C++Wavelets: A User’s Guide

S. E. FERRANDO, L. A. KOLASA, AND N. KOVACEVIC

ABSTRACT. We expalin the technical features of C++ Wavelets and how to
use the software. Presantly this users manual is still being written. Anyone
compotent in wavelet analysis and C++ should be able to use this software
presently. The header files and the demos supplied with this package should
be enough to get one started.

1. INTRODUCTION

C++Wavelets is a collection of C/C++ based functions for performing some
of the basic functions of wavelet analysis: wavelet analysis and synthesis; wavelet
packet analysis and synthesis.

Our objective is to provide the serious programmer with ready to use functions
that may be employed in applications or programs which call for wavelet analysis.
While there are many good packages available for performing wavelet based analysis
(e.g., Matlab), some applications must be written in a high level programming
language. Often one has to perform a great many calculations, and the overhead
associated with software packages can be prohibitively expensive. What is needed
then is a library of useful functions written in a high level programming language,
ready available “at ones finger tips.”

We have chosen C++ as our high level language. C programmers, howerer,
should not despair though; most of wavelet based analysis is algorithmic, and we
use only as much C++ so as to make code writing as transparent as possible. A good
introduction to C++ can be found in [2]. Chapters 2-6 contain all that is necessary
to know when using C++ Wavelets. In particular we like the memory management
features of C++. We shall explain our data structures below; it suffices to say right
now that in C++ Wavelets the data structures of wavelet analysis are invoked and
destroyed almost as easily as native data structures (i.e., integers, floats).

We take advantage extensively of the feature in C++ of overloaded operators
and function in C++ Wavelets. Again, this is done so as to make writing programs
as natural and transparent as possible.

Otherwise we are not “object oriented”. For us wavelet analysis is a process,
and the algorithms are paramount. For example, we have often been criticized for
not using the private data member capabilities of C++. We avoid this because we
are interested in speed and ease of programming; to us private data implies costly
member functions to get your hands on it. We trust the integrity of our library and
the intelligence of our users. Should data be “inadvertently” modified this would
be a mistake, but we prefer to allow you that possibility.

On the other hand we have taken great care in writing the algorithms using,
essentially, the features of C which allow for faster running code such as pointer

Research partially supported by NSERC.



2 S. E. FERRANDO, L. A. KOLASA, AND N. KOVACEVIC

arithmetic. Therefore some of the code itself may be difficult to read; we ask only
that you trust us when we say that it has been tested. We have striven for speed
in writing this code, not readability.

C++ Wavelets allows you to perform the one-dimensional Discrete Wavelet Trans-
form (DWT) using orthogonal or bi-orthogonal wavelelets, in a periodic or an ape-
riodic setting. Discrete Wavelet Packet Analysis, along with the best wavelet basis
algorithm of Coifman and Wickerhauser [3] is also available. This too comes in a
periodic and an aperiodic version.

We assume some familarity on the reader’s part with wavelet based analysis.
But as there may be some ambiguity as to what the DWT and DWPA actually are,
we outline here what they are in C++ Wawvelets.

The soul of discrete wavelet analysis is convolution-decimationand its adjoin-
t. [3] is an excellent reference; we merely highlight those details germane to
C++Wavelets. Let X = {z;} be a sequence of real numbers which represents
your data or a signal to be processed; let G = {g;} be a fixed, given “filter”. Then
the convolution-decimation operator defined by G acts on X in the following way,

GXi = giT2i_j,
J

and its adjoint is given by

G*'X; = Z g2i—jT;.

2. THE DATA CLASSES

In this section we describe the classes that are used in C++ Wavelets. The classes
that appear in C++ Wavelets are

1. Interval
ArrayTreePer, ArrayTreeAper
BinTree
HedgePer HedgeAper
QMF, PQMF, GPQMF
We discuss the Interval class in the most detail. It is the most common class
and the simplest; it is all that is needed to perform the DWT

Gk

2.1. Interval. The Interval classis an array of reals with a few extras. Typically
an Interval is used as the input and the output when performing wavelet analysis.
Input data, a sequence of floating point numbers {z;}, are stored in an array. The
main difference between a C array and an invterval is that the indexing of an
interval does not have to start with zero. As noted earlier indexing is important in
the wavelet theory.

The data members of the interval class are

Interval.origin
Interval.beg
Interval.end
Interval.length

Suppose we have a sequence of reals:

z_o=21,z_17=-0.3,20 =0.0,2;1 = —1.1,20 = 0.2,23 = 9.4,



C++Wavelets: A User’s Guide 3

and we store them in an Interval called Input. Then Input.beg is the integer
-2, Input.end is the integer 3 and Input.length = Input.end — Input.beg + 1,
which is the number of elements in the data sequence. Aside from the fact that it
is crucial to keep track of Input.beg and Input.end when performing convolution-
decimation, there are other instances where these data members are useful. The
following example shows how to write a for loop involving an Interval
for (i = Input.beg; i <= Input.end; i++)

This relieves us from having to pass as a parameter to functions the beginning and
ending indices of a sequence. The length data member is also useful in this regard.
As we get deeper and deeper into the stack it is more and more to our advantage to
avoid having the clutter of long parameter lists; the baggage of the Interval class
carries many important parameters. Admittedly the length member is redundant,
but we use it often enough that it deserves its place as a data member.

The origin data member is important and must be handled carefully; it is used
to point to the actual data. If we only wish to access or modify the data without
concern for speed or its exact memory location then the easiest thing to do is to
use the overloaded []-operator. For example, Input[—2] = 2.1, Input[-1] = —0.3,

., Input[3] = 9.4. From this example we see that, by design, the indexing of
the original sequence corresponds to the indexing used by the []-operator—exactly
how a mathematician thinks. Thus if we desire to change the value of z; from —1.1
to 2.9 we write

Input[1] = 2.9;
Of course the data represented by z; is the fourth data member in our data array,
but mathematically we think of it as having index equal to 1. Our programming
corresponds to our thinking; this is by design.

But a price must be paid for this. The way this feature has been implemented is
by pointer offset: Input.origin is not a pointer to the beginning of the data array
(i-e., £_2); in this case Input.origin points to zo. In general, when an Interval
is constructed, origin is pointing to the beginning of the data array. But then it
is modified:

origin -= beg;
This then is how the []-operator works: Input[j] = *(Input.origin + j). Should

a pointer to the “physical” beginning of the data be needed, the proper reference
is
Input.origin + Input.beg

This is very important if you work with sequences which, mathematically speaking,
are not indexed starting from zero a la the C/C++ convention. In practice, however,
it is often convenient or desirable to have Input.beg = 0; in this case, of course,
Input.origin is a pointer to the actual beginning of the array, and no confusion
results.

One notable instance when Input.beg = 0 is in the periodic version of the DWT,
where we may assume this without loss of generality. For this common setting, when
the number of data points must be a power of 2, we have special constructors,

Interval(p, *data) or Interval(p),

which construct an interval indexed from 0 to 2P — 1, filled from data, or if data is
not given, filled with zeros. The more generic constructor is,

Interval(a, b, *data) or Interval(a, b).



4 S. E. FERRANDO, L. A. KOLASA, AND N. KOVACEVIC

This constructs an interval indexed from a to b. If no data is given, the Interval
is filled with length = b — a + 1 zeros. One must be careful that *data points to
an array of at least length elements, for otherwise that would be a mistake.

Finally there is a default constructor which, for the most part, sets everything
to zero. The default constructor is useful when one wishes to create an array of
Intervals as so,

Interval Input[10]; or Interval* Input = new [10].

In each instance we have a pointer, Input, to an array of 10 default intervals. When
the time comes one may use the Set member function to fill out a desired Interval.
Ultimately all of the Interval constructors call the Set member function, and when
a default Interval already exists the Set function is the correct one to use in order
to fill it out; for example:
Input[6].Set (0, 1023); or Input[4].Set(-1, 1022, *data);

The first line above fills out the seventh element of the arrray, Input, with an array
of 1024 zeros indexed from 0 to 1023. The second line fills out the fifth element
of Input with the 1024 elements of the array pointed to by data and indexes them
from —1 to 1022.

When using new as in the above example one is obliged to use delete, but as
with all C++ Wavelets data structures memory management is transparant and
self contained. One need only understand how to employ the basic constructors
to bring a single data structure into existence; the rest of memory management is
done behind the scenes. When you become familiar with C++ Wavelets the header
files should be enough to refresh your memory.

REFERENCES

[1] F. Carrano, P. Helman, R. Verofff, Data Abstraction and Problem Solving in C++. Addison
Wesley, 1998.

[2] H. Schildt, Teach Yourself C++, McGraw Hill, (1998).

[3] M. Wickerhauser, Adaptive Wavelet Analysis: From Theory to Software. A. K. Peters, (1994).

DEPARTMENT OF MATHEMATICS, PHYSICS AND COMPUTER SCIENCE, RYERSON POLYTECHNIC
UNIVERSITY, TORONTO, ONTARIO M5B 2K3, CANADA.
E-mail address: ferrando@acs.ryerson.ca

E-mail address: 1kolasa@acs.ryerson.ca

E-mail address: natasak@home.com



