11], [9] and [10].

Finally, we believe that the research community is well aware of the formal
connections between martingales and wavelets (see for instance [12] and [30]). In
particular, R. Gundy has made use of martingale theory in a wavelets setting [17]
and has exposed related points of views [18]. An important reference in this regard
is [15] which is very much related to our constructions.
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The paper is organized as follows, Section 2 defines H-systems, develops the re-
lationship between H-systems and sequences of partitions and states a result on
existence of H-systems for an important class of stochastic processes. Section 3
introduces simple examples of H-systems in basic financial settings. Section 4 mo-
tivates and develops our main application to hedging a given European portfolio of
options (we also outline other applications.) Section 5 formalizes the way in which
H-systems are best basis for a class of financial portfolios (Theorem 4). Optimized
constructions of H-systems are also described. Section 6 presents numerical exam-
ples. Section 7 summarizes the main results of the paper. Appendix A presents
notation, formulae and the Multiresolution Analysis Algorithm, which are needed in
computations. Appendix B presents a simple example as a complement. Appendix
C presents tables and figures from the numerical experiments

2. H-SYSTEMS

Let (9, A, P) denote an arbitrary probability space. The notation || ||2 = ()
stands for the inner product on L?(Q, A, P). The following Gundy’s [16] definition
is motivated by the standard Haar system of L*([0, 1]).

Definition 1. An orthonormal system of functions {uy }r>o0 defined on Q is called
an H-system if and only if for any X € L?(Q, A, P)

n

(2.1) Xa, = E(X|ug,u1,y...,up) = Z(X,uk)uk, for all n >0,
k=0
where A,, = o(ug,...,u,). The intended meaning of k¥ > 0 in the above definition

is to allow the system {u}r>o to be finite or infinite. We also use the notation
As = 0(Up>0Ay). In applications we will make use of the pointwise convergence
of (2.1) which holds due to the martingale convergence theorem [31]. Moreover, if
p € [1,00) is a given real number then, for every X € LP, the sequence X 4, =
E(X|A,) converges a.s. and in L? to Xo, = E(X|Aw).

We caution the reader that we will attach the word Haar to several definitions
and constructions even though they may refer to general H-systems, see also Def-
inition 5. The following proposition, which is proven in [16], gives an alternative
characterization of H-systems equivalent to Definition 1.

Proposition 1. An orthonormal system {u}r>o defined on Q is an H-system if
and only if the following three conditions hold:

(1) Each uyp assumes at most two nonzero values with positive probability.

(2) The o-algebra A, consists exactly of n + 1 atoms.

(3) E(ugt1|uo,u1,...,ux) = 0; k > 0. So the functions uy are martingale
differences.

Corollary 1. Assume {uy}r>o is an H-system. Then, for each n > 0, upi1 takes
two nonzero values (one positive and the other negative) only on one atom of A,
(hence this atom becomes its support). Consequently, A,y1 consists of n atoms
from A, and two more atoms obtained by splitting the remaining atom from A,.

In view of the above proposition and its corollary, the functions in an H-system are
natural generalizations of classic Haar functions, as the next definition states.
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Definition 2. Given A € A, P(A) > 0, a function v is called a Haar function on
A if there exist A; € A, AgN A1 =0, A=AgUA;, v =alyg,+b1lys and

/ b(w) dP(w) =0, / V() dP(w) = 1.
Q Q

2.1. Basic Properties of H-Systems. This section introduces some elementary
properties of H-systems and partitions. Along with Appendix A, it represents the
computational core of our approach, we introduce most of the notation to be used
in the rest of the paper as well as the main constructions. The reader who wishes
to see financial applications first should refer to Section 4.1.

It should be clear, from Corollary 1, that an H-system naturally defines a binary
tree of partitions, these are formally introduced in the next definition.

Definition 3. A sequence of partitions of Q, Q := {Q,};>0, s called a binary
sequence of partitions if for j > 0, the members of Q; have positive probability,
Qo = {Q}, and for j > 1, A € Q; if and only if it is also a member of Q; 1 or
there exists another member A" of Q; such that AUA" € Q;_4.

We set Ag,o := Q, hence Qo = {Aoo}. Forj>1,if A€ Qj and A = A, €
Qj_1 then A preserves its index. Otherwise (i.e. A ¢ Q;_1, and not yet indezed)
then there exists Ay ; € Q;_1 and A’ € Q; such that

(2.2) Ap; =AU A,
then set Ak+1,2i = A and Ak+1,2i = A

The index j in A;; will be called the scale parameter (we will also call it the level),
it indicates the number of times A has been split to obtain A;;. Notice that Q;
can have at most 2/ members, and if Ay ; € Qjthen k < jand 0 << 2k — 1.
The name scale is borrowed from wavelet theory where it indicates the extent of
the localization (or resolution) of the wavelet. The figure displayed in the example
of appendix B will clarify the indexation. The information about the splitting of
atoms is stored in the indexation, it allows to rearrange a given binary sequence
of partitions so as to collect all atoms with the same scale parameter j. Atoms
at lower levels, which complete a partition and will not be further split, are also
included. This will be formalized in the next definition.

Definition 4. A binary sequence of partitions R = {R;} will be called a mutireso-
lution sequence (of partitions) if each Ay ; belonging to R;, with j > k, also belongs
to Rj for all j' > j.

Observe that if R is a multiresolution sequence of partitions and A ; € R; with
k < j, Ap,; has not been split since level k and will not be further split, while if
k =j, Aj; comes from the splitting of an atom of R;_1. To this type of partitions
we will associate a Multi-resolution Analysis algorithm (MRA) (see Appendix A) in
complete analogy with wavelet theory and, in particular, allows the computation of
inner products and the corresponding approximations to be organized by the scale
parameter.
The following sets of indexes will be used shortly and in Appendix A, consider j > 0
and let

Ij = {7, : Aj,i € Rj and Aj’i = Aj+1,2i U Aj+1,2i+1}, and
(2.3)

K]‘ = {(k,l) : Ak,i S Rj }
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Natural and computationally useful binary sequences of partitions are the dyadic
ones, these are sequences {Q;};>o such that each atom of Q; ; split into two
atoms of Q;. Since the usual Haar wavelet system is associated with this kind of
sequences, we introduce the following general definition.

Definition 5. We say that an H-system {u}o<r<m is o Haar system if m = oo
(or m = 27 — 1) and each atom of o(uo,...,us;_1) is the union of two atoms of
o(ug,...,ugi+1_1) for all j (or for all j < J—1).

Theorem 1. Every H-system induces naturally a multiresolution sequence of par-
titions and reciprocally.

Proof. Let {ur}r>0 be an H-system and Ago = 2. We define recursively the
following sequence of partitions.

R(] = {AO,O}-

Assuming R; has been defined, we will generate R;,1. Consider a generic atom
Agi € Rj, by Corollary 1 it is enough to consider the following cases:

o If k < J we add Ak,z' to Rj+1

o If £ = j and A;; is not the support of any u,, we add A;; to Rj41.

o If k = j and A;; = suppu, for some u,. Then we add

Ajy12i = u, '((—00,0)) and Ajy12i41 = u, '((0,00))

to Rj+1 .

Clearly this is a multiresolution sequence of partitions.

Reciprocally, let R be a multiresolution sequence of partitions. We are going to
define a family of Haar functions {¢;;}, associated with R. For each A;; € R;
such that A]‘,z’ = Aj+1,2,' U Aj+1,2,'+1, let @bj,z’ be defined on 2 by

Qj.; if w € A.j+172i7
(2.4) 2/1]',,'((41) = bj,,' if we Aj+172,-+1 and,
0 if w ¢ Aj,i-

Where a;; and b;; are chosen requiring that 1);; is a Haar function. The above
equations define (up to a sign) v ;(w) for all w € Q, indeed we choose

P(Ajt1,2i41)
2.5 @jyi = )
(2.5) 7 \/P(Aj+1,2z‘)P(Aj,i)
and
P(A j+1 2i)
2.6 bji=— = )
(2.6) 7 \/P(Aj+1,2z'+1)P(Aj,i)

Give the natural order to the set N'= {29 +i:j > 0,i € I;} and let 7 be an order
preserving isomorphism from A to an integer interval [1, N] or N. Defining

U (29 4i) = U2iyi = Yji

and vop = ¢oo(w) = 1la(w), the resulting sequence {v;};>o is orthonormal and
trivially verifies (1), (2) and (3) of Proposition 1, thus, it is an H-system. O
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Remark 1. The above theorem applied to a dyadic sequence of partitions P implies
that the system of functions {uy}r>0 defined by

Ugi i = Yy
is actually o Hoar-system. This holds because a given integer k > 1 can be written

as k = 27 i, where jy, is the mazimum integer satisfying 20 < k, resulting in con-
sequence iy, € I;, = [0,27* —1]. Moreover, P; is the set of atoms of o(ug, - .., Uz 1)-

Remark 2. If R is a multiresolution sequence induced by an H-system {vy}r>o,
then the H-system built in Theorem 1 is a rearrangement {vxk x>0 of {Vk}r>0-

In order to explain and justify our use of Definition 1 and Theorem 1 we will
need some results on discrete approximations of continuous stochastic processes.
This is presented in Proposition 2 below, it gives an existence result that can be
employed in our applications. Alternative constructions of H-systems are presented
in Section 5, also, reference [15] describes ways to construct H-systems associated
with nested partitions.

Let (Q,.A, P) be a complete probability space and S = (S; : 0 < ¢t < T) be
a continuous stochastic process defined on this probability space. Let F = {F; :
0 < t < T} be the filtration where F; is the completion of ¢(S, : 0 < r <
t). Following W. Willinger [34], we introduce the notion of skeleton-approach for
stochastic processes.

Definition 6. A continuous-time skeleton approach of S is a triple (I¢,F%,¢),
consisting of a indez-set I¢, a filtration F¢ = {F* : 0 < t < T} the skeleton
filtration and a F¢-adapted process € = (£:0 <t < T) such that verifies:

(1) I = {0 =t(£,0) < ... < t(&, N¢) = T}, where N < 0o.

(2) For each t, ff is a finitely generated sub o-algebra of F;, with atoms Pf.

(3) Fort € [0,T] — I, we set Ff = ff(g,k) if t € [t(&, k), t(&, k + 1)) for some

0<k< Ng.
(4) For each 0 <t < T, & =E(S; | FF).

Definition 7. A sequence (I™, F(") ) of continuous time skeletons of S will
be called a continuous-time skeleton approximation of S if the following three prop-
erties hold.

(1) The sequence I™ of index satisfies

lim [(I™]=0

n—oo
where |(I'™| = max{|t(™ k) — t(™, k —1)] : 1 < k < N®™}, and
I =U,I™ s a dense subset of [0,T],
(2) For each0<t<T, ft(") T F,
(3) P({w € Q : imy,_, 00 supo<i<7|Si(w) — £ (w)| = 0}) = 1.

The fundamental result of W. Willinger ([34] pp 52, Lemma 4.3.1) is stated next, it
guarantees the existence of continuous-time skeleton approximations for continuous
processes. These discrete pathwise approximations are finite in space and time.

Lemma 1. There exist a continuous-time skeleton approximation for S.
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Each continuous time skeleton (I (5),.7-'5,5) of S determines a sequence of nested
finite partitions {me }. Clearly, there exists a multiresolution sequence of partitions
{Rg}jzo such that R; = me for 0 = jp < j1 < ... < jn. Now, we can construct a
finite family of H-systems associated to the continuous time skeleton (I€), F¢, £) of
S applying Theorem 1 to the multiresolution sequences {R§ }j>0. Obviously, these
H-systems are adapted to the filtration ffm, that is ¢;; € ffm for j < jm.

Proposition 2. Let (2, A, P) be a complete probability space and S = (S; : 0 <
t <T) be a continuous stochastic process defined on this probability space. Let F =
{Fe: 0 <t <T} be the filtration where F; is the completion of (S, : 0 < r < t).
Then there ezist a sequence of finite H-systems (H(™ = {¢]sz}) and two sequences
of finite index (I™ = {0 =t} < .. <t} =T} and (J™ ={0=j40 <..<j}y })
such that

(1) 43 € Fy, for j < .

(2) For each0<t<T,

lim sup{|S; — &™|:0<t<T} =0 ae.
n—o0

where & =37, (Si, W) Y2 for t € [t 17,1,

Proof. Let (I"), F(") £ be a continuous-time skeleton approximation of S. We
construct for each n an H-system (H(") = {¥7;}) associated to the sequence of par-

titions {Rgn) }j>0, as we explain above. In order to conclude the proof it is sufficient
to observe that £™ = E(S, | F\™) = Sicin (S, f) ¥ for t € thth ). O

3. EXAMPLES

To be specific, and for the reader’s convenience, we describe some simple exam-
ples of H-systems in familiar financial contexts. Both examples are Haar systems,
namely, they are generated by dyadic partitions, see Definition 5. More general
constructions follow from the developments in Section 5. Another example, in Ap-
pendix B, constructs an H-system associated to a sequence of binary partitions that
is not dyadic and illustrates the case of multiresolution sequence of partitions.

1. Haar-Systems for the binomial model:

Let S the price of an stock and ¢g, 1, ..., t,, the trading dates. The price Sy, = S(t;),
1=20,1,...,n, varies according to the rule

Sti+1 = St,--Hi+1, 1=0,1,...,n—1,
where {H;}?, is an independent set of random variables such that

o= U with probability p
‘7| D with probability ¢ ’

where 0 < D < 1 < U and p+ q = 1. The setting can be formalized in terms of the
probability space (Q2, A, P), where Q := {w: {t1,...,tn} = {U,D}}, A=P(Q) and
P the corresponding product probability measure. Then S : @ x {tg,t1,...,tn} = R,
So(w) == S(w,t0) = So and Sy(w) := S(w,t) = So [[;,<; w(ts)-
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Let us consider the sets A;;, 0 <j<n-—1and 0 <4< 2/ —1 defined by 4gp = Q
and

B1)  Ajpigi = A N{w(tin) =U}, Ajp e = 45 N {w(tjpa) = D}
From independence, it is clear that P(Aj11,2;) = q¢ P(4;;) and P(Ajy12i41) =
p P(A;;), consequently P(A;;) = po---pligt=io...q'=% where i = Y 7_, ;2! is
the binary representation of 4 (with j + 1 digits).

Define now, for j =0,....,n —1;i =0, ...,27 — 1 the normalized functions

ug =1,

3.2
( ) Ui 44 = m(\/g 1Aj+1,21‘ - \/g 1Aj+1,2i+1)5

It is clear, from Theorem 1, that {uj}o<k<2n—1 is an H-system for L?((2, A, P).
Observe that for each j > 0 the atoms of o(ug,...,us_1), are {Aj11,; : @ =
0,...,27t1 — 1} it follows that {ur}o<k<an_1 is also a Haar system. Particularly
the sub-system {uq,...,usi_;} is an orthonormal basis of L?(, Fy,,P), where
.7:tj = O'(Sto, Stj)

2. An H-System in the Black-Sholes model:

This example describes how to construct a basic class of Haar systems associated
to the Black-Scholes model. It will follow that these systems can be used to ap-
proximate a general class of options of European type. The underlying process
for the Black-Scholes model is a Brownian motion defined on a probability space
(Q, F, Q) with filtration (F;)1,<¢<7- The splitting of atoms will be performed using
the Brownian motion increments. The price process under the risk neutral measure
Pisgivenby S; : Q =>R Ty <t<T,

Si(w) = S exp(v(t — To) + o/ (t — To) Wi(w)),

where v = (r — 02/2), and we have used the Gaussian random variables W; ~
N(0,1) which are defined on (Q, 7, P).

The construction will be based on two parameters, the first parameter ny will turn
out to be the number of transaction dates during the period [Ty, T (see Section 6)
and the second set of parameters ji, .. ., jn, Will be the scale or space discretizations
associated to each trading date. For simplicity, the splitting of atoms will be in
pieces of equal probability, this constrain can be easily removed. It is convenient
to introduce first a “purely static” Haar system, considering ny = 1, which is
applicable to path independent European options. This system will be the building
block for the more general construction with n > 1. Therefore, we first concentrate
on the sigma algebra o(St) = S7'(B(0, 00)), due to o(St) = o(S7"((a1,az]),0 <
a1 < az < o0), the following equation specifies P on o(St), let B = S7'((a1,as))

~ (i) - v - 1) | 45

1 /a2
= ex
o /2x(T - Tp) Ja, P 2 0%(T —To) s

P(B)

From our previous notation, Wr : 2 — R

POV ) = = [ e ay,
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for any Borel subset A C R. This equation gives P on o(Wr) = W' (B(R)) C Fr,
clearly, o(St) = o(Wr). Denote the cumulative standard normal distribution by

z 2
P(2) = \/%_ﬂ/ e 7 dy.

Given an integer j, define the numbers —oo = c{; < c{ <...< cgj = 0o such that

: , 1 _ )
®(cl,) —®(c]) = % foralli=0,...,27 — 1.

(2

Whenever encountered, the inequality < oo should be interpreted to mean < oo.
We define the binary splitting of atoms inductively by setting Ago = Q and for
given j consider 0 <¢ <27 —1,
(3.3)
j+1 j+1 j+1 j+1
Ajpri = {w € Ajil 4 < Wr(w) <l = {w| & < Wr(w) <&}

Ajirzin = {w € A3 G < Wr(w) < giL) = {wl g < Wr(w) < i)
Note that Aj; = Ajy1,2: U Ajq1,2i41, therefore we have defined a dyadic sequence
of partitions P = {P;};>0 with P; = {4;;},i = 0,...,27 — 1, where the atoms
satisfy
1
E.

Setting m = 27 and A,, = ({4, :i1=0,...,m —1}) gives A = 0(Um>04Am) =
o(St). Notice that the above atoms correspond to partitioning the range of St.
It follows from Theorem 1 that there is a Haar system capable of approximating
any random variable in L?(Q, o(St), P), choosing a sufficiently large .J.

We are now ready to describe the construction of a finite Haar system for an
arbitrary nr > 1. The idea is simply to construct a Haar dyadic system by a con-
catenation of several Haar systems, each of them analogous to the case ny = 1 but
this later one now restricted to smaller time intervals. Given an arbitrary sequence
of times Tp = to < t1 < ... < tpy—1 < tn, =T, we consider the Brownian motion
increments /fi;1 — t; Wy, ,1;,, where the random variables Wy, 4., ~ N(0,1) are
independent. Fix a corresponding sequence of scales {j; = ji, };-;, we will define
the splitting of atoms on stages according to the time intervals {¢;,t;+1}. For the
first stage {to,t1} we define the binary splitting of atoms inductively by setting
Ao =Qand for 0 < j < 1,0 =0,...,29 =1, Aj; 1, as in (3.3), using Wy, 4,
instead of Wr.

For the second stage {t1,%-}, and as a model for the subsequents, consider 0 < j < j,
andi =0,...,27"" —1 as usual, let pand 0 < g < 2/*! be respectively the quotient
and residue in the integer division of 4 by 2/*!, then define inductively the sets

Ajirjrtzi = {w€ Ajyjil S < Wiy, (w) < 1}

P(4;;) =

- 1
= {weAj |l 7 <Wiy (W) <}
. 1 > 1
Ajirjiizin = {w € Aj il iy < We (W) < 6pyn}

j+1 1
= {we ) pl i < Wi W) < ng;_-fz}-
Notice that P(A;,1,;) = 1/21%1 by independence of Wy, 4, and Wy, 4,.
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The completion of a generic stage {tx,tx+1}, 1 < k < ny — 1 is done setting
Jy =71+ ...+ jg. Consider 1 < j < jri1 andi=0,...,27x1 — 1, let i = p27 +¢
(p and ¢ are respectively the quotient and the residue in the integer division of i
by 27). Then define the sets

AJk-‘r-j,i = {w € AJk,P | c};] < Wtk,tk+1 (w) < 0171-',-1}'

We have defined a dyadic sequence of partitions {P;};>0 with P; = {4;;},i =

0,...,27 — 1 and consequently, following the steps in the proof of Theorem 1, there
J

is a Haar system {u; };ZEI associated with it.

4. APPLICATIONS TO HEDGING AND PATHWISE SIMULATION

This section illustrates how H-systems can be applied in financial mathematics.
It develops in detail a theory of hedging based on binary options, the martingale
property of the H-system is put to use in this theory. There is also a brief description
of the use of our approximations as control variate for Monte Carlo simulations
and an outline of an application to American options. For the sake of simplicity,
we will work in a frictionless market model (Q,F, (F¢)z,<i<7, P) with the usual
assumptions, we refer to [2] for background. Let B = (B(t) = ") be the bond and
a non-negative adapted continuous stochastic process S = (S¢)1,<t<T, the price
process. We assume that P is the risk neutral measure, that is, the discounted
price process (e~"(T~%S;) is a martingale. Let R = {R;};>0 be a sequence of
multiresolution partitions as described in Definition 3, associated, via Theorem
1, with the H-system {¢g,0,%;,;} defined on Q, and an European derivative X in
L2(Q, U(UjZORj)a P)

4.1. Haar Hedging.

Motivations and Meaning: A sample of references describing hedging with op-
tions is given by [1], [6] and [22]. In contrast to previous results, our approach is
general, in the sense that allows for general underlyings and options types, and,
more importantly, our approximations address the issue of the number and volume
of transactions. We would like to mention that the idea of using binary options for
approximations has been previously treated in [32].

Let us explain the basic idea in this section, the simple functions u,,, the Haar
functions, are an orthonormal set in L2(2, F, P), where (Q,F) is the sigma alge-
bra generated by the price process and P is the risk neutral measure. The sigma
algebra A, is generated by ug, . .., u, and contains n + 1 atoms, these atoms give
a space-time discretization of the process and, under natural conditions, can be re-
alized financially via binary options. It follows that (2.1) can be realized by means
of a dynamic portfolio of binary options. The left hand side of (2.1) is a martin-
gale which, under appropriate conditions, converges to X almost everywhere (a.e.).
Therefore, we have a portfolio of binary options converging a.e. to X, moreover
this portfolio can be implemented dynamically, via financial transactions, in a self
financing way due to the martingale property. In short, we have a discrete, self-
financing, hedging strategy to replicate X. This hedging strategy will be referred
to as Haar hedging below.

The goal of this section is to find pathwise approximations to X with small error
and at the same time incurring in a small number of financial transactions (when
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implementing the associated portfolio of binary options). This will keep the num-
ber of transactions in the Haar hedging portfolio realistically small. The number
of transactions is, roughly speaking, the number of Haar functions in the approx-
imation. Our approximations also open the possibility to reduce the transaction
costs while achiving a small hedging error. Assuming the cost of a transaction is
d-proportional to the volume of transactions, the following definition is meaningful
when studying transaction costs.

Definition 8. Let w € Q, and IIy and Iy be two approximating hedging portfolios
for X. We say that 11y is more efficient than Iz (at w) if

T4 (w) — X (w)] < |Ha(w) — X(w)| and VT(II;)(w) < VT (Iz)(w),

where VT (IL;)(w) is the volume of transactions necessary to implement the portfolio
II; at w.

Clearly, the above definition can be easily modified to require the inequalities to
hold with large probability or in the mean. For technical reasons, this paper will
not address the issue of minimizing the volume of transactions (while keeping a
small hedging error) directly but instead concentrates in minimizing the number of
transactions which corresponds to a more standard quantity in wavelet theory.
We now explain the empirical meaning of the representation (2.1) and compare it
with “static” hedging and briefly comment on the relationship to delta-hedging.
Usually, static option replication involves hedging an option X with other options,
see for example [6]. For simplicity, consider an option X that initiates at Ty and
expires at T with Vp, (X) denoting the risk neutral price of X. Lets study an
example that shows a key problem with the standard static hedging. Consider a
digital option with payoff X = 1s,>k, approximate this digital option with the
following portfolio

1
(4.1) II= K K, (X1 — X>)
where we go long on a European call X; = (St — K;)4+ with strike K7 and short
on a European call X, = (Sp — K3)4 with strike Ky, and K; < K < K;. We
obtain a better and better approximation to X by considering (K, — K;) — 0. By
risk neutrality we then have Vi (X) &~ Vg, (II) but the volume of transactions for
IT (which in this static example is a constant) is equal to

(42) VI() = ot [V, (X0) + Vi (X2)]
2 — Ky

which can be arbitrarily large as (Ko — K;) — 0. In short, when decreasing the
error of approximation we have the undesirable effect of increasing the volume of
transactions. This is due to the fact that the approximation X = II is obtained by
cancellation of (unbounded) terms and each term entering in this approximation
will contribute separately to the volume of transactions. The discontinuity in X
just exacerbates this phenomena.

We now explain how our proposed Haar hedging overcomes the above type of
problem. First note that ug = 1 and therefore, it can be implemented by means
of the bank account, the Haar functions are of the form wy = a 14, +b 14, where
Ap and A; (Ao N A; = () are atoms of A; for some ¢ < k and A = Ay U 4,
is an atom of A;_;. The simple functions wug, for k& > 1, are wavelets, namely
Jq ur(w) dP(w) = 0, which under natural conditions can be realized by means of
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binary options, involving short selling. It is clear that (X, uz) uy approximates
the oscillations of X — E4(X) on A (the support of uy) where E4(X) denotes the
expectation on A. In general, the events Ag and A; will be level sets of financially
relevant random variables, hence the wavelet uy captures fluctuations in X due to
these two financial events. In short, the financial meaning of (2.1) is the use of
the bank account to capture the mean value of X and the use of binary options
(involving short selling) to capture the oscillations of X about this mean value.
Even though Haar hedging uses (binary) options to build the replicating portfolio,
it will be misleading to call it a static type of hedging as we explain next. In general,
each uy, is localized to its support, say the atom A, this atom will be localized in time
to same interval [s,,t,] (essentially, this means that A is generated by the random
variables {S;},,<¢<¢,) and will also be localized in space (it will be the level set
of some appropriate random variable). This localization of the Haar functions,
and hence of the binary options, has the effect that for a given unfolding path
w € Q only the Haar functions in (2.1) whose support contain this w have to be
implemented by the Haar hedging portfolio. This is the essence of dynamic hedging.
The localization property opens the possibility, through the dynamic conditioning
on the unfolding path, of obtaining efficient Haar hedging portfolios for general
options X. This localization is also the key for our approximations to have a small
volume of transactions, see numerical examples in Section 6. It is also recognized
in signal processing applications that localization of wavelets is a key property to
represent discontinuities efficiently [9], we have observed this phenomena also in
our numerical examples.

Finally, in order to have a useful insight into our approach one can think that the
linear approximation implicit in delta-hedging is replaced in Haar hedging by an
appropriate simple function. This point of view clearly indicates the fundamental
nature, relative to delta-hedging, of the newly proposed hedging.

Formal Developments:

As a sufficient condition for the atoms in a multiresolution sequence to be used
in a dynamic hedging portfolio we will impose a natural association between the
martingale property of the H-system and a sequence of rebalancing times. In par-
ticular, in order to define dynamic hedging strategies, we will use the concept of
time support of events.

Definition 9. Let E € Fr, set sg = sup{s € [To,T] : E € o(S; : r > 5)} and
tg =inf{t € [To,T] : E € F}. We then say that E is localized to the time interval
[sE,tE] and call [sg,tg] the time support of E. We denote the time support of E
by t — supp(E).

The following definition is an extension to partitions of the notion of time localiza-
tion of events.

Definition 10. Let P C Fr be a partition of Q. P is said to be localized (in time)
to the interval [a,b] if there exist B € P such that t — supp(B) C [a,b], and for
all B € Pt— supp(B) C [a,b] or t — supp(B) C [Ty,a]. Moreover, define the
t — supp(P) as the intersection of the all intervals [a,b] such that P is localized to
that interval.

The definition below is the cornerstone of our dynamic hedging strategy based on
H-systems.
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Definition 11. Let R = {R;}s>j>0 be a sequence of multiresolution partitions,
we say that R is localized to the time sequence to = To < ... < t, =T if there exist
a sequence j1 < ... < jn = J such that t — supp(R;,) = [ts—1,ts) for s=1,...,n.
We call the sequence ji, ..., jn the levels of localization of R.

The financial blocks underlying R are the binary options

(4.3) Bji=14;,(t) =1y,,, 1(t)14;,), Js <J < Jsys

which are acquired at time t; and reach its maturity at time ¢541. These binary
options have payoff 14, ; at time t544.

To have a financial realization of the hedging we are proposing we need to assume
R to be admissible as defined in the next definition.

Definition 12. Assumption on Financial Realization: The multiresolution
partition R is called admissible if for any integer j and each atom Ay; € R; the
binary options By, ; are available for trading, in particular, short selling is possible.

For clarity of exposition, when defining the Haar hedging portfolio, we will further
define the Haar obligations as follows: W;; = (¥;:(t) = 1y, m(t)¥;:), with
Js < 7 < Jsy1 which are obligations at time t,,; that are acquired at time ts.
Obviously, the Haar obligations can be realized in terms of the binary options B; ;,
see (4.3).

Next we will define two hedging strategies via self-financing portfolios, of static
and dynamic types, to replicate an European option using H-systems. In fact,
we introduce two strategies, HII associated to Haar obligations and another BII
associated to binary options. The examples in Section 3 are special cases of the
formalism to be introduced.

Haar Hedging Portfolio. HIIk(X) = (HIIx (X)) will be a predictable, vector
valued, stochastic processes constant on the intervals ;1 < t < t;. The portfolio
HIIR (X); is re-balanced at times t,_; replicating e (T~ E(X|o(R;,)) for s =
1,...,n. As previously indicated, this portfolio approximates fluctuations of the
option about its mean value by means of the Haar functions. Taking n = 1 the
construction gives, as a special case, an example of static hedging. At each time t; 1
we will specify how much to invest in the bond and how much to invest in the Haar
obligations available at that re-balancing time, this will specify the coordinates of
the vector HIIg (X);. Here are the coordinates of HII (X); for ¢ € [to,?1)

e "(T—%)E(X) invested in the bond and

(4.4) e~ (T4 d,[i] invested in ¥;; j =0,...5; —1,i € I,

where the coefficients d;[i] are given by (A.6).

Observe that the purchasing value of this portfolio is V;, (HII (X)) = e~ (T~ E(X).
The following (inductive) step will be to re-balance the portfolio at time t5 1, as-
sume that at this time we are in the event Ay, ;, with (ko,40) € Kj,_,, and the value
of this portfolio is e~ "(T—ts~1) gy [ig] (where we used the notation from (A.10)).
There are two cases to consider, the event is split or not at the next level.
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I) In the case Ayg,,i, splits, ko = js—1 as we remarked before, the coordinates of
HIIg (X); for t € [ts—1,t5) are

e "(T=t=1) g [io] invested in the bond and

(4.5) e "(Tt) d;[i] invested in W;; j = jy_1,...j; — 1,i € I1°,
where I]’:0 = I; N [2U=9:-1)jg,20=3-1) (45 + 1) — 1]. Recall that the obligations ¥ ;
expire at time .

IT) In the second case, we need only to invest
(4.6) eIt gy i),

in the bond, and this specifies the portfolio for all future times i.e. ¢t € [ts—1,T).
The quantity of Haar obligations involved in this dynamic portfolio is at most
201 4 2J2=j1 4 4 2/n—Jn-1_ Now we are in conditions to establish the following
theorem.

Theorem 2. The portfolio Hllx (X); is self-financing and replicates
e~ m(T=t) E(X|o(R;,)) at s=1,...,n.

Proof. We proceed by induction on s. For s = 1 the portfolio HIIg (X); is given
by (4.4) when t € [to,t1). It is clear from (A.5) that HIIg (X), replicates

e "T-1)E(X|o(R;,)) and is self-financing because V;, (HII (X );,) = e "(T ) E(X)
since E(¢;;) = 0.

For convenience, we will use the notation ¢t~ =t — ¢, € > 0. For the inductive step,
at time t;_q the process is in some event Ay, ;, with (ko,io) € Kj,_,, and assume

Vi) (HIIg (X) - )(w) = e T B(X|0(R;,_,))(w) = e~ Tty [ig

for w € Apy,i,- The re-balancing of HII(X), at ts_1 is given by (4.5), for all
t € [ts—1,ts), if Aggy,i, splits at the next level or by (4.6) with ¢ € [ts—1,T] if Agq,i,
does not split any further. The purchasing of HIIg (X),_, is self-financing since
the value of the portfolio given by (4.5) or (4.6) is e "(T—ts-1 gy [ig]. Consider
again case I), and t = t,, by (A.8) and (4.5) we compute

Vi, (HHR(X)t;) = (e*T'(Tfts—l):L.kO lio] er(ta—ta_1) Ly, .0+

e T(T—ts) Ji Z dj[i] Vi, (¥5,i(ts)) =

J=Jjs—1 z'EI;O
Js—1
(e " D mpg[io] Lag, o+ "F 75 Y N dsi] vy =
J=Js-1 jer
e "TIE(X|0(R;,)) a. e on Ak,
For the case IT), we have

Ve, (HIR (X)) = (e " Vay, fio] e =1y, =

o T(T—ts) E(X|o0(R;,)) a. e. on Agg ;-
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Now, we will present the dynamic strategy BIIx(X);. Let R = {R;} be a mul-
tiresolution sequence of partitions localized in the sequence of times tg = Ty <
co. <tp, =T, and X € L*(Q,0(U;j>0R;), P). We will show how to construct a
self-financing portfolio BII (X ), to hedge X.

The portfolio Bl (X); will be also re-balanced at times to,...,t, 1, replicating
e "I LIE(X|o(R;,)) for s = 1,...,n. We recall that the samples z}[i] are the
coefficients of X in the basis {14, , : (k,4) € K;}, see (A.10).

We formalize BII (X); as a vector valued process which is constant on the intervals
ts—1 <t <ts. At time ¢y it is defined, for ¢ € [tg, 1), by specifying its coordinates,
namely how much to invest in each of the binary options,

(4.7) e "(T=T0) g, [i] By, ; where (k,i) € Kj, .

The cost of purchasing this portfolio is V;, (BIIr (X)) = e "It E(X) = e "(T~t0)z,[0].
The inductive step will be to re-balance the portfolio at time ¢;_1. Assume that
at this time the price process is in the event Ay, ;, with (ko,i0) € Kj,_,, and the
value of this portfolio is e="(T=*s=1)g; [ig]. There are two cases to consider, the
event splits or it does not split at the next level. In the first case, for t;_1 <t < ts,

we need to specify the coordinates of BIlg (X);, namely,
(4.8) e "(T=t=1) 3 [i] By where (k,i) € KJ’:S,

and K2 = {(k,i) € Kj, : 20+ Js=vig < i < 29+ ds=1(ig + 1) — 1},
In the second case, we invest the value of the current portfolio in the bond, namely

(4.9) e =te=1) gy Tio],

and this specifies BIIg (X); for all ¢ € [ts,T). In an analogous way to the done for
HIIR (X) is easy to prove that the strategy BIlx (X) is self-financing and replicates
e "(T-L)E(X|o(R;,)) at s = 1,...,n. It should be clear that the hedging strategies
BIIR (X) and HIIx (X) can be intermixed at different time intervals [ts_1,ts).

It is a simple exercise to apply the above theory for the Examples 1 and 2 from
Section 3. We provide numerical examples in Section 6.

4.2. American options. This section illustrates how H-systems can be applied
in financial mathematics to evaluate American options. We consider the previous
setting of a frictionless market model with the usual assumptions, and an American
derivative Z = (Z;). We know that there exists a continuous-time skeleton approx-
imation for S. We will use it in order to approach the value of Z. In fact, we have
that there exist a sequence of finite indexes (1™ = {0 =t} < ... < t}, =T}) and
filtrations (7. ) such that

(1) I™ c 1+ and U,I™ is dense in [0, T,
(2) Fp C Fptt C Fin,
(3) Foreach 0 <t < T,

lim sup{|S; — &™|:0<t<T}=0 ae.
n—oo

where &™) = B(Sy, | Fpi ) for t € [t7,, 7, 1,).
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Let Z7 = E(Zr |.7-'{fl) We can consider (Z7') as the American option obtained by
projection of Z into the finite market ({2, t”?,P). Recall that the value of this
option is calculated by the backward algorithm, U5, = Z§, and
U, = max(z;%,er(t?ﬂ—t?)E(U;;ﬂfg.)).

The numerical problem is to calculate the conditional expectation E(Uj41|77). Tt
is here where the H-system can be of help. In fact, if we have the Haar-Fourier
expansion of Uj; it is then easy to compute the conditional expectation. In the
case that we want to calculate this conditional expectation by montecarlo, we only
need to compute the Haar expansion along the sampled path, this involves a small
number of Haar functions (proportional to the length of the path) thanks to their
localization.

4.3. Pathwise Simulation. We want to compute the value of E(X|F;) via Monte
Carlo simulation. We only provide the general references [13] and [23]. By Propo-
sition 2 we know there exists a sequence of finite H-systems (H(® = v
and two sequences of finite indexes (I = {0 = 7 < .. < t% = T}) and
(JW = {0=j} <..<j§ }) such that

(1) o, € Fpy for j < .

(2) (¥}:)er <t is an orthonormal basis of L*(Q, 77, P).

We replace F; by F* and we will concentrate in computing E(X |F*). Using the

H-system, we have the representation

E(X|F) = > (X, 9847,

tr<t

In order to calculate the coefficients (X, w;fi), we construct the Monte Carlo esti-
mator

M
ape(d, i, M) = 1Y Z X(w™)j;(w™),
m=1

where w™ are the sampled paths and m is the sampling index. Finally, we obtain
the following Monte Carlo estimator of E(X|F}*),

?\L/IC(Xat7M) = Z a?y[c(],l,M)'@b;’;Z
tr<t

5. H-SYSTEMS As BEST BAsis, OPTIMIZED CONSTRUCTIONS

As outlined in the Introduction, a main application is to use H-systems to obtain
efficient hedging strategies. Namely, while keeping a small approximation error
we seek to minimize transaction costs, see Definition 8. In other applications we
seek to minimize the number of computations. For technical reasons, this section
concentrates in minimizing the error in the m-term nonlinear expansion defined
below, (5.1). In other words, for a given error level we seek to minimize the number
of Haar functions needed to achieve such an error. In applications to hedging
this translates into reducing the number of transactions. See Section 6 for some
numerical information on transaction costs. Minimizing the number of transactions
has an intrinsic interest beyond the issue of transaction costs, namely, it keeps the
number of transactions in the Haar hedging portfolio realistically small and, at
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the same time, isolates the most relevant binary options needed in the portfolio
implementation. The present section makes clear the relevance of the use of Haar
functions to obtain hedging strategies with a small number of transactions.

5.1. Best Basis and Compression. We describe how H-systems provide best
basis for portfolios built from a given class of options. First we need to recall some
definitions from nonlinear approximation theory ([7, 8, 9, 10, 11]). Let V be a
Banach space with norm || ||v and let B = (by) be a Schauder basis for V' (assume
el v = 1).

If f € V, the error of the best m-term approximation, using the basis B, is given
by

(5.1) Um(f)VEO'm(faB)VEigf“f_S”V; m >0,

where § =}, (A ar by with [A] <m.
Assume we are given a class of functions X C V which we are interested in approx-
imating efficiently. Furthermore, assume this class is provided with a norm || ||x.
Given such a class, define
(52) O—m(XO)V = O—m(XOrB)V = sup 0m(f7 B)V7
FE€X

where Xp is the unit ball (relative to || ||x) of X.

The following definition will be key to our developments. Let B be a collection
of basis B as described above.

Definition 13. B is a best basis for X, relative to B, if
(5.3) om(Xo, B)v = O(m™), m — oo
and no other basis B' € B satisfies

(5.4) om(Xo, B )y = O(m™?), m = oo
for a value B > a.

It follows from the above framework that a main goal is to identify functional classes
X, (with an associated norm || ||x), with interest in applications and corresponding
best bases.
Let F7 be a collection of random variables defined on a common probability space
(Q, A, P). To illustrate the formalism described below, consider the situation where
FT is a collection of financial instruments. We will then look for the best orthonor-
mal basis to approximate the family of portfolios (linear combinations) built from
FI. We could also consider FZ to consist of the value processes of a family of
financial instruments. In this case, the family of portfolios will have to be defined
with the appropriate hypothesis of predictability on the coefficients. The results
below could be recast in this extended setting due to the generality of Burkholder’s
result. For simplicity, we will not present this more general case.

We will need Burkholder’s inequality about martingale differences which we recall
next. A martingale difference {ey} is said to be subordinated to another martingale
difference {dy} if and only |ey| < |di| for all k.

Theorem 3 (Burkholder). Let {ex} and {di} be two sequences of martingale dif-
ferences defined on a common probability space. If {ey} is subordinated to {d} and
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both are LP-sequences, for some 1 < p < 0o, then there exists an absolute constant
¢p such that

(5.5) 1D exlls < cp 11D dilly.
k k

Definition 14. Let H denote a Hilbert space and B an orthonormal basis of H.
Given o normed functional class (X,|| ||x), with X C H, we say that B is an
unconditional basis for X if for any f =3, (f,ux)ur (with convergence in || ||x)
and f = >op Mkl f, up)ur, with {my} an arbitrary sequence of real numbers with
my, € [—1,1], we have

(5.6) 11l < col £l
for some absolute constant cq.

Assume we are given an H-system B = {u;}, with associated atomic sigma
algebras A, therefore, B is an orthonormal basis of L2(2, A, P). We will make
use of the spaces LP(C) = LP(Q,C,P), where p is a given integer in the range
1< p<ooandC is a given sigma algebra. We require the following condition.

Definition 15. We say that the two objects, FZ and B = {uy}, are admissible if
(5.7) 0(FI) C Ax and FI C LP(0(F1)).

In particular, this requirement makes the inner products {7, uy), where v € FZ
and uy € B, well defined. A fact that we will use frequently below is that if
g € LP(Q,0(Ax),P), 1 < p < oo, then Y 7_ (g, ur)uy, converges to g pointwise
and in the L? norm ([31]).

We augment FZ to FI' defined by

(5.8) FI' = FTU{uy : Iy € FI such that {v,us) # 0}.

For a given integer p and constant ¢ > 0, we will define a functional class X
endowed with the norm || ||x = || ||p-

Definition 16. X = {f € LP(0(Ax)) : ||fl|2 < ¢, Ve > 0 3 real numbers d; and &; €
FI',i=1,...,n, such that ||f — >, didi||, < €}.

Notice that X is (essentially) the LP-closure of span(FZ'); for technical reasons we
also need to intersect with the L? ball of radius c.

Use B to denote the collection of all orthonormal basis in L%(f), Ay, P); here is
our main result.

Theorem 4. Assume the objects FZ and B = {uy}, as described previously, are
admissible and 1 < p < co. Then, the H-system B = {uy} is a best basis, relative
to B, for the class (X,|| ||p) from Definition 16.

Proof. According to the main result in [9] it is enough to stablish that B is uncon-
ditional for X. To this end consider f = ), (f,ur)ur € X, as mentioned before,
this expansion converges in LP(0(Ax)) and pointwise. Given a small ¢, > 0 (to
be fixed later) consider v = Y1, d;d;, with &; € FI', so that ||f — v||, < €.
Set v1 = Y p1o(v, ur)ur where ny is chosen so that [jv — vi|[, < €. Consider
f =3, mr{f, ur)ur, notice that ||f|ls < ¢ and that f € LP(0(Ax)) by a simple
application of Burkholder’s inequality. Define
ni ni n

(5.9) o = kaﬁ);uk)uk = ka(z di{0i, ur)ug)-
k=0 k=0

i=1
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Without loss of generality we may assume that the inner products (d;, uy) appearing
in (5.9) are non zero, it then follows that the basis elements uy, appearing in (5.9)
are in FZI'. Therefore, in order to check that f € X it is enough to prove that for
any € > 0 we have

(5.10) If = Bullp < e.

According to our notation we have & = Yo~ mg (v, ug)ug. In order to establish
(5.10) we proceed as follows

f = ullp < M = 0llp + 1|0 = Bl =

o0 o0
(5.11) 1D midf = v,uedue)llp + 11D ma(v, we)usllp <
k=0 k=n1+1
o0
o llf =vllp+ep Il D (v, uphugllp,
k=ni1+1

where ¢, is the constant appearing in Burkholder’s inequality which we applied
twice to the martingale differences e = mg(f — v, ug)ug, dp = {f — v, ug)uy and
er = mg{v,ug)ug, dp = {(v,u)ug. Therefore by setting e, = CPLZ, equation(5.10)
follows from (5.11). Finally (5.6) follows from Burkholder’s inequality with ¢o =
Cp- O

In the previous theorem we think of the functional class X' as (modelling) the space
of portfolios (linear combinations) of the given class FZ which, for example, could
be taken to be the collection of all Calls and Puts available for trading in the market.
Theorem 4 tell us what type of orthonormal basis are best basis for this space of
portfolios. Recall that best basis means optimal decay of the size of the rearranged
inner products. The norm used to measure the error is the L2 norm, it could be
interesting to introduce other measures of nonlinear approximation (analogously to
[10] and [8]). Missing in Theorem 4 is an estimate for the decay parameter o in
Definition 13. In general, the value of a will depend on the actual H-system used.
Section 5.2 presents constructions of H-systems which optimize the value of this
parameter.

Compression: Notice that in the case when V is a Hilbert space and having a
best basis for X allows us to realize (5.3) with the following simple procedure which
we term compression. Let ug,,i = 0,... be a new indexing for our Haar system
{ur},k = 0,..., such that |[(X,up,,)| > [(X,ug;)|- So our m-term compressed

approximation, which we will denote by X (Cm), is given by

m—1

=0

Therefore, in order to realize the best m-term approximation we order the (absolute
value of) inner products by decreasing size and keep the m largest of them; we can
then perform the associated reconstruction. Details of the computations involved
are presented in Appendix A.
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5.2. Optimized Constructions. Given a functional class X, implicit in the pre-
sentation of Section 5.1 is the construction of associated best basis B such that
the best basis rate parameter a in (5.3) is large. In this section we present an
interesting way to approach this problem by means of H-systems. The procedure
performing the constructions will be called greedy splitting algorithm.

Consider X = {X?, 1 < p < P}, to be a finite collection of random variables defined
in a common probability space (2, A, P). For example we could take X? =S, or
XP could be a collection of options, with different expire dates etc., or the sequence
XP could be the value process of a portfolio of options.

We will define the H-system implicitly by describing a binary sequence (of par-
titions) Q = {Q;};>0. Start by setting Qo = {Ao,0 = N} and assume, inductively,
that Qg, k& < j, has been constructed. We need some intermediate definitions in
order to define Q. For a given measurable set A define

(5.13) C4 = {¢ : such that ¢ is a Haar function on A, see Definition 2}.

Under appropriate conditions on a given random variable X, it follows that there
exists Y = alam +blay € Ca (we will say that AJ* and AT" are the best split of
A, for the given X) satisfying

1
G XU = swpyee X = 57 /A X, ) = supyec, (X, ¥,

where sup is an abreviation for supremum. Select now A e @Q;, such that there
exists XPi which satisfies

(5.15) (X7, 47| > (X, 7| for all X € X and for all A € Q;.

According to the indexing of partitions previously introduced in the paper (Def-
inition 3), A = Ay ; for some index (k,i), k < j, now define Ay 19 = AZ" and
Ak+1,2i+1 = A;n Finally, set Qj-i-l = QJ\{A} U {Aj+1,2i,Aj+1’2i+1}. There-
fore, we have |Q;11]| = |Q;| + 1 (where |S| denotes cardinality of a set S) unless
E(X|Q;) = X in which case the algorithm terminates.

To study the convergence and the implementation of the above procedure we embark
on some mathematical developments, most results are presented without proof.
First we mention some notation to be used in the remaining of this section, let
Aas={BNA:Be€A}; X4 = X|A (the restriction of X to A) and P4 = ﬁP.
It is clear that X4 € L?(A, A4, P4) and Fx,(t) = Pa(X4 < t) = 55 P{X <
t} N A), where Fx denotes the distribution function of X. Fyx' denotes the right
continuous inverse of Fx. The norm ||Y|% = (Y,Y)4 denotes the inner product
in L2(A, Ay, P4). Expectation on (4, A4, P4) will be denoted with E4. In order
to evaluate the supremum in (5.14) we observe that any 1) € C4 can be written, in
the form

(5.16) Y=aly, +bly,

for some Ag C A with P4(Ag) =u € (0,1), and 4; = A\ Ap. With this notation
(5.17)

(X,1h) = (a = b)(X, 14,) +b(X, 14) =b P(A) (EA(XA) - %<XA’ 1A0)A) .
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Noticing that b = %, /m, in order to calculate the supremum in (5.14) we
define

P(A) u
5.18 Ag(u) = sup
(5.18) () {Ao:Pa(Ag)=u} | (1 —u)

It is clear that if 1) € C4 then ¢ € C4,, = {t € C4 : P(A) = u} for some u € (0,1).
Therefore for a given random variable X,

(5.19) sup [(X,¢)| = sup sup [(X,9)| = sup Au(u).
PYECaA u€(0,1) YECA v u€(0,1)

(BaCra) = Xa1aa)-

Under appropriate conditions we will prove

(X, ) = Aa(u”) = (X, ¢ur),

sup |
YeCa
for some u* € (0,1) and ¢+ € C4,,». We will need a series of intermediate results.

Lemma 2. Assume X € L?(, A, P) and A € A. Then the fuction X4, in (5.18),
is well defined for all u € (0,1) and in fact

(5.20) [Aa(u)] < VP(A)[|X]|a-

Moreover, assuming Fx to be continuous, the Haar function 1, defined by
_ P(A) (1 —u) P(A) u

(521)  du=—\ Lt T T o HXaxFR W)

satisfies

Aa(u) = (X, ).

The following result gives sufficient conditions under which A4 (u) is continuous on
[0, 1] and also for its supremum to be realized for some v* € (0,1).

Lemma 3. Assume Fx to be continuous then Aa(u) is continuous on (0,1). Fur-
thermore, if X € L™ then Aa(u) is continuous on [0,1] and

(5.22) lim Ag(u) = lim Ag(w) =0.
u—0+t u—1-
Proposition 3. Assume X € L?(Q, A, P) and that the hypothesis in Lemma 3 are

satisfied. Then there exist u* € (0,1) such that Y7 = Y+ € Cayr, where Yy is
given by (5.21) and verifies

(5.23) (X,97%) = sup [(X,9)].
PeCa

Proof. Since A4 is continuous, by Lemma 3, let u* be its maximizer and ¥} = 1,,+.
Consider now ¢ € C4, we know that

¥ =1b /P(A) (—(1_“)1A0+ 1A1>

u

withb==+,/+2~. Ifb<0

(1-v)"
e .

P(A) v’ (1—v)
(1—u') (_ u’ ]‘AB + 1AI1) ’
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where u' = 1 —u, Ay = Ay and A} = Ao, thus ¢ € Ca,w With b = \ /7% > 0.
Thus, ¢ belongs to some C4,, with b > 0. Consequently

Finally, we have the following result for the greedy splitting algorithm.

Theorem 5. Assume that each X € X satisfies: X € L®°(Q, A, P) and Fx is
continuous. Then, the greedy splitting algorithm satisfies Ao, = o(X*,...,XT)
a(X).

Under the same Hypothesis as in Theorem 5 we also obtain the following theorem.

Theorem 6. The H-system constructed by the above greedy splitting algorithm is
an unconditional basis for each LP(Q, Ax, P) for 1 < p < oo.

6. NUMERICAL EXAMPLES

In this section we present output from a computer implementation based on Exam-
ple 2 from Section 3. More specifically, we concentrate on the case where we have a
Haar system, Definition 5, whose sequence of dyadic partitions P; = {4, ;} are con-
structed via the increments of the Brownian motion and are characterized through
the parameters nr and ji,...,Jn,- We will also use compression as described in
Section 5.1 and some of the definitions and notions introduced in Section 4.1.
To indicate the potential improvements that can be expected for this example it
is enough to consider the case of ny = 1, therefore, all the atomic sigma algebras
A, are included in ¢(Wr) and A, = o(Wr). The case ny > 1 is essentially a
concatenation of several steps where each step is algorithmically equivalent to the
case ny = 1. Moreover, the errors along these steps accumulate as is the case with
delta hedging.
We compare the errors in the approximations as well as the volume of transactions
as a function of the number of transactions. We find generic cases where Haar
systems outperform delta hedging, moreover, in these examples, the improvements
have a simple intuitive financial meaning. Our numerical output uses the param-
eter m, as used in (5.12), m is (essentially) equal to the number of Haar hedging
transactions plus one. This is just a peculiarity of our software and it can be un-
derstood by noticing that the bank account ug may or may not be chosen during
the compression step (in practice it is one of the largest contributing inner prod-
ucts). In short, the parameter m is equal to the number of times the Black-Scholes
portfolio is rebalanced when performing delta hedging and equals the number of
Haar functions used in the final approximation when performing Haar hedging. We
rebalance the Black-Scholes portfolio at uniformly spaced time intervals.
Here we will give the initial data for the MRA (see Appendix A for a description
of this algorithm and associated notation) for the H-system {us;;} in Example
2 of Section 3 and X an European option. Computations can be carried out by
specifying the finest scale J. We will then perform compression by only keeping
the m Haar functions, including also ug, with the largest inner products.

Fixed an acceptable error € > 0, we approximate X specifying the finest scale J,
in such way that the conditional expectation satisfies

sup | X (w) —E(X|o({4s;:0<i <2/ —1))(Ww)| <,
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this is possible because every bounded random variable can be approximated by
simple functions supported on atoms of probability 2% As a matter of convenience,
according to computational costs, we have used J = 14 or J = 16. The input to
the MRA is obtained by computing

(6.1) zy[i] =27 X(w)dP(w),
A

or, more conveniently, for the case of continuous X (w) = X (St(w)), by first com-
puting

ssli] 27 [,,, Sr(w)dP(w) =

J 2
(6.2) — \%_7, CC;+1 Sp, e T=T0)+o\/(T—T0) v) =% gy =

= Spe(T=To) e'5 27 (B(cl,, —b) — B(c! — b)),

where b =0 /(T —Tp) and v = (r — "72) Therefore, by taking J sufficiently large,
we can use the approximation z;[i] ~ X (ss[i]). We recall that ps[i] = P(4s;) =
1
.
I%‘or the sake of clarification, consider the European call X (w) = (S7(w)—K), where
T = t, is the time of exercise and K is the strike price. Clearly X is unbounded,
but lim, , X1;x<.} = X a.e., hence one can always consider an approximation
of a desired quality.
Next we comment on the output displays; numerical values were obtained by sam-
pling St(w), the limited range in these values (z-axis on most displays) corre-
spond to these sampled values (after sorting). Consider first a single European call
X (w) = (St(w) — K)+ as above, values of parameters are indicated in the text sur-
rounding the figures. In Figures 1, 2 and 3 we present the Black-Scholes and Haar
approximations with m = 1, 2, 20 respectively. Notice how Figure 1 shows the
Haar approximation with u; = 1/2 (14, , — 14, ,) which happens to give the largest
inner product. Figure 2 shows the Haar approximation when ug is added, giving
the second largest inner product in this example. Figure 4 shows the estimation of
the L2 norm of the errors as a function of m.
As a second example we consider a portfolio built as a linear combination of Euro-
pean calls and puts as follows, X = (St — K1) + (St — K2) — (ST — K3). values of
parameters are indicated in the text surrounding Figure 5. Finally, Figure 6 shows
the estimation of the L2 norm of the errors as a function of m.
Tables 2 and 3 show the volume of transactions for the Haar hedging portfolio HII,
and for the binary hedging portfolio BII (see Section 4.1), which for the case np = 1
are both constant quantities, and the volume of transactions for the Black-Scholes
portfolio. Using the notation X¢  from (5.12), it is easy to show that the volume
of transactions for the Haar hedging portfolio, is equal to
(6.3)

VT(HIT) = e~"T=T0)||X¢,) — B(X)||p = e (7T / X, (@) — B(X)|dP(w).
Q
The volume of transactions for the portfolio of binary options is

(64)  VI(BI)=e T W|x¢, g = e 7T / X6,y ()| dP().
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Analogous expressions for (6.3) and (6.4) are also possible for the case np > 1. On
the other hand, letting
_ OV, (X)
ti 6St,- )
the volume of transactions for a Black-Scholes portfolio with rebalancing dates
{t;},i=0,...,m—11is

m—1
(6'5) Z[ |90ti - ‘pti—1| St + (Btz' - Bti—1er(ti_ti_l))+ ]a
=0

with ¢, , = B;_, = 0. We have used equally spaced rebalancing dates starting
at t¢ = Tp. Given that (6.5) is a random quantity we will report the average
(AverageVolTrBS) over many samples.

The smaller the oscillations of X around E(X) the smaller VT (HIT) will be com-
pared to VT'(BII). Notice the difference in magnitudes with AverageVolTrBS. The
volume of transactions offer a clear numerical evidence of the different nature be-
tween Haar hedging and delta hedging. In both cases, Haar hedging and binary
hedging, the explicit use of space discretization implies that the volume of transac-
tions is essentially the same when the number of transactions increases. For delta
hedging, its reliance on time discretization implies much larger volumes of transac-
tions when the rebalancing frequency is increased to reduce the hedging error.

We now comment on our choice of examples. It is expected, and it is confirmed by
our experience with numerical examples, that the Haar approximation outperforms
(in the sense of smaller error for equal value of m) the Black-Scholes approximation
whenever the payoff, or its derivative, contains discontinuities. Moreover, it is im-
portant that the Haar functions are adapted to these discontinuities, for instance,
we can choose u; such that it is supported in the union of A; ¢ = {Sr < K} and
Aip = {Sr > K} for the case of the European call. Our examples reflect these
choices, for example S7, was taken close to K so as the discontinuity in the first de-
rivative of the European call becomes problematic for Black-Scholes approximation
and can be reproduced efficiently by the Haar expansion. An extreme example of
this kind will be the case of a digital option where, of course, the Haar expansions
have no bearing as a hedging tool.

Naturally, it is easy to find situations where delta hedging ouperforms Haar hedging
as, for example, a position in a European call which is well in or out of the money.
This is a situation where the linear approximation in delta hedging becames very
efficient. It may be interesting to see under what conditions delta hedging and Haar
hedging are complementary and to investigate how to combine both techniques.

7. CONCLUSIONS AND EXTENSIONS

We have introduced a basic and general new framework to represent contingent
claims. Key ingredients are the flexibility given by the possible space and time
discretizations which can be adapted to a given class of options and the potential
for financial realization of these discretizations. From a theoretical point of view,
the approach is as fundamental as delta hedging and it is reasonable to think that
can be extended to other settings where this last technique is available. Some of
the computational tools introduced can also be used even when an actual financial
realization (of the approximation) is not available, pricing computations is an ex-
ample. We have emphasized the issue of efficient representations of a given class
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of options X, this notion isolates a few binary options with small approximating
error. The representation in terms of Haar functions was created with this goal in
mind, Section 5 provides examples of how this tool could be deployed.

Further empirical and theoretical work is needed to assess the realm of applications
where the new constructions offer a financial or computational advantage. The
techniques could likely be extended to the setting of higher dimensional models.

APPENDIX A. MULTIRESOLUTION ANALYSIS ALGORITHM

First we introduce notation and algebraic relationships needed to set up computa-
tions in the multiresolution algorithm and in the rest of the paper.

Let R := {R;} >0 be a sequence of multiresolution partitions of 2. We will now
introduce the natural orthonormal basis of characteristic functions at level j. For
each Ay ; € R, let

]'Ak,i

P(Ag,i)

Given a random variable X, our next aim is to study the relationship between the
coefficients in this basis, which are proportional to samples at level j, with the
coefficients in the H-system {¢g,0,%;,:} associated with R in Theorem 1.
Recalling the notation from (2.3), for each j > 0, {¢x,i}x,i)ck; there is an or-
thonormal basis of the subspace V; of piecewise constant functions on the atoms of
R;. The ¢ ; correspond, in our setting, to the scaled and translated scale functions
from wavelet theory. Similarly the 1);; correspond to the wavelets [19]. We have
the simple, but relevant, relations:

Ok,i =

22 121+ 1
(A.1) Gji = le ¢J+1 2; + Mqﬁjﬂ,ziﬂ
p;li]
and
Yii = @5, a;,00 t 05,1400 040
(A.2)

= aj,i/Pj+1[28]¢j41,2i + bjin/Pj+1[2t + 1)Pjp1,2i41

where a;; and b;,; were calculated in (2.5) and (2.6) respectively, and we have used
the array notation

(A.3) p;ili] = P(4;;).

Observe that since

21—}— 21
pﬂ“ ajir/pj1]2i —1/1’”1[ bjin/pir1[2i +1]=1#0,

{,i,#;i} and {¢j+1,2i;¢j+1,2i+1} span the same 2-dimensional subspace. Thus
{¢0,0} U {tr,iYo<k<j—1,icr, is a basis of L?(2,0(R;), P) = V;, and moreover it is
also orthonormal as the basis {¢x,i}(k,i)ex;-

For X € L?(2) and j > 0, for simplicity set

(A4) X, = Xg, = E(X|0(R;)).
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Then we have the following expansions

(A5) ;) = cold] dool) + 3 Y dilil rsl@) = Y xli] besw)

k=0 i€} (k,2i)EK;
where
(A.6) crli] = (Xj, ori) and  dg[i] = (Xj, ¥r,0)-

Given that the conditional expectation X; of X is constant on each Ay ;, we have
that for w € Ag;

1 1
a Vpk[i] /Ak,i X]dP a V Pk[l] A i

Analogously, we have that di[i] = (X, ¢r,;). Moreover we can state the following
proposition.

(A?) Ck[l] = <Xj,¢k,z'> XdP = <X, ¢k,z>

Proposition 4. Given X € L?(Q, A, P) and a sequence of multiresolution parti-
tions R = {Rj}"j]:O. Then for each j' < j < J, the following holds

j—1
(A.8) X;=Xp+ ) > dililbn,i
k=j' i€l
and
j—1
(A.9) Sooqlil= Y G+ Y > dilil.
(k) EK; (k7i)eKj’ k=j" i€I)

Proof. For each j < J we have that V; = span {¢,; : (k,i) € K;}, let W; =
span {¢;,; 41 € I;}. It is clear that X; € V; and V;_; C V.

By definition ¢;_1,; € V; N Vf_l, also as we have noted before, {¢;_1;,¢;_1,;} and
{(bj,gi, ¢j,2i+1} span the same subspace, thus V; = V;_; @ W;_;. This is one reason
we have used the classical wavelet notation.

Since E(X|o(R;)) and E(X|o(R;_1)) are the orthogonal projections of X onto V;
and V;_1 respectively, we see that E(X|o(R;)) — E(X|o(R;-1)) is the orthogonal
projection of X onto W;_; and then we have the expansion

X;=X,1+ Z dj—1[i]Yj-1,i,
i€l

from which (A.8) follows inductively. Equation (A.9) is a direct consequence of
(A.5) and (A.8). O

The precedent proposition, with the aid of (A.1) and (A.2), also gives a relation
between the coefficients ¢;[i] and d;[i], which permit us to have expansions on all
coarser “levels j”, starting from the correspondent to {¢x,i}(x,s)cx, on a finer level
J. These are the fundamentals of the multiresolution algorithm for H-systems, it
is an adaptation of the well known algorithm for wavelet theory given for S. Mallat
[27] to our probabilistic setting. This algorithm produces a relation between the
samples of X, namely,

(A.10) zp[i] = Xj(w), w € Ag,for (k,i) € Kj,

and the coefficients dj[i]. This algorithm is described next.
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We explain how to perform analysis, compression and synthesis, the recursive pro-
cedures are simple generalizations of the equal probability splitting Haar multires-
olution analysis (see [24]) to our setting.

A.1. Analysis. Assume we are given the orthonormal basis associated to a indexed
binary sequence of partitions. Given a finite sequence of binary partitions Q =
{QJ};1 0, We can see it as a binary tree whose nodes are associated to a unique
atom of U7_q Q;, partially ordered by inclusion. Notice that the leafs of the tree are
the non spht atoms. We want to remark again that the indexation we introduced
captures this structure, see Definition 3. Recall that if {Rj}:j]:() is the indexed
rearrangement of Q, J is the maximum scale of its atoms, and Ry = Q,,. In this
case we have all atoms of the same scale together, this is analogous to the wavelet
analysis where coarser approximations are organized by scales. Of course if an
atom does not split any more it will be in all subsequent partitions and in the tree
appears as a terminal node at some level.

Assume we have an input signal X :  — R, we will describe how to compute,
using the notation introduced in (A.4) and (A.5), its expansion in the associated
H-system

(A.11) X7, (@) = co[0] doo(w +ZZd i] jiw

j=01i€l;

These computations are called the analysis part of the algorithm, it involves com-
puting all the inner products d;[i| = (X, 1;;) = da,; and computing the values of
Xr,(w) on the atoms of R;. Notice X, is a simple function constant on each of
the atoms of R ;. The inputs to the analysis formulas are the numbers

(A.12) P(A) and / X (w)dP(w) = Xg,(w) for all A € Rj,w € A.

Therefore, our finest approximation is just the discretization, of X (w), given by
averaging X over the finest atoms, namely the elements of R ;. As in classic Multi-
resolution analysis, we will compute the inner products (X, ¢;_1;) from (X, ;).
To define the formulas we need intermediate node variables, labelled x, d and p,
their simple meaning is explained below. Here are the recursive formulas (bottom
up recursion, i.e., we start at the leafs)

(A13) Pfather = PLchildren + PRchildrens
1
(A-14) Xfather — (PLchildren XLchildren T PRchildren XRchildren)
pfather
A _ [PLchildren PRchildren
(A.15) dfather = (XLchildren — XRchildren)-
Pfather

To be able to run this recursive formula we just need to initialize the x and p
variables at the terminal nodes, this is done by using the inputs,

(A.16)  piear = P(A), where the atom A € R; is associated to the given leaf,

(A.17)
Xlear = XR,(w), where w € A € R is the atom associated to the given leaf.
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It is easy to see that the meaning of the intermediate variable x at node A € UJJZORJ'
is

1
(A.18) TA= —— / X (w)dP(w) = /P(A) ca,
P(A) Ja
where ¢4, ; = c[i]. The meaning of the variable d at node A € Up—q,...,n1Qx is
(A.19) da = (X,1a).
Also
(A20) PnodeA = P(A)

The above recursion gives {(X,9,0) = ﬁ Jo X(w)dP(w) = [, X (w)dP(w) =
Troot-

Therefore, analysis gives us the inner products and, if we are interested, it gives
coarser approximations (“zoom-outs”) to X given by the values of the x interme-
diate variables. To be more precise at each level j, 0 < j < J, of the tree we have
the approximations

7

(A.21) Xp(w)=x4 = ﬁ/AX(w)dP(w) where w € A € R,

so, the simple function X5, is the coarser approximation associated to the partition
R;, completely analogous to the wavelet approximations at different scales.

Transform compression: notice that the orthonormal basis associated to a
sequence of dyadic partitions is coded in a binomial tree. Naturally the analysis
(inner products and coarser approximations) of an input X is also coded in another
binomial tree, which we will call the analysis tree (of X). Transform compression is
just the process of setting the smallest inner products in the analysis tree to zero.
So, we sort them and only keep a percentage of the largest ones.

Synthesis: The input to synthesis is the analysis tree of X containing the d,
values (which are equal to the inner product at node A or zero) where A is a non-
terminal node. Also the p, (i.e. the probability at node A) values are needed for
all nodes A. We also need as input x,,,; the output will be x, for all nodes A
(including the leafs). Here are the reconstruction formulas (top-down recursion,
i.e. we start at the top)

PRchildren
(A22) XLchildren — Xfather T dsather
Pfather PLchildren

Pfather
(A23) XRchildren — XLchidren — \/ dfather-

PLchidren PRchildren

AprPENDIX B. COMPLEMENTS

Example of non Haar-System for the binomial model:

Here we present another H-system for the binomial model. This time associated
with a particular partition of the final o-algebra o(S;, ). Let J be the smallest
integer such that n 4+ 1 < 27, then for 0 < j < J and 0 < i < 2/ — 1 we define the
sets A; ;, as follows. For i # 0,

) 1 1+1
(B.1) Aji ={w € Q: o7 < Swly < —;

}
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whenever this set is not empty, and for : =0

1 1
where |w|y is the number of ¢;’s such that w(¢;) = U. The probabilities of the
atoms are

P(A;;) = | > (Z)Psqn_s for i £0

and

It is important to observe that Aj,i = Aj+1,2,' U Aj+1,2i+1 or Aj,i = Aj+1,i- The
corresponding H-system is given, through Theorem 1, namely by
Vo = 1,

(B.3) Vi = 1 P(Aj41,2i41) _ [ P(Ajt1,2:) 14 )
DT P(As) P(Aj41,2i) —Ai+rz P(Ajt1,2i41) ~Ai+1.2i41

if Aji = Ajtr1,2: U Ajq1,2i41. It results in a Haar system only if n = 27 —1.

The tree illustration below corresponds to the H-system with n = 5. We have la-
belled the atoms of the final o-algebra to clarify the situation, with e.g. < pppDU >=
{(p,D,D,D,U),(D,D,D,U,D),(D,D,U,D,D),(D,U,D,D,D),(U,D,D,D,D)}.

Ao,o

As o Az Az Az 2 Ass Az 7
< DDDDD > < DDDDU > < DDDUU > < DDUUU > < DUUUU > <UUUUU >

Observe that Az, = Ay 1 and Az 4 = Ay 5 because Az 3 = Az 5 = 0.
ApPPENDIX C. FIGURES AND TABLES
TABLE 1. L? norm for errors, between X and X(CJ), in terms of

number of transactions and scales. Single European Call. Values
of parameters as in Figure 1.

No. of Transactions | J=6 | J=8 | J=10 | J=12 | J=14 | J=16
R=28 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22
R=16 0.15|0.10 | 0.10 | 0.10 | 0.10 | 0.10
R =32 0.14 | 0.08 | 0.06 | 0.05 | 0.05 | 0.05
R =064 0.14 | 0.08 | 0.05 | 0.03 | 0.02 | 0.02

R =128 x |0.07| 0.05 | 0.03 | 0.02 | 0.01
R =256 x |0.07| 0.05 | 0.03 | 0.01 | 0.00
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FIGURE 1. Approximations to single European Call using delta
hedging and the Haar system constructed via Brownian motion
increments. Values of the parameters used: m =1, Sg, =20, r =
0.05, 0 =01, T-Ty =1, K = 21.

TABLE 2. Volume of Transactions for single FEuropean Call. Values
of parameters as in Figures 1-4. Vp, (X) = 0.797

No. of Transactions (R) | VT'(BII) | VT'(HII) | AverageVolTrBS
R=5 0.78 0.88 53.32
R=10 0.79 0.93 107.1
R=15 0.78 0.96 157.2
R=20 0.75 0.91 213.8
R=25 0.71 0.91 258.8
R =30 0.74 0.93 317
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FIGURE 2. Same as in Figure 1 except m = 2.
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FiGURE 3. Same as in Figure 1 except m = 20.
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