
Discrete Math

Turing Machines
P. Danziger

1 Turing Machines

A Turing machine consists of a Finite State Control, which is an FSA, and an infinitely long read
write ‘tape’. This tape is divided into cells, at each step the read/write head is positioned over a
particular cell.

The tape alphabet of a Turing Machine has a special symbol, often denoted t, or [, which indicates
that a cell on the tape is blank.

A Turing Machine has two special states qaccept and qreject.
If the machine ever enters the “accept” state, qaccept, it signals acceptance and halts processing.
If the machine ever enters the “reject” state, qreject, it signals reject and halts processing.
Note that the only way that a Turing machine will halt is by entering one of these states, so it is
possible that a Turing machine will continue processing forever and never halt.

Initially the tape contains the input string, and the tape read/write head is positioned over the
leftmost symbol of the input string. At each step the Turing Machine performs the following
actions:

1. Reads the current symbol from the tape.

2. Writes a symbol to the tape at the current position.

3. Moves to a new state in the Finite State Control.

4. Moves the read/write head either left or right one cell.

? ?

0 1 0 0 1 t . . . 1 1 0 0 1 t . . .
−→

qi qj

Note Unlike FSA’s there is no requirement that a Turing machine read the input string sequentially,
even if it does it may continue computing indefinitely (until it enters either qaccept or qreject).

Definition (Deterministic Turing Machine) A Turing Machine, M, is a 7-tuple (Q, Σ, Γ, δ, q0, qaccept, qreject),
where Q, Σ, Γ are finite sets and:

1. Q is the set of states of M.

2. Σ is the input alphabet of M. The blank symbol t 6∈ Σ.

3. Γ is the tape alphabet of M. t ∈ Γ and Σ ⊆ Γ.

4. δ : Q× Γ −→ Q× Γ× {L, R} is the transition function of M .

1



Discrete Math Turing Machines P. Danziger

5. q0 ∈ Q is the start state of M .

6. qaccept ∈ Q is the accept state of M .

7. qreject ∈ Q is the reject state of M .

Initially the tape contains the input string, and the tape read/write head is positioned over the
leftmost symbol of the input string. The rest of the tape is filled with the blank symbol (t). The
first blank thus marks the end of the initial input string.

The transition function then tells the machine how to proceed:

δ(qi, a) = (qj, b, L)

Means: If we are in state qi and we read an a ∈ Γ at the current tape position, then move the finite
state control to state qj, write b ∈ Γ and move the tape head left. (R means move the tape head
right.)

Examples
1. M1 = ({q0, qaccept, qreject}, {0, 1}, {0, 1,t}, δ, q0, qaccept, qreject)

δ(q0, 0) = (qaccept, 0, R)

δ(q0, 1) = (qreject, 1, R)

δ(q0,t) = (qreject, 1, R).

This machine goes to the accept state if 0 is the first character of the input string, otherwise
it goes to reject.

2. M2 = ({q0, q1, qaccept, qreject}, {0, 1}, {0, 1, #,t}, δ, q0, qaccept, qreject)

δ(q0, 0) = (qaccept, 0, R)

δ(q0, 1) = (q1, 1, R)
δ(q0, #) = (qreject, 1, R)

δ(q0,t) = (qreject, 1, R).

δ(q1, 0) = (q1, #, R)
δ(q1, 1) = (q1, #, R)
δ(q1, #) = (q1, #, R)
δ(q1,t) = (q1, #, R).

(This can be summarized as ∀a ∈ Γ, δ(q1, a) = (q1, #, R).)

This machine goes to the accept state if 0 is the first character of the input string, it goes to
the reject state if the input string is empty. If the string starts with a 1, it tries to fill up the
infinite tape with #’s, which takes forever.

We can represent the action of a Turing machine on a given input by writing out the current tape
contents, with the state to the left of the current read/write head position.

Thus if we consider the action of M2 on the string 10001:

q010001t −→ 1q10001t −→ 11q1001t −→
111q101t −→ 1111q11t −→ 11111q11t −→
111111q1t −→ 1111111q1t . . .

Definition

2



Discrete Math Turing Machines P. Danziger

1. A string w ∈ Σ∗ is accepted by a Turing machine M if the machine enters the qaccept state
while processing w.

2. The language L(M) accepted by a Turing machine M is the set of all strings accepted by M .

3. A string is rejected by a Turing machine M if either M enters the qreject state while processing
w, or if M never halts in the processing of w.

4. A language L is called Turing recognizable or Recursively Enumerable if there exists some
Turing machine, M , such that L = L(M).

5. A language L is called Turing decidable or Recursive if there exists some Turing machine, M ,
such that L = L(M), and M is guaranteed to halt on any input.

Note The difference between Recognizable and Decidable is that in the latter case the machine is
guaranteed to halt.

The problem of showing that there are languages which are Recognizable but not Decidable, is
essentially the halting problem.

Examples

1. Consider the machines M1 and M2 above.

Clearly L(M1) = L(M2) = 0(0 ∨ 1)∗ = L = any string beginning with 0.

M1 decides L, since it is guaranteed to stop.
On the other hand M2 only recognizes L, since it does not halt on any string beginning with
a 1.

2. Design a Turing machine to decide the language L = 0n1n.

We introduce a tape character ‘#’, to denote that the original symbol in a cell has been used.
By saying it is ‘crossed off’ we mean replaced by ‘#’.

Q = {q0, q1, q2, q3, q4, qaccept, qreject}, Σ = {0, 1},Γ = {0, 1, #,t}
Algorithm:
(a) Cross off the leftmost 0.

(b) Scan right to end of input, cross off the rightmost 1.
If there is no such 1 reject.

(c) Scan left until we reach the leftmost surviving 0.
If there is no such 0 scan right, if a 1 is encountered before reaching the end of the string
reject, otherwise accept.

δ(q0,t) = (qaccept,t, R) – Accept the empty string

δ(q0, 1) = (qreject, 1, R) – Reject any string which starts with 1

δ(q0, 0) = (q1, #, R) – Cross off leftmost 0

δ(q1, 0) = (q1, 0, R)
δ(q1, 1) = (q1, 1, R)
δ(q1, #) = (q2, #, L)
δ(q1,t) = (q2,t, L)

 Scan right to rightmost ‘live’ cell of input.

3



Discrete Math Turing Machines P. Danziger

δ(q2, #) = (qreject, #, L) – If rightmost not 1 reject

δ(q2, 0) = (qreject, 0, L) – If rightmost not 1 reject

δ(q2, 1) = (q3, #, L) – Cross off rightmost 1.

δ(q3, 1) = (q3, 1, L) – Scan left over the 1’s
δ(q3, 0) = (q3, 0, L) – Scan left over the 0’s
δ(q3, #) = (q4, #, R) – # marks left end

δ(q4, 0) = (q1, #, R) – cross off leftmost 0 and start again.
δ(q4, #) = (qaccept, #, R) – all done accept.

δ(q4, 1) = (qreject, 1, R) – No more 0’s, but still got 1’s.

The following should never be encountered, they are all set to go to qreject.

δ(q0, #), δ(q2,t), δ(q3,t), δ(q4,t).

We now consider the action of this machine on the string 0011.

q00011t −→ #q1011t −→ #0q111t −→ #01q11t −→
#011q1t −→ #01q21t −→ #0q31#t −→ #q301#t −→
q3#01#t −→ #q401#t −→ ##q11#t −→ ##1q1#t −→
##q21#t −→ #q3###t −→ ##q4##t −→ Accept

We can see from the above that it is tedious to write out the transition function in full. Turing
machines are very powerful, in fact the Church Turing thesis holds that they can implement
any algorithm.

Often it is sufficient to write out an algorithm which describes how the Turing machine will
operate. Of course if we are asked for a formal description, we must provide the transition
function explicitly.

When writing out algorithms a common phrase is:
Scan right (or left) performing action until x is reached.

3. Design a Turing machine which decides L = {x ∈ {0}∗ | x = 02n
, n ∈ N}. (See Sipser p. 131

for a formal description.)

Σ = {0}, Γ = {0, #,t}.
Scan right along the tape crossing off every other 0, this halves the number of 0’s.
If there is only one 0, accept.
If the number of 0’s is odd reject. (Note the parity of 0’s can be recorded by state.)

Scan back to the left hand end of the string.

Repeat.

Consider the action of this algorithm on the strings 00000000 (08), and 0000000 (07):

initially 00000000
After first pass # 0 # 0 # 0 # 0
After second pass # # # 0 # # # 0
After third pass # # # # # # # 0
Accept

initially 0000000
After first pass # 0 # 0 # 0 #
After second pass # # # 0 # # #
After third pass # # # # # # #
Reject

4



Discrete Math Turing Machines P. Danziger

The Halting Problem Given a Turing machine M does M halt on every input w?

Variations

There are several standard variations of the definition of Turing Machines which we will now inves-
tigate.

Multi-tape Turing Machines

A Multi-tape Turing Machine is a Turing machine which has more than one tape.

If the machine has k tapes, it is called a k tape Turing Machine.

The only change is in the transition function, we read k inputs from the k tapes, and write k
outputs, in addition each of the k read/write heads moves either Left or Right.

δ : Q× Γk −→ Q× Γk × {L, R}k

Theorem If a language is recognized by some k tape Turing machine M , then it is recognized by
some 1 tape Turing machine M ′.

S.W.P.

Computation of Integer Functions

In this variation Σ = {0}, the initial input is of the form 0n, for some n. When the machine halts
the tape holds the computed output, 0m, for some m. Such a machine is called a Computational
Turing machine.

Thus for each n there is a corresponding m, we may interpret this as the result of some function:
m = f(n).

We say that the function f is computable.

A further variation allows for more than one input variable. In this case Σ = {0, #} and input
strings are of the form 0n#0k. The output, 0m is then the result of m = f(n, k)

In this case the numbers n, k and m are being represented in unary notation, which is standard.
However, it is possible to use Σ = {0, 1, #}, and to represent the numbers n, k and m in binary.

Example Find a computational Turing machine which computes f(n, m) = n + m + 1

The input is of the form 0n10m, we merely erase the 1 and check that the input has the correct
form.

δ(q0, 0) = (q0, 0, R) – Scan right for 1
δ(q0, 1) = (q1, 0, R) – Found it, change it to a 0
δ(q1, 0) = (q1, 0, R) – Scan right for end of string
δ(q1,t) = (qaccept,t, R) – Found it, accept
Every other transition goes to qreject.

It is worth noting that for all the many variations of Turing machines that have been investigated,
none are more powerful (i.e. able to recognize more languages) than a standard Turing machine.

The Church Turing Thesis

5



Discrete Math Turing Machines P. Danziger

Turing machines are extremely powerful in their computational abilities. They can recognize addi-
tion, subtraction, multiplication and division, exponentiation, (integer) logarithms and much more.

Any operation which a PC can do can be done on a Turing machine, In fact a Turing machine is
far more powerful than any real computer since it effectively has an infinite amount of memory.

The Church-Turing Thesis says essentially that:

Any real computation (algorithm) can be simulated by a Turing machine.

It should be noted that the Church Turing thesis is an axiom, it is the link between the mathematical
world and the real world. No amount of mathematics can ever prove this thesis because it states a
fact about the real world.

Thus Turing machines represent the ultimate model of computation, if a language is not recognizable
by a Turing machine, NO algorithm can compute it.

There are problems which are known to have now algorithmic solution. i.e. problems which are
unrecognizable.

The Halting Problem

We first consider algorithms which are not decidable.

There are many important problems which are known to be undecidable.

For example the problem of software verification (verifying that a program works as specified) is
undecidable.

When we talk about Turing machines in a general sense, as we do now, it is unproductive to worry
about the internal workings of the machine (specifying state tables etc.). We are more interested
in a general description.

In general Turing machines may be given a general object for analysis. All that is required that
the general object be rendered in a form that the Turing machine can interpret, a finite string of
characters from a suitable alphabet.

We may now design a Universal Turing machine, U , which accepts as input a Turing machine and
its input, < M,w >, and simulates the action of M on the input w.

In fact this is exactly how a computer works, a programming language provides a way of describing
an algorithm, which by the Church-Turing thesis is equivalent to a description of a Turing-machine
M , at run time the program is supplied with the input w, the computer then simulates M running
on w.

We now consider the following language (Sipser p. 161):

LTM = {< M,w > |M is a Turing machine, and M accepts w}.
The Halting Problem Is there a Turing machine which decides LTM?

We note the following:

Theorem LTM is recognizable.

Proof:

Simulate M on w.

If M enters qaccept accept.

If M enters qreject reject. �

6



Discrete Math Turing Machines P. Danziger

Thus the problem is whether M halts on every input w.

Theorem LTM is undecidable.

Proof: By Contradiction. (See Sipser p.165)

Suppose that LTM is decidable, thus there is a Turing machine H, which always halts, which
recognizes LTM .

We write H(< M,w >) =

{
accept if M accepts w
reject if M does not accept w

Now we design a new Turing machine D, which uses H as a ‘subroutine’. The input to D is the
encoding of a Turing machine < M >. On input < M >, D runs H on < M, < M >>. i.e. H
determines the outcome of running the Turing machine M on an encoding of itself. D then reverses
the output from H:

D(< M >) =

{
accept if M does not accept < M >
reject if M accepts < M >

We now run D on itself to derive a contradiction:

D(< D >) =

{
accept if D does not accept < D >
reject if D accepts < D >

The statement D accepts < D > indicates that on input < D >, D accepts, But it rejects, a
contradiction. Thus LTM is undecidable. �

This means that no Turing machine can decide whether a second Turing machine will eventually
halt.

Has it crashed, or is it just taking a long time?

7


