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1 Introduction

1. ‘Some’ is being used both as an existential quantifer and as an instantiation.
Symbolically, the first statement is ∃ x(car(x) ∧ rattles(x)), and the second is
car(mycar). Clearly, rattles(mycar) does not follow.

2 Propositional Calculus: Formulas, Models, Tableaux

1. The truth tables can be obtained from the Prolog program. Here are the forma-
tion trees.
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2. The proof is by an inductive construction that creates a formation tree from a
derivation tree. Let fml be a nonterminal node with no occurrences of of fml
below it. If the node is

p

fml

for some atom p, then the only formation tree is p itself. Otherwise, suppose
that the non-terminal is

T1 op T2

¨̈
¨̈

HHHH

fml

where T1 and T2 are formation trees and op is a binary operator. The only
fomration tree is

T1 T2

   @@

op

3. The proof is by induction on the structure of an arbitrary formula A. If A is an
atom, there is no difference between an assignment and an interpretation. If A =
A1 op A2 is a formula with a binary operator, then by the inductive hypothesis
v(A1) and v(A1) are uniquely defined, so there is a single value that can be
assigned to v(A) according to the table. The case for negation is similar.

Induction is also used to prove that assignments that agree on the atoms of a
formula A agree on the formula. For an atom of A, the claim is trivial, and the
inductive step is straightforward.

4. Construct the truth tables for the formulas and compare that they are the same.
For example, the table for the formulas in the fourth equivalence is:
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A B v(A → B) v(A ∧ ¬B) v(¬(A ∧ ¬B))

T T T F T
T F F T F
F T T F T
F F T F T

where we have added an extra column for the subformula A ∧ ¬B.

5. By associativity and idempotence, ((p ⊕ q) ⊕ q) ≡ (p ⊕ (q ⊕ q)) ≡ p ⊕ false.
Using the definition of ⊕, we find that p⊕ false ≡ p. Similarly, ((p↔ q) ↔ q) ≡
(p ↔ (q ↔ q)) ≡ p ↔ true ≡ p.

6. We prove
A1 op A2 ≡ B1 ◦ · · · ◦ Bn ≡ ¬ · · · ¬Bi

by induction on n. If n = 1, clearly Bi is either A1 or A2. If n = 2 and the
definition of ◦ is

A1 A2 A1 ◦ A2

T T F
T F T
F T F
F F T

then A1 ◦ A2 ≡ ¬A2, A2 ◦ A1 ≡ ¬A1, A1 ◦ A1 ≡ ¬A1, A2 ◦ A2 ≡ ¬A2, and
symmetrically for

A1 A2 A1 ◦ A2

T T F
T F F
F T T
F F T

Suppose now that

A1 op A2 ≡ (B1 ◦ · · · ◦ Bk) ◦ (Bk+1 ◦ · · ·Bn).

By the inductive hypothesis, B1 ◦ · · · ◦ Bk ≡ ¬ · · · ¬Bi and Bk+1 ◦ · · · ◦ Bn ≡
¬ · · · ¬Bi′ , where ¬ · · · ¬Bi and ¬ · · · ¬Bi′ are each logically equivalent to A1,
¬A1, A2, or ¬A2. By an argument similar to that used for n = 2, the claim
follows.

7. Let A be a formula constructed only from only p and ∧ or ∨. We prove by
induction that A ≡ p. Clearly, if A is an atom, A is p. Suppose that A is A1 ∧ A2

and that A1 ≡ A2 ≡ p. Then A ≡ p ∧ p ≡ p. Similarly, for ∨.

8. If U = {p} and B is ¬ p, then U is satisfiable, but U ∪ {B} = {p,¬ p} is not.
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9. We prove Theorem 2.35; the others are similar. Suppose that U − {Ai} is satis-
fiable and let I be a model. But a valid formula is true in all interpretations, so
A is true in I. Thus, I is a model for U, contradicting the assumption.

10.
Theorem 2.38: Any interpretation which falsifies U = {A1, . . . ,An} assigns
true to A1 ∧ · · · ∧ An → A by the definition of ∧ and →. Any model for U =
{A1, . . . ,An}, assigns true to A by assumption.

Theorem 2.39: Adding an additional assumption can only reduce the number of
interpretations that have to satisfy A.

Theorem 2.40: Since any interpretation satisfies a valid formulas, the set of
models for U is exactly the set of models for U − {B}.

11. For T (U) to be closed under logical consequence means that if {A1, . . . ,An} |=
A where Ai ∈ T (U) then A ∈ T (U). Let I be an arbitrary model for U. If
Ai ∈ T (U), then U |= Ai, so I is a model for Ai for all i and I is a model for A.
Thus U |= A so A ∈ T (U).

12. A logical equivalence can be proven by replacing ≡ by ↔ and constructing
a truth table or semantic tableau for the negation. Alternatively, truth tables
can be constructed for both sides and checked for equality. The use of Venn
diagrams is interesting in that it shows an equivalence between propositional
logical and set theory or Boolean algebra. The Venn diagram for a proposition
represents the set of interpretations for which it is true as demonstrated in the
following diagram:

'

&

$

%

'

&

$

%
A ∧ B

A B

︷ ︸︸ ︷

A ∨ B

How is A → B represented in a Venn diagram? A → B is logically equivalent to
¬A ∨ B, so the diagram for A → B consists of the area outside A together with
the area for B. A ↔ B is represented by the intersection of the areas for A and B
(where both are true), together with the area outside both (where both are false).

Here are the proofs of the equivalences in terms of Venn diagrams:

A → B ≡ A ↔ (A ∧ B): If a point is in the area for A → B, it is either in the area
for A ∧ B or outside both. So if it is in A, it must be within A ∧ B.
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A → B ≡ B ↔ (A ∨ B): Similarly, if it is in the union of the areas, it must be
within B.

A ∧ B ≡ (A ↔ B) ↔ (A ∨ B): Points are in both of the areas for A ↔ B and A ∨ B
iff they are within the area for A ∧ B.

A ↔ B ≡ (A ∨ B) → (A ∧ B): If a point is in the union of the areas for A and B,
it must be within the area for A ∧ B if it is to be within the area for A ↔ B.

13. Let W(l) = 4e(l)+1 · (3b(l) + n(l) + 3), where e(l) is the number of equivalence
and non-equivalence operators. If e(l) is decreased by one, the new b(l) will be
2b(l) + 2 and the new n(l) will be at most 2n(l) + 2. A computation will show
that:

4e(l)+1 · (3b(l) + n(l) + 3) > 4e(l) · (6b(l) + 2n(l) + 8).

14. We have to show that if the label of a node contains a complementary pair of
formulas, then any tableau starting from that node will close (atomically). The
proof is by induction. The base case is trivial. Suppose that {α,¬ α} ⊆ U(n),
and that we use the α-rule on α, resulting in {α1, α2,¬ α} ⊆ U(n′), and then the
β-rule on ¬ α, resulting in {α1, α2,¬ α1} ⊆ U(n′′

1) and {α1, α2,¬ α2} ⊆ U(n′′
2).

The result follows by the inductive hypothesis. The case for {β,¬ β} ⊆ U(n) is
similar.

15. Add facts to the alpha and beta databases for the decompositions on page 32.

16. A node can become closed only if the addition of a new subformula to the label
contradicts an existing one. Rather than check all elements of the label against
all others, include the check for contradiction in the predicates alpha rule

and beta rule.

3 Propositional Calculus: Deductive Systems

1.
1. A,B,¬A Axiom
2. ¬B,B,¬A Axiom
3. ¬(A → B),B,¬A β→ 1, 2
4. ¬(A → B),¬¬B,¬A α ¬ 3
5. ¬(A → B), (¬B →¬A) α→ 4
6. (A → B) → (¬B →¬A) α→ 5
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1. A,¬A,B Axiom
2. A,¬B,B Axiom
3. A,¬(¬A → B),B β→ 1, 2
4. ¬B,¬A,B Axiom
5. ¬B,¬B,B Axiom
6. ¬B,¬(¬A → B),B β→ 4, 5
7. ¬(A → B),¬(¬A → B),B β→ 3, 6
8. ¬(A → B), (¬A → B) → B α→ 7
9. (A → B) → ((¬A → B) → B) α→ 8

1. ¬A,B,A Axiom
2. A → B,A α→ 1
3. ¬A,A Axiom
4. ¬((A → B) → A),A β→ 2, 3
5. ((A → B) → A) → A α→ 4

2. The proof is by induction on the structure of the proof. If ` U where U is an
axiom, then U is a set of literals containing a complementary pair {p,¬ p}, that
is, U = U0∪{p,¬ p}. Obviously, there is a closed tableau for Ū = Ū0∪{¬ p, p}.

Let the last step of the proof of U be an application an α- or β-rule to obtain a
formula A ∈ U; we can write U = U0 ∪ {A}. In the following, we use ∨ and ∧
as examples for α- and β-formulas.

Case 1: An α-rule was used on U′ = U0∪{A1,A2} to prove U = U0∪{A1∨A2}.
By the inductive hypothesis, there is a closed tableau for Ū′ = Ū0∪{¬A1,¬A2}.
Using the tableau α-rule, there is a closed tableau for Ū = Ū0 ∪ {¬(A1 ∨ A2)}.

Case 2: An β-rule was used on U′ = U0 ∪ {A1} and U′′ = U0 ∪ {A2} to prove
U = U0 ∪ {A1 ∧ A2}. By the inductive hypothesis, there are closed tableaux for
Ū′ = Ū0 ∪ {¬A1} and Ū′′ = Ū0 ∪ {¬A2}. Using the tableau β-rule, there is a
closed tableau for Ū = Ū0 ∪ {¬(A1 ∧ A2)}.

3.
1. ` (A → B) → (¬B →¬A) Theorem 3.24
2. ` (A → B) Assumption
3. ` ¬B →¬A MP 1, 2
4. ` ¬B Assumption
5. ` A MP 3, 4

4.
1. ¬A,¬B,A Axiom
2. ¬A,B → A α→ 1
3. A → (B → A) α→ 2

For Axiom 2 we will use a shortcut by taking as an axiom any set of formulas
containing a complementary pair of literals.
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1. B,A,¬A,C Axiom
2. B,¬B,¬A,C Axiom
3. B,¬(A → B),¬A,C β→ 1, 2
4. ¬C,¬(A → B),¬A,C Axiom
5. ¬(B → C),¬(A → B),¬A,C β→ 3, 4
6. A,¬(A → B),¬A,C Axiom
7. ¬(A → (B → C)),¬(A → B),¬A,C β→ 5, 6
8. ¬(A → (B → C)),¬(A → B),A → C α→ 7
9. ¬(A → (B → C)), (A → B) → (A → C) α→ 8

10. (A → (B → C)) → ((A → B) → (A → C)) α→ 9

The proof of Axiom 3 is similar to the proof of (A → B) → (¬B → ¬A) from
exercise 1.

5.
1. {¬A → A} ` ¬A → A Assumption
2. {¬A → A} ` ¬A →¬¬A Contrapositive
3. {¬A → A} ` (¬A →¬¬A) →¬¬A Theorem 3.28
4. {¬A → A} ` ¬¬A MP 2, 3
5. {¬A → A} ` A Double negation
6. ` (¬A → A) → A Deduction

6.
1. ` A → (¬A → B) Theorem 3.21
2. ` A → (A ∨ B) Definition of ∨

1. ` B → (B ∨ A) Just proved
2. ` B → (A ∨ B) Theorem 3.32

The proof of Theorem 3.32 does not use this theorem so it can be used here.

1. ` (¬C → (A → B)) → ((¬C → A) → (¬C → B)) Axiom 2
2. ` (C ∨ (A → B)) → ((C ∨ A) → (C ∨ B)) Definition of ∨
3. ` (A → B) → (C ∨ (A → B)) Just proved
4. ` (A → B) → ((C ∨ A) → (C ∨ B)) Transitivity

7. Of course, ↔ should be →.

1. {(A ∨ B) ∨ C} ` (A ∨ B) ∨ C Assumption
2. {(A ∨ B) ∨ C} ` ¬(¬A → B) → C Definition of ∨
3. {(A ∨ B) ∨ C} ` ¬C → (¬A → B) Contrapositive
4. {(A ∨ B) ∨ C} ` ¬A → (¬C → B) Exchange
5. {(A ∨ B) ∨ C} ` (¬C → B) → (¬B → C) Contrapos., double neg.
6. {(A ∨ B) ∨ C} ` ¬A → (¬B → C) Transitivity
7. {(A ∨ B) ∨ C} ` A ∨ (B ∨ C) Definition of ∨
8. ` (A ∨ B) ∨ C → A ∨ (B ∨ C) Deduction

8. The proofs are trivial.
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9. The second node below is obtained by applying the α-rule for → three times.

¬((A → (B → C)) → ((A → B) → (A → C)))
↓

A → (B → C),A → B,A,¬C
↙ ↘

A → (B → C),¬A,A,¬C A → (B → C),B,A,¬C
× ↙ ↘

¬A,B,A,¬C B → C,B,A,¬C
× ↙ ↘

¬B,B,A,¬C C,B,A,¬C
× ×

10. Let (A1, . . . ,An) be the elements of U − U′ in some order.

1. `
∨

U′ Assumption
2. `

∨

U′ ∨ A1 Theorem 3.31
· · ·

n+1. `
∨

U′ ∨ A1 ∨ · · · ∨ An Theorem 3.31

So we have to prove that if U′ is a permutation of U and `
∨

U then `
∨

U′.
The proof is by induction on n the number of elements in U. If n = 1, there
is nothing to prove, and if n = 2, the result follows immediately from Theo-
rem 3.32. Let

∨

U =
∨

U1 ∨
∨

U2 and
∨

U′ =
∨

U′
1 ∨

∨

U′
2 have n elements.

If U′
1 and U′

2 are permutations of U1 and U2, respectively, then the result fol-
lows by the inductive hypothesis and Theorem 3.31. Otherwise, without loss
of generality, suppose that there is an element A of U′

2 which is in U1. Sup-
pose that

∨

U′
2 = A ∨

∨

U′′
2 , so that

∨

U′ =
∨

U′
1 ∨ (A ∨

∨

U′′
2 ). Then by

Theorem 3.33,
∨

U′ = (
∨

U′
1 ∨ A) ∨

∨

U′′
2 . Thus all we have to prove is that

A1 ∨ · · · ∨ Ai ∨ · · · ∨ Ak can be written Ai ∨ A1 ∨ · · · ∨ Ai−1 ∨ Ai+1 ∨ · · · ∨ Ak for
arbitrary i. This is proved by a simply induction using Theorem 3.33.

11. The first formula was proved in Theorem 3.24.

1. {A → B,¬A → B} ` ¬A → B Assumption
2. {A → B,¬A → B} ` ¬B → A Contrapositive
3. {A → B,¬A → B} ` A → B Assumption
4. {A → B,¬A → B} ` ¬B → B Transitivity
5. {A → B,¬A → B} ` (¬B → B) → B Theorem 3.29
6. {A → B,¬A → B} ` B MP 4, 5
7. {A → B} ` (¬A → B) → B Deduction
8. ` (A → B) → ((¬A → B) → B) Deduction
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1. {(A → B) → A} ` (A → B) → A Assumption
2. {(A → B) → A} ` ¬A → (A → B) Theorem 3.20
3. {(A → B) → A} ` ¬A → A Transitivity
4. {(A → B) → A} ` (¬A → A) → A Theorem 3.29
5. {(A → B) → A} ` A MP 3, 4
6. ` (A → B) → A) → A Deduction

12. The deduction theorem can be used because its proof only uses Axioms 1 and 2.
1. {¬B →¬A,A} ` ¬B →¬A Assumption
2. {¬B →¬A,A} ` (¬B →¬A) → ((¬B → A) → B) Axiom 3’
3. {¬B →¬A,A} ` (¬B → A) → B MP 1,2
4. {¬B →¬A,A} ` A → (¬B → A) Axiom 1
5. {¬B →¬A,A} ` A Assumption
6. {¬B →¬A,A} ` ¬B → A MP 4,5
7. {¬B →¬A,A} ` B MP 6,3
8. {¬B →¬A} ` A → B Deduction
9. ` (¬B →¬A) → (A → B) Deduction

13. It follows from Definition 3.47 that a sequent {U1, . . . ,Un} ⇒ {V1, . . . ,Vm} is
true iff ¬U1 ∨ · · · ∨ ¬Un ∨V1 ∨ · · · ∨Vm is true. The completeness of S follows
from the completeness of G by showing that the rules of the two are the same.
For example,

U ∪ {A} ⇒ V ∪ {B}
U ⇒ V ∪ {A → B}

is
¬U1 ∨ · · · ¬Um ∨ ¬A ∨ V1 ∨ · · · ∨ Vn ∨ B
¬U1 ∨ · · · ¬Um ∨ V1 ∨ · · · ∨ Vn ∨ (A → B)

which is the α-rule for →, and

U ⇒ V ∪ {A} U ∪ {B} ⇒ V
U ∪ {A → B} ⇒ V

is

¬U1 ∨ · · · ¬Um ∨ V1 ∨ · · · ∨ Vn ∨ A ¬U1 ∨ · · · ¬Um ∨ ¬B ∨ V1 ∨ · · · ∨ Vn

¬U1 ∨ · · · ¬Um ∨ ¬(A → B) ∨ V1 ∨ · · · ∨ Vn

which is the β-rule for →. We leave the check of the other rules to the reader.

14. If ` ¬A1 ∨ · · · ∨ ¬An then clearly U ` ¬A1 ∨ · · · ∨ ¬An, since we do not need to
use the assumptions. But that is the same as U ` A1 → (A2 →· · ·→¬An). Now
U ` Ai is trivial, so by n − 1 applications of modus ponens, U ` ¬An, which
together with U ` An, prove that U is inconsistent.

Conversely, if U is inconsistent, then U ` A and U ` ¬A for some A. But
only a finite number of formulas {A1, . . . ,An} ⊆ U are used in either one of the
proofs, so {A1, . . . ,An} ` A and {A1, . . . ,An} ` ¬A. By n applications of the
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deduction theorem, ` A1 → · · · → An → ¬A and ` A1 → · · · → An → A. From
propositional reasoning, ` A1 → · · · → An → false, and ` ¬A1 ∨ · · · ∨ ¬An.

15.
(a) Assume that U ⊆ S is finite and unsatisfiable. Then ¬

∧

U is valid, so
` ¬

∧

U by completeness (Theorem 3.35). By repeated application of ` A →
(B → (A ∧ B)) (Theorem 3.30), U `

∧

U. But S ∪ U = S and you can always
add unused assumptions to a proof so S ` ¬

∧

U and S `
∧

U, contradicting
the assumption that S is consistent.

(b) Assume that S∪{A} and S∪{¬A} are both inconsistent. By Theorem 3.41,
both S ` A and S ` ¬A, so S is inconsistent, contradicting the assumption.

(c) S can be extended to a maximally consistent set.

Consider an enumeration {A1, . . . , } of all propositional formulas. Let S0 = S
and for each i let Si+1 = Si ∪ {Ai} or Si+1 = Si ∪ {¬Ai}, whichever is consistent.
(We have just proved that one of them must be.) Let S′ =

⋃∞
i=0 Si. First we

prove that S′ is consistent. If S′ is inconsistent, then S′ ` p ∧ ¬ p (for example)
by Theorem 3.39. But only a finite number of elements of S′ are used in the
proof, so there must be some large enough i such that Si includes them all. Then
Si ` p ∧ ¬ p contracting the consistency of Si. To prove that S′ is maximally
consistent, suppose that B 6∈ S′. By construction, ¬B ∈ Si ⊂ S′ for some i, so
S′ ∪ {B} ` ¬B. But trivially, S′ ∪ {B} ` B, so S′ ∪ {B} is inconsistent.

16. I would be pleased if someone would contribute a program!

4 Propositional Calculus: Resolution and BDDs

1. This theorem can be proved both syntactically and semantically. The syntactic
proof uses the same construction as the one for CNF except that the distributive
laws used are: A∧ (B∨C) ≡ (A∧B)∨ (A∧C) and (A∨B)∧C ≡ (A∧C)∨ (B∧C).
For the semantic proof, start by constructing a truth table for the formula A. For
each line in the truth table that evaluates to T , construct a conjunction with the
literal p if p is assigned T in that row and p̄ if p is assigned F. Let A′ be the
disjunction of all these conjunctions. Then A ≡ A′. Let v be an arbitrary model
for A, that is, v(A) = T . Then the assignments in v are such that the row of the
truth table contains T , and by construction v(C) = T for the conjunction C built
from that row. Since A′ is a disjunction of such conjunctions, it is sufficient for
one of them to be true for A′ to be true. Hence v(A′) = T . For the converse,
if v is an arbitrary interpretation so that v(A′) = T , then by the structure of A′,
v(C) = T for at least one conjunction C in A′ (in fact, for exactly one such
conjunction). But for this assignment, v(A) = T by construction.

2. The formula constructed in the previous exercise is in complete DNF.
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3. I would be pleased if someone would contribute a program!

4. This exercise is rather trivial because the sets of clauses are satisfiable and for
S a set of satisfiable clauses, S ≈ {} the valid empty set of clauses. For each of
the sets, we give a sequence of sets obtained by using the various lemmas.

{pq̄, qr̄, rs, ps̄} ≈ {qr̄, rs} ≈ {qr̄} ≈ { },
{pqr, q̄, pr̄s, qs, ps̄} ≈ {pr, pr̄s, s, ps̄} ≈ {pr, p} ≈ {p} ≈≈ { },
{pqrs, q̄rs, p̄rs, qs, p̄s} ≈ {q̄rs, p̄rs, qs, p̄s} ≈ { },
{p̄q, qrs, p̄q̄rs, r̄, q} ≈ {p̄rs, r̄} ≈ {r̄} ≈ { }.

5.
Refutation 1:

5. q̄r 1, 2
6. r 3, 5
7. 2 4, 6

Refutation 2:
5. p̄q̄ 1, 4
6. p 2, 4
7. q̄ 5, 6
8. q 3, 4
9. 2 7, 8

6. The clausal form of the set is:

(1) p, (2) p̄qr, (3) p̄q̄r̄, (4) p̄st, (5) p̄s̄t̄, (6) s̄q, (7) rt, (8) t̄s.

A refutation is:
9. p̄s̄r 5, 7

10. p̄s 4, 8
11. p̄q̄s̄ 3, 9
12. p̄s̄ 11, 6
13. p̄ 12, 10
14. 2 13, 1

7. The clausal form of the formulas is:

{(1) s̄b̄1b̄2, (2) s̄b1b2, (3) sb̄1b2, (4) sb1b̄2, (5) c̄b1, (6) c̄b2, (7) cb̄1b̄2}.

The addition of the set of clauses: {(8) b1, (9) b2, (10) s̄, (11) c̄}, enables a
refutation to be done by resolving clauses 11, 7, 8, 9. The addition of the clauses
{(8) b1, (9) b2, (10) s̄, (11) c} gives a satisfiable set by assigning F to s and T
to all other atoms (check!). The meaning of the satisfiable set is that 1 ⊕ 1 = 0
carry 1, by identifying 1 with T and 0 with F. The unsatisfiable set shows that
it is not true that 1 ⊕ 1 = 0 carry 0.
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8. The statement of the claim should say: Prove adding a unit clause to a set of
clauses such that the atom of the unit clause does not already appear in the set
and . . . .

Let S be the original set of clauses and S′ the new set of clauses obtained by
adding {l} to S and lc to every other clause in S, and let v be a model for S.
Extend v to v′ by defining v′(p) = T if l = p, v′(p) = F if lc = p, and v′ is the
same as v on all other atoms. (Here is where we need the proviso on the new
clause.) By construction, v(l) = T so the additional clause in S′ is satisfied. For
every other clause C, v(C) = v′(C) = T since the addition of a literal to a clause
(which is a disjunction) cannot falsify it.

9. By induction on the depth of the resolution tree. If the depth of the tree is 1,
the result is immediate from Theorem 4.24. If the depth of the tree is n, then
the children of the root are satisfiable by the inductive hypothesis, so the root is
satisfiable by Theorem 4.24.

10. First prove a lemma: for any v, v(A1|p=T op A2|p=T ) = v(A1 op A2) if v(p) = T
and v(A1|p=F op A2|p=F) = v(A1 op A2) if v(p) = F. The proof is by
structural induction. Clearly, v(p|p=T ) = T = v(p) and q|p=T is the same formula
as q for q 6= p. Suppose now that v(p) = T . By the inductive hypothesis,
v(A1|p=T ) = v(A1) and v(A2|p=T ) = v(A2) so by the semantic definitions of the
operators, v(A1|p=T op A2|p=T ) = v(A1 op A2). A similar argument holds for F.

We can now prove the Shannon expansion. Let v be an arbitrary interpretation.
If v(p) = T ,

v( (p ∧ (A1|p=T op A2|p=T )) ∨ (¬ p ∧ (A1|p=F op A2|p=F)) ) =
v(A1|p=T op A2|p=T ),

which equals v(A1 op A2) by the lemma, and similarly if v(p) = F. Since v was
arbitrary, the formulas are logically equivalent.

11. From Example 4.62, the BDDs for p ∨ (q ∧ r) and for A|r=T and A|r=F are:ip
iq

ir
F T

AA
A

@
@

ip
iq

F T
\

\
\

\
\

\

ip

F T

Using the algorithm apply with ∨ gives the middle BDD above for p ∨ q: re-
cursing on the left subBDD gives q ∨ F which is q and recursing on the right
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subBDD is clearly T . Using the algorithm apply with ∧ gives the right BDD
above for p: recursing on the left subBDD gives the controlling operand F for
∧ and recursing on the right subBDD is clearly T .

12. The programs in the software archive implement the optimizations.

13. Let us number the clauses as follows:

(1) p̄q, (2) pq̄, (3) prs, (4) p̄r̄s, (5) p̄rs̄, (6) pr̄s̄,
(7) s̄t, (8) st̄, (9) q̄rt, (10) qr̄t, (11) qrt̄, (12) q̄r̄t̄.

The refutation is not for the faint-hearted....
13. qrs 1, 3
14. qst 13, 10
15. q̄r̄s 2, 4
16. q̄st 15, 9
17. st 14, 16
18. s 17, 8
19. qr̄s̄ 1, 6
20. qs̄t̄ 19, 11
21. q̄rs̄ 2, 5
22. q̄s̄t̄ 21, 12
23. s̄t̄ 20, 22
24. s̄ 23, 7
25. 2 18, 24

14. This is trivial as all the leaves are labeled false.

15. Here is the complete graph with the edges and vertices labeled.

¡
¡
¡
¡
¡
¡¡
HHHHHHH¨¨¨¨¨¨̈

A
A
A
A
A
AA±

±
±

±
±

±
±

±
±±

B
B

B
B

B
B

B
B

B
B¢

¢
¢

¢
¢

¢
¢

¢
¢
¢

Q
Q

Q
Q

Q
Q

Q
Q

QQ

a b

c

d

e

f

gh

ij

0

0 0

0

1

The clauses are the eight even-parity clauses on the atoms abhi and the eight
odd-parity clauses on each of aefj, degh, cdij and bcfg, forty clauses in all. We
leave the construction of a resolution refutation to the reader.
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16. Suppose Π(vn) = bn and let C = l1 · · · lk be an arbitrary clause associated with
n. Then C can is only falsified by the assignment

v(pi) = F if li = pi and v(pi) = T if li = p̄i.

Then

Π(C) = (by definition)
parity of negated atoms of C = (by construction)
parity of literals assigned T = (by definition)
Π(vn) = (by assumption)
bn,

which contradicts the assumption that C ∈ C(n). Thus if Π(vn) = bn, v must
satisfy all clauses in C(n).

17. Decision procedure for satisfiability of sets of formulas whose only operators
are ¬, ↔ and ⊕:

• Use p ⊕ q ≡ ¬(p ↔ q) ≡ ¬ p ↔ q and ¬¬ p ≡ p to reduce the formulas to
the form q1 ↔ · · · ↔ qn.

• Use commutativity, associativity and:
p ↔ p ≡ true, p ↔¬ p ≡ false, p ↔ true ≡ p, p ↔ false ≡ ¬ p,
to reduce the formulas to equivalences on distinct atoms.

• If all formulas reduce to true, the set is valid. If some formula reduces to
false, the set is unsatisfiable.

• Otherwise, delete all formulas which reduce to true. Transform the for-
mulas as in the lemma. Let {p1, . . . , pm} be the new atoms. Assign true
to p1 and each q1

j to which it is equivalent. By induction, assign true to
pi, unless some qi

j has already been assigned to; if so, assign its value to
pi. If pi has already been assigned a clashing value, the set of formulas is
unsatisfiable.

Each of the three steps increases the size of the formula by a small polynomial,
so the procedure is efficient.

5 Predicate Calculus: Formulas, Models, Tableaux

1. A falsifying interpretation is ({1, 2}, {{2}}, {1}}. Then v(p(2)) = T so v(∃ xp(x)) =
T , but v(p(a)) = v(p(1)) = F.

2. We will prove the validity by constructing a closed semantic tableau for the
negation of each formula. To simply formatting, a linear representation will be

14



used for tableaux: 1 will number the first or only child and 2 the second child.
Copying of the universal formulas will be omitted as it is not necessary to prove
these formulas.

(a) For this formula we prove the implication for each direction separately.
1. ¬[∃ x(A(x) → B(x)) → (∀ xA(x) →∃ xB(x))] α→
11. ∃ x(A(x) → B(x)),¬(∀ xA(x) →∃ xB(x)) α→
111. ∃ x(A(x) → B(x)),∀ xA(x),¬∃ xB(x)) δ

1111. A(a) → B(a),∀ xA(x),¬∃ xB(x)) β→
11111. ¬A(a),∀ xA(x),¬∃ xB(x)) γ

111111. ¬A(a),A(a),¬B(a) ×
11112. B(a),∀ xA(x),¬∃ xB(x) γ

111121. B(a),A(a),¬B(a) ×

1. ¬[(∀ xA(x) →∃ xB(x)) →∃ x(A(x) → B(x))] α→
11. ∀ xA(x) →∃ xB(x),¬∃ x(A(x) → B(x)) β→
111. ¬∀ xA(x),¬∃ x(A(x) → B(x)) δ

1111. ¬A(a),¬∃ x(A(x) → B(x)) γ

11111. ¬A(a),¬(A(a) → B(a)) α→
111111. ¬A(a),A(a),¬B(a) ×
112. ∃ xB(x),¬∃ x(A(x) → B(x)) δ

1121. B(a),¬∃ x(A(x) → B(x)) γ

11211. B(a),¬(A(a) → B(a)) α→
112111. B(a),A(a),¬B(a) α→

(b)
1. ¬[(∃ xA(x) →∀ xB(x)) →∀ x(A(x) → B(x))] α→
11. ∃ xA(x) →∀ xB(x),¬∀ x(A(x) → B(x)) β→
111. ¬∃ xA(x),¬∀ x(A(x) → B(x)) δ

1111. ¬∃ xA(x),¬(A(a) → B(a)) α→
11111. ¬∃ xA(x),A(a),¬B(a) γ

111111. ¬A(a),A(a),¬B(a) ×
112. ∀ xB(x),¬∀ x(A(x) → B(x)) δ

1121. ∀ xB(x),¬(A(a) → B(a)) α→
11211. ∀ xB(x),A(a),¬B(a) γ

112111. B(a),A(a),¬B(a) ×
(c)

1. ¬[∀ x(A(x) ∨ B(x)) → (∀ xA(x) ∨ ∃ xB(x))] α→
11. ∀ x(A(x) ∨ B(x)),¬(∀ xA(x) ∨ ∃ xB(x)) α ∨
111. ∀ x(A(x) ∨ B(x)),¬∀ xA(x),¬∃ xB(x)) δ

1111. ∀ x(A(x) ∨ B(x)),¬A(a),¬∃ xB(x)) γ

11111. A(a) ∨ B(a),¬A(a),¬B(a) β ∨
111111. A(a),¬A(a),¬B(a) ×
111112. B(a),¬A(a),¬B(a)) ×
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(d)
1. ¬[∀ x(A(x) → B(x)) → (∃ xA(x) →∃ xB(x))] α→
11. ∀ x(A(x) → B(x)),¬(∃ xA(x) →∃ xB(x)) α→
111. ∀ x(A(x) → B(x)),∃ xA(x),¬∃ xB(x)) δ

1111. ∀ x(A(x) → B(x)),A(a),¬∃ xB(x)) γ

11111. A(a) → B(a),A(a),¬B(a) β→
111111. ¬A(a),A(a),¬B(a) ×
111112. B(a),A(a),¬B(a) ×

3. We will show this for (b), (c) and (d) of the previous exercise.

(b) ({1, 2}, {{1}, {1}}, {}}. Since A and B are interpreted by the same relation,
∀ x(A(x) → B(x)) is true, as is ∃ xA(x), but ∀ xB(x)) is not when x is assigned 2.

(c) For the same interpretation, ∀ xA(x)∨∃ xB(x) is true, because ∃ xB(x) is true,
but ∀ x(A(x) ∨ B(x)) is false if x is assigned 2.

(d) ({1, 2}, {{1}, {2}}, {}}. ∃ xA(x)→∃ xB(x) is true, because there are assign-
ments making each of A(x) and B(x) true, but assigning 1 to x makes A(x)→B(x)
false.

4.
(a) A falsifying interpretation must cause the negation

∀ x∃ y((p(x, y) ∧ ¬ p(y, x)) ∧ (p(x, x) ⊕ p(y, y))

to be true. Let the domain be the positive natural numbers and the predicate
p(x, y) be interpreted by b

√
xc2 < y, where bac is the largest integer less than

a. For every x, we have to produce a y such that the formula is true. If x is
the square of a natural number, let y = x + 1. Otherwise, let y = d

√
x e2, the

square of the smallest number larger than x. For example, pairs for which p is
true include:

(1, 2), (2, 4), (3, 4), (4, 5), (5, 9), (6, 9), . . . .

Case 1: x is a square (hence x + 1 is not) and y = x + 1.

b
√

xc2 = x = y − 1 < y, so p(x, y) is true.
b√yc2 = b

√
x + 1c2 = x 6< x, so p(y, x) is false.

b
√

xc2 = x 6< x, so p(x, x) is false.
b√yc2 = b

√
x + 1c2 < x + 1 = y, so p(y, y) is true.

Case 2: x is not a square and y = d
√

x e2.

b
√

xc2 < d
√

x e2 = y, so p(x, y) is true.
b
√

d
√

x e2c2 = d
√

x e2 =6< x, so p(y, x) is false.
b
√

xc2 < x, so p(x, x) is true.
b
√

d
√

x e2c2 = d
√

x e2 = y 6< y, so p(y, y) is false.

The truth of the matrix of the above formula follows from these truth values.
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(b) In the domain of the integers with ≤ assigned to p, the consequent states that
there is a lower bound which is false.

5. Suppose that vI (∀ x1 · · · ∀ xnA′) = T and let σI be an arbitrary assignment which
assigns (d1, . . . , dn) to (x1, . . . , xn), for di ∈ D. But vσI [x1←d1,...,x1←d1](A′) = T by
assumption and σI[x1 ← d1, . . . , xn ← dn] = σI , so vσI (A′) = T . The converse
is trivial and the proof for the existential case is similar.

6.
1. ¬[∀ x(p(x) ∨ q(x)) → (∀ xp(x) ∨ ∀ xq(x))] α→
11. ∀ x(p(x) ∨ q(x)),¬(∀ xp(x) ∨ ∀ xq(x)) α ∨
111. ∀ x(p(x) ∨ q(x)),¬∀ xp(x),¬∀ xq(x) δ

1111. ∀ x(p(x) ∨ q(x)),¬ p(b),¬∀ xq(x) δ

11111. ∀ x(p(x) ∨ q(x)),¬ p(b),¬ q(a) γ

111111. p(a) ∨ q(a), p(b) ∨ q(b),¬ p(b),¬ q(a) β ∨
1111111. p(a), p(b) ∨ q(b),¬ p(b),¬ q(a) β ∨
1111112. q(a), p(b) ∨ q(b),¬ p(b),¬ q(a) ×
11111111. p(a), p(b),¬ p(b),¬ q(a) ×
11111112. p(a), q(b),¬ p(b),¬ q(a) ¬

7.
1. ¬[(∀ xp(x) →∀ xq(x)) →∀ x(p(x) → q(x))] α→
11. ∀ xp(x) →∀ xq(x), ¬∀ x(p(x) → q(x)) α→
111. ∀ xp(x), ¬∀ xq(x), ¬∀ x(p(x) → q(x)) δ

1111. ∀ xp(x), ¬∀ xq(x), ¬(p(a) → q(a) α→
11111. ∀ xp(x), ¬∀ xq(x), p(a), ¬ q(a) δ

111111. ∀ xp(x), ¬ q(b), p(a), ¬ q(a) γ

1111111. p(a), p(b), ¬ q(b), p(a), ¬ q(a) ¬

8. Note that in the text the label Hintikka’s Lemma is attached to Theorm 5.32
instead of to Lemma 5.33.

The proof is by structural induction. The base case and the cases for the Boolean
operators are the same as for the propositional calculus. Suppose that A =
∀ xA′(x) is a γ formula in U. By condition 4 of the Hintikka set, A′(a) ∈ U for all
constants a. By the inductive hypothesis, there is an interpretation I in which all
formulas A′(a) are true. So vσI [x←a](A′(x)) = T for all a, so vσI (∀ xA′(x)) = T .
The case for the existential quantifier is similar.

9. Here are some of the changes that need to be made to utility.pl.
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instance(all(v(N1), A), all(v(N2), A1), Y, C) :-

var(C), N1 N2, !, instance(A, A1, Y, C).

instance(all(v(N), A), all(v(N), A1), Y, C) :-

atom(C), !, instance(A, A1, Y, C).

instance(ex(v(N1), A), ex(v(N2), A1), Y, C) :-

var(C), N1 N2, !, instance(A, A1, Y, C).

instance(ex(v(N), A), ex(v(N), A1), Y, C) :-

atom(C), !, instance(A, A1, Y, C).

subst constant(X, C, [X | Tail], [C | Tail1]) :- !,

subst constant(X, C, Tail, Tail1).

subst constant(X, C, [v(N) | Tail], [v(N) | Tail1]) :-

var(C), !, subst constant(X, C, Tail, Tail1).

subst constant(X, C, [Y | Tail], [Y | Tail1]) :-

atom(C), !, subst constant(X, C, Tail, Tail1).

subst constant( , , [], []).

10. Let An be an arbitrary γ formula appearing on the open branch; then An ∈ U(i)
for all i ≥ n. Let am be an arbitrary constant appearing on the open branch;
am was introduced by a δ-rule at some node m′, and am ∈ C(i) for all i ≥ m′.
Let k = max(n,m′), so that An ∈ U(k) and am ∈ C(k). By the systematic
construction, eventually the γ-rule is applied to An so An(am) ∈ U. Since An and
am were arbitrary this proves condition 4 of the Hintikka set.

Thus the set of formulas on an open branch form a Hintikka set, and the same
proof holds for Hintikka’s Lemma. The number of constant symbols is count-
able because they were introduced at the nodes where the δ-rule was applied:
a subset of the countable number of nodes on the path. Thus every satisfiable
countable set of formulas has a countable model.

11.
(a) Let M = M1 ∧ · · · ∧ Mm be an unsatisfiable conjunction of instances of the
matrix. M itself is an unsatisfiable conjunction of literals, so there must be two
clashing literals li ∈ Mi, lj ∈ Mj. If i = j, then Mi itself is unsatisfiable, otherwise
Mi ∧ Mj is unsatisfiable. The converse is trivial.

(b) Let M = M1 ∧ · · · ∧ Mm be an unsatisfiable conjunction of instances of the
matrix, which can be written as p1∧· · ·∧pk∧C1∧· · ·∧Cl, where the pi are atoms
and the Ci are disjunctions of at most n negative literals. C1 ∧ · · · ∧ Cl is clearly
satisfiable, so there must be some Ci which becomes false when p1 ∧ · · · ∧ pk

are conjoined. Let pi1 , . . . , pin be atoms that clash with the n literals of Ci. The
conjunction Ci ∧pi1 ∧ · · ·∧pin is unsatisfiable, and at worst each conjunct comes
from a different instance of the matrix. The converse is trivial.
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12. The proof can be found in Section 2-1.6 of Zohar Manna. Mathematical Theory
of Computation. McGraw-Hill, 1974.

6 Predicate Calculus: Deductive Systems

1.
1. p(a),¬ p(a), q(a),¬∀ x(p(x) → q(x)),∃ xq(x) Axiom
2. ¬ q(a),¬ p(a), q(a),¬∀ x(p(x) → q(x)),∃ xq(x) Axiom
3. ¬(p(a) → q(a)),¬ p(a), q(a),¬∀ x(p(x) → q(x)),∃ xq(x) β→, 1, 2
4. ¬ p(a), q(a),¬∀ x(p(x) → q(x)),∃ xq(x) γ

5. ¬ p(a),¬∀ x(p(x) → q(x)),∃ xq(x) γ

6. ¬∃ p(x),¬∀ x(p(x) → q(x)),∃ xq(x) δ

7. ¬∀ x(p(x) → q(x)),∃ p(x) →∃ xq(x) α→
8. ∀ x(p(x) → q(x)) → (∃ p(x) →∃ xq(x)) α→

1. ¬∀ xp(x),¬ p(a),∃ xq(x), q(a), p(a) Axiom
2. ¬∀ xp(x),¬ p(a),∃ xq(x), q(a),¬ q(a) Axiom
3. ¬∀ xp(x),¬ p(a),∃ xq(x), q(a),¬(p(a) → q(a)) β→, 1, 2
4. ¬∀ xp(x),∃ xq(x), q(a),¬(p(a) → q(a)) γ

5. ¬∀ xp(x),∃ xq(x),¬(p(a) → q(a)) γ

6. ¬∀ xp(x),∃ xq(x),¬∃(p(x) → q(x)) δ

7. ∀ xp(x) →∃ xq(x),¬∃(p(x) → q(x)) α→
8. ∃(p(x) → q(x)) → (∀ xp(x) →∃ xq(x)) α→

1. p(a),¬ p(a), q(a),∃ x(p(x) → q(x)) Axiom
2. p(a), p(a) → q(a),∃ x(p(x) → q(x)) α→
3. p(a),∃ x(p(x) → q(x)) γ

4. ∀ xp(x),∃ x(p(x) → q(x)) δ

5. ¬ q(a),¬ p(a), q(a),∃ x(p(x) → q(x)) Axiom
6. ¬ q(a), p(a) → q(a),∃ x(p(x) → q(x)) α→
7. ¬ q(a),∃ x(p(x) → q(x)) γ

8. ¬∃ q(x),∃ x(p(x) → q(x)) δ

9. ¬(∀ xp(x) →∃ q(x)),∃ x(p(x) → q(x)) β→, 4, 8
10. (∀ xp(x) →∃ q(x)) →∃ x(p(x) → q(x)) α→

2. Soundness: The axioms are clearly valid and we have proven that the α- and β-
rules preserve validity. Let I be an arbitrary interpretation; then I |= U where
{∃ xA(x),A(a)} ∈ U. By Theorem 2.32, I |= U −{A(a)}, so the γ-rule is valid.
Let I be an arbitrary interpretation; then I |= U, where {A(a)} ∈ U, and a does
not occur in any other formula in U. By definition, vI (A(a)) = T where a is
assigned d ∈ D in I. However, U is valid and a does not occur otherwise in U,
so vId′ (A(a)) = T where Id′ is any interpretation that is the same as I except
that d′ ∈ D is assigned to a. Clearly, vσI [x←d′](A(x)) = T for all d′ ∈ D and
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therefore vI (∀ xA(x)) = T . Completeness is immediate from the completeness
of semantic tableaux and the relation of tableaux to G.

3. Let I be an interpretation for Axiom 4, and suppose that v(∀ xA(x)) = T , but
v(A(a)) = F. But v(∀ xA(x)) = T iff v[x←d](A(x)) = T for all d ∈ D, in
particular for the d′ that is assigned to a by I. Since x is not free in A(a),
v(A(a)) = v[x←d](A(a)) = T contradicting the assumption.

Let I be an interpretation for Axiom 5 and suppose that v(∀ x(A → B(x))) = T ,
v(A) = T but v(∀ xB(x)) = F. v[x←d](A → B(x)) = T for all d and v[x←d](A) =
v(A) = T since x is not free in A. By MP, v[x←d](B(x)) = T for all d and
v(∀B(x)) = T by definition.

4.
1. ¬∀ xA(x),A(a),¬A(a) Axiom
2. ¬∀ xA(x),A(a) γ

3. ∀ xA(x) → A(a) α→

1. ¬∀ x(A → B(x)),A,¬A,B(a) Axiom
2. ¬∀ x(A → B(x)),¬B(a),¬A,B(a) Axiom
3. ¬∀ x(A → B(x)),¬(A → B(a)),¬A,B(a) β→, 1, 2
4. ¬∀ x(A → B(x)),¬A,B(a) γ

5. ¬∀ x(A → B(x)),¬A,∀ xB(x) δ

6. ¬∀ x(A → B(x)),A →∀ xB(x) α→
7. ∀ x(A → B(x)) → (A →∀ xB(x)) α→

5.
1. {∀ x(p(x) → q)} ` ∀ x(p(x) → q) Assumption
2. {∀ x(p(x) → q)} ` p(a) → q Axiom 4
3. {∀ x(p(x) → q)} ` ¬ q →¬ p(a) Contrapositive
4. {∀ x(p(x) → q)} ` ∀ x(¬ q →¬ p(x)) Generalization
5. ` ∀ x(p(x) → q) →∀ x(¬ q →¬ p(x)) Deduction

1. {∀ x(¬ q →¬ p(x))} ` ∀ x(¬ q →¬ p(x)) Assumption
2. {∀ x(¬ q →¬ p(x))} ` ¬ q →¬ p(a) Axiom 4
3. {∀ x(¬ q →¬ p(x))} ` p(a) → q Contrapositive
4. {∀ x(¬ q →¬ p(x))} ` ∀ x(p(x) → q) Generalization
5. ∀ x(¬ q →¬ p(x)) →∀ x(p(x) → q) Deduction
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6.
1. {∀ x(p(x) → q(x)),∃ xp(x)} ` ∃ xp(x) Assumption
2. {∀ x(p(x) → q(x)),∃ xp(x)} ` p(a) C-Rule
3. {∀ x(p(x) → q(x)),∃ xp(x)} ` ∀ x(p(x) → q(x)) Assumption
4. {∀ x(p(x) → q(x)),∃ xp(x)} ` p(a) → q(a) Axiom 4
5. {∀ x(p(x) → q(x)),∃ xp(x)} ` q(a) MP 2, 4
6. {∀ x(p(x) → q(x)),∃ xp(x)} ` ∃ xq(x) Theorem 6.11
7. {∀ x(p(x) → q(x))} ` ∃ xp(x) →∃ xq(x) Deduction
8. ` ∀ x(p(x) → q(x)) → (∃ xp(x) →∃ xq(x)) Deduction

1. {∃ x(p(x) → q(x)),∀ xp(x)} ` ∃ x(p(x) → q(x)) Assumption
2. {∃ x(p(x) → q(x)),∀ xp(x)} ` p(a) → q(a) C-Rule
3. {∃ x(p(x) → q(x)),∀ xp(x)} ` ∀ xp(x) Assumption
4. {∃ x(p(x) → q(x)),∀ xp(x)} ` p(a) Axiom 4
5. {∃ x(p(x) → q(x)),∀ xp(x)} ` q(a) MP 2, 4
6. {∃ x(p(x) → q(x)),∀ xp(x)} ` ∃ xq(x) Theorem 6.11
7. {∃ x(p(x) → q(x))} ` ∀ xp(x) →∃ xq(x) Deduction
8. ` ∃ x(p(x) → q(x)) → (∀ xp(x) →∃ xq(x)) Deduction

For the converse, we will prove the contrapositive.
1. {∀(¬ q(x) →¬ p(x)),∀¬ q(x)} ` ∀¬ q(x) Assumption
2. {∀(¬ q(x) →¬ p(x)),∀¬ q(x)} ` ¬ q(a) Axiom 4
3. {∀(¬ q(x) →¬ p(x)),∀¬ q(x)} ` ∀(¬ q(x) →¬ p(x)) Assumption
4. {∀(¬ q(x) →¬ p(x)),∀¬ q(x)} ` ¬ q(a) →¬ p(a) Axiom 4
5. {∀(¬ q(x) →¬ p(x)),∀¬ q(x)} ` ¬ p(a) MP 2, 4
6. {∀(¬ q(x) →¬ p(x)),∀¬ q(x)} ` ∃¬ p(x) Theorem 6.11
7. {∀(¬ q(x) →¬ p(x))} ` ∀¬ q(x) →∃¬ p(x) Deduction
8. ` ∀(¬ q(x) →¬ p(x)) → (∀¬ q(x) →∃¬ p(x)) Deduction

7.
1. {∀ x∃ yp(x, y)} ` ∀ x∃ yp(x, y) Assumption
2. {∀ x∃ yp(x, y)} ` ∃ yp(a, y) Axiom 4
3. {∀ x∃ yp(x, y)} ` p(a, b) C-Rule
4. {∀ x∃ yp(x, y)} ` ∀ xp(a, b) Generalization (illegal)
5. {∀ x∃ yp(x, y)} ` ∃ y∀ xp(x, y) Theorem 6.11
6. ` ∀ x∃ yp(x, y) →∃ y∀ xp(a, y) Deduction

8. ` A′ should be ` ¬A′.

Suppose that ` A ∨ B, so that by soundness |= A ∨ B The first step in a tableau
construction is to apply the α-rule to ¬(A ∨ B) to obtain the set {¬A,¬B}. The
tableau will eventually close, so by the proof of the tableau construction, we
know that this set is unsatisfiable, that is, for arbitrary v, v(¬A) 6= v(¬B), so
v(A) 6= (B), v(A∧B) = F and v(¬(A∧B)) = T . Since v was arbitrary, |= ¬(A∧B)
and by completeness ` ¬(A ∧ B).
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Let A = ∀ xB(x). Then ¬A′ = ¬∃ xB′(x) ≡ ∀ x¬B′(x). In a tableau construc-
tion for A, eventually we reach ground instances of B(x) whose tableaux close.
By induction, the tableaux for the corresponding instances of ¬B′(x) must also
close.

9. I would be pleased if someone would contribute a program!

10. Suppose that A is satisfied in a finite model I, that is, a model with a finite
domain D. By definition D is non-empty, so there is at least one element
d ∈ D. Define an infinite interpretation I′ from I by adding to D an infinite
sequence of new elements e1, e2, . . . and for every n-ary relation Ri in I and
tuple (x1, . . . , xn), (x1, . . . , xn) ∈ RI iff (x′1, . . . , x

′
n) ∈ RI where x′j = d if xj = ek

for some k, otherwise, x′j = xj. It is easy to show by induction that I′ is also a
model for A. The converse is trivial.

11. Let {A1,A2, . . .} be a list of all formulas in T . Construct Ti by induction as
follows. T0 = T . If Ti 6 ` ¬Ai+1 then set Ti+1 = Ti ∪ {Ai+1} otherwise Ti+1 = Ti.
Finally, let T ′ =

⋃

i Ti Show that T ′ is both consistent and complete. Note that
the proof is not constructive since in general we cannot show if a formula in
provable in a theory.

7 Predicate Calculus: Resolution

1.

Original formula ∀ x(p(x) →∃ yq(y))
Rename bound variables (no change)
Eliminate Boolean operators ∀ x(¬ p(x) ∨ ∃ yq(y))
Push negation inwards (no change)
Extract quantifiers ∀ x∃ y(¬ p(x) ∨ q(y))
Distribute matrix (no change)
Replace existential quantifiers ¬ p(x) ∨ q(f (x)).

Original formula ∀ x ∀ y(∃ zp(z) ∧ ∃ u(q(x, u) →∃ vq(y, v)))
Rename bound variables (no change)
Eliminate Boolean operators ∀ x ∀ y(∃ zp(z) ∧ ∃ u(¬ q(x, u) ∨ ∃ vq(y, v)))
Push negation inwards (no change)
Extract quantifiers ∀ x ∀ y∃ z∃ u∃ v(p(z) ∧ (¬ q(x, u) ∨ q(y, v)))
Distribute matrix (no change)
Replace existential quantifiers p(f (x, y)), ¬ q(x, g(x, y)) ∨ q(y, h(x, y)).
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Original formula ∃ x(¬∃ yp(y) →∃ z(q(z) → r(x)))
Rename bound variables (no change)
Eliminate Boolean operators ∃ x(¬¬∃ yp(y) ∨ ∃ z(¬ q(z) ∨ r(x)))
Push negation inwards ∃ x(∃ yp(y) ∨ ∃ z(¬ q(z) ∨ r(x)))
Extract quantifiers ∃ x∃ y∃ z(p(y) ∨ ¬ q(z) ∨ r(x))
Distribute matrix (no change)
Replace existential quantifiers p(b) ∨ ¬ q(c) ∨ r(a)

2.

H1 = {a, f (a), f (f (a)), . . .}
B1 = {pa, pf (a), pf (f (a)), . . . , qf (f (a)), qf (f (f (a))), . . .}

H2 = {a, b,

f (a, a), f (a, b), f (b, a), f (b, b),

g(a, a), g(a, b), g(b, a), g(b, b),

h(a, a), h(a, b), h(b, a), h(b, b),

f (a, f (a, a)), f (f (a, a), ), f (a, g(a, a), f (g(a, a), a), . . . ,

g(a, f (a, a)), g(f (a, a), ), g(a, g(a, a), g(g(a, a), a), . . . ,

h(a, f (a, a)), h(f (a, a), ), h(a, g(a, a), h(g(a, a), a), . . . ,

. . .}
B2 = {pa, pb, qaa, qab, qba, qbb,

pf (a, a), pf (a, b), pf (b, a), pf (b, b), . . .

qaf (a, a), qaf (a, b), qaf (b, a), qaf (b, b), . . .

qbf (a, a), qbf (a, b), qbf (b, a), qbf (b, b), . . .

. . .}
H3 = {a, b, c}
B3 = {pa, pb, pc, qa, qb, qc, ra, rb, rc}

3. Suppose that I |= ∀ y1 · · · ∀ ynp(y1, . . . , yn, f (y1, . . . , yn)). We will show that
I |= ∀ y1 · · · ∀ yn ∃ xp(y1, . . . , yn, x). Let (d1, . . . , dn) be arbitrary elements of
the domain, and let d′ be the domain element f (d1, . . . , dn). By assumption,
(d1, . . . , dn, f (d1, . . . , dn)) ∈ Rp where Rp is the relation assigned to p. Since
(d1, . . . , dn) were arbitrary, this proves that I |= ∀ y1 · · · ∀ yn ∃ xp(y1, . . . , yn, x).

4. Suppose that ∀ x1 · · · ∀ xnA(x1, . . . , xn) is satisfiable in an interpretation

I = (D, {R1, . . . ,Rm}, {d1, . . . , dk}).
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Define the interpretation

I′ = (D′, {R′
1, . . . ,R

′
m}, {d′

1, . . . , d
′
k}),

where D′ = {e} for some e ∈ D, d′
i = e for all i and (e, . . . , e) ∈ R′

i iff
(e, . . . , e) ∈ Ri. We claim that I′ is a model for the formula. We have to
show that for any choice of {e1, . . . , en}, A(e1, . . . , en) is true. But there is only
one domain element so the only formula that has to be checked is A(e, . . . , e).
By assumption, this formula contains no quantifiers or function symbols, so a
simple induction on the Boolean structure of the formula will suffice. Since
∀ x1 · · · ∀ xnA(x1, . . . , xn) is true in I, it follows that A(e, . . . , e) is true. For an
atomic formula, the formula is true by construction, and for Boolean operators,
the result follows by propositional reasoning. The converse is trivial.

5. Soundness follows immediately from Theorem 7.29.

Let A be an arbitrary formula. By Theorem 7.11, there is a formula A′ in clausal
form such that A′ ≈ A. Clearly, ¬A′ ≈ ¬A by just complementing the relations
in an interpretation. Suppose now that A′ is not valid; then there is a model for
¬A′, so there is a model for ¬A, so A is not valid. We have shown that if A is
valid, then the formula A′ in clausal form is also valid. Therefore, it is sufficient
to show that a valid formula in clausal form is provable.

By the semantic form of Herbrand’s Theorem (7.23), there is a finite set S of
ground instances of clauses in A′ which is unsatisfiable. Assign a distinct new
propositional letter to each ground atom in S, obtaining a set S′ of propositional
clauses. It is trivial that S′ is unsatisfiable. By the completeness of resolution
for the propositional calculus, there is a refutation of S′ and the refutation can
be mapped into a ground refutation of S.

6.

Eθ = p(f (g(y)), f (u), g(u), f (y))

(Eθ)σ = p(f (g(f (a))), f (y), g(y), f (f (a)))

θσ = {x ← f (g(f (a))), z ← f (f (a)), u ← y}
E(θσ) = p(f (g(f (a))), f (y), g(y), f (f (a)))

7. We prove the theorem for an expression that is a single variable u; the theorem
follows from a simple induction on the structure of the expression.

uθ = ti, if u is xi for some i

uθ = u, if u is not xi for all i
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(uθ)σ = tiσ, if u is xi for some i

(uθ)σ = sj, if u is not xi for all i and u is yj for some j

u(θσ) = tiσ, if u is xi for some i

u(θσ) = sj, if u is yj for some j and yj is not xi for all i

Clearly, the two definitions are the same.

8.
p(a, x, f (g(y))) and p(y, f (z), f (z)) can be unified by

{y ← a, x ← f (g(y)), z ← g(y)}.

p(x, g(f (a)), f (x)) and p(f (a), y, y) cannot be unified because of the function
symbol clash between g(f (a)) and f (x) after unifying each with y.

p(x, g(f (a)), f (x)) and p(f (y), z, y) cannot be unified because of the occur check
after substituting for x in the third equation.

p(a, x, f (g(y))) and p(z, h(z, u), f (u)) can be unified by

{x ← h(a, g(y)), z ← a, y ← g(y)}.

9.

θθ = {xi ← tiθ | xi ∈ X, xi 6= tiθ} ∪ {xi ← ti | xi ∈ X, xi 6= X}
= {xi ← tiθ | xi ∈ X, xi 6= tiθ}

If θθ = θ, then tiθ = ti so V ∩ X = ∅, and conversely, if V ∩ X = ∅ then tiθ = ti,
so θθ = θ.

Let θ be the mgu produced by the unification algorithm, and suppose that x ←
ti ∈ θ is such that xj ∈ X is in ti. Then xj appears on the left-hand side of
some substitution in θ so the fourth rule would be applicable, contradicting the
assumption.

10. The clausal form of the negation of ∀ x(A(x) → B(x)) → (∀ xA(x) →∃ xB(x)) is
{¬A(x)B(x), A(y), ¬B(z)}. Using the substitution y ← x, the first two clauses
resolve to give B(x) and using the substitution z ← x, this clause resolves with
the third one to give 2.
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The clausal form of the negation of ∀ x(A(x) → B(x)) → (∃ xA(x) →∃ xB(x)) is
{¬A(x)B(y), A(f (x)), ¬B(z)}. Using the substitution z ← y, the first and third
clauses resolve to give ¬A(x). After standardizing apart the second clause to
A(f (x′)), the substitution x ← f (x′) can be used to resolve it with ¬A(x) to give
2.

11. I would be pleased if someone would contribute a program!

12. I would be pleased if someone would contribute a program!

13. (From: Harry Lewis, Renaming a set of clauses as a Horn set, Journal of the
ACM, 25(1), 1978, 134-135.) Suppose that RU (S) is Horn. Let I be the in-
terpretation obtained by assigning true to all atoms in U and false to all other
atoms. Let C = lij ∨ lik ∈ S∗ be arbitrary. If both literals are positive, one must
have been renamed to make the clause Horn, so it is assigned true, satisfying C.
If both are negative, one must not have been renamed, so its atom is assigned
false, satisfying C. If one is positive and the other is negative, the positive one is
renamed if the negative one is also renamed. Either the atom for negative literal
is assigned false, or the positive literal is assigned true, satisfying C.

Conversely, suppose that S∗ is satisfied by an interpretation M, and let U be
the set of atoms assigned true in M. Let C ∈ RU (S) be arbitrary and suppose
that C had two positive literals p and q after renaming. If they were derived
by renaming both ¬ p and ¬ q, then p and q are assigned true in M, falsifying
¬ p ∨ ¬ q ∈ S∗ which is a contradiction. If p were renamed and q not, p is
assigned true and q is assigned false, falsifying ¬ p ∨ q ∈ S∗. If neither were
renamed, they are both assigned false, falsifying p ∨ q ∈ S∗.

8 Logic Programming

1. The identity substitution is a correct answer substitution iff P |= ∀(¬G) which
is p(a) |= ∀ xp(x). But as shown on page 129–130, (Z, {even(x)}, {2}) is a
model for p(a) but not for ∀ xp(x).

2. (Omitted)

3. See Figure 1.

4. We give an Hebrand model for each set of clauses obtained by omitting a clause.

(a) {p(c, b), p(b, c), p(b, b), p(c, c)}.

(b) {p(a, b), p(b, a), p(a, a), p(b, b)}.

(c) {p(a, b), p(b, a), p(c, b), p(b, c)}.

(d) {p(a, b), p(c, b)}.
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p(z′, b) p(z′, z′′), q(z′′, b)
...
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@
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Figure 1: SLD-tree for selection of rightmost literal

For the goal clause ←p(a, c), neither of the first two rules apply, so either the
third or fourth rules must be applied. Whichever one comes first, in a depth-first
search it will be repeatedly applied, and the other one will never be applied.
Similarly, examination of the rules shows that applications of rules three or four
will never produce a clause to which rules one or two can be applied, even if
they come before rules three or four in the ordering. However, we have just
shown that all rules are necessary to produce a refutation.

5. With the occurs check, q(x, f (x)) and ←q(x, x) do not unify so there is no refu-
tation. Without the check, they unify and resolve to give the empty clause. The
“correct answer substitution” gives ∀ xq(x, f (x)) |= ∀ xq(x, x) which is not true
in the interpretation {Z, {<}, {increment}, {}}.

6. The resolution procedure would be infinite as all the clauses q(f n−1(x), f n(x))
would be produced.

7. slow sort(L1, L2) :- permutation(L1,L2), ordered(L2).

ordered([ ]).

ordered([H1,H2|Tail]) :- H1 =< H2, ordered([H2|Tail]).

permutation([],[]).

permutation(List,[X|Perm]) :-

select(X,List,Rest),

permutation(Rest,Perm).

select(X,[X|Rest],Rest).

select(X,[Head|List],[Head|Rest]) :- select(X,List,Rest).
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8. As long as both lists are non-empty, the or-parallelism is allowed to select either
of the first two clauses. The result would be an arbitrary interleaving of the two
lists.

9. No guards are need since there is only pattern matching done on the tree input
to flatten and the list into to sum list. The output assignments, of course,
must be in the bodies of the clauses.

flatten(null, List) :- true | List = [].

flatten(tree(Left, Val, Right), List) :- true |

flatten(Left, List1),

flatten(Right, List2),

append(List1, [Val], List3),

append(List3, List2, List4),

List = List4.

sum list([], Sum) :- true | Sum = 0.

sum list([Head|Tail], Sum) :- true |

sum list(Tail, Sum1),

Sum is Head + Sum1.

10. This program solves the problem after generating 3, 496, 459 permutations.

send more money( S, E, N, D, M, O, R, Y ) :-

permutation(

[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],

[ S, E, N, D, M, O, R, Y, , ] ),

S =\= 0, M =\= 0,

full adder( D, E, 0, Y, C1 ),

full adder( N, R, C1, E, C2 ),

full adder( E, O, C2, N, C3 ),

full adder( S, M, C3, O, C4 ),

full adder( 0, 0, C4, M, 0 ).

full adder( A, B, CarryIn, Sum, CarryOut ) :-

S is A + B + CarryIn,

( S =< 9 -> Sum = S, CarryOut = 0 ;

Sum is S - 10, CarryOut = 1).

11. In the following program, select is called only 6, 045 times to select a digit.
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send more money( S, E, N, D, M, O, R, Y ) :-

R0 = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],

select(D, R0, R1), select(E, R1, R2), select(Y, R2, R3),

full adder( D, E, 0, Y, C1 ),

select(N, R3, R4), select(R, R4, R5),

full adder( N, R, C1, E, C2 ),

select(O, R5, R6),

full adder( E, O, C2, N, C3 ),

select(S, R6, R7), S =\= 0,

select(M, R7, ), M =\= 0,

full adder( S, M, C3, O, C4 ),

full adder( 0, 0, C4, M, 0 ).

9 Programs: Semantics and Verification

1. {p} S {true} is true iff when S is started in a state in which p is true and S
terminates then true is true. Of course, this holds for any precondition and
statement so wp(S, true) = true.

2.

wp(x:=x+y;y:=x*y, x < y)

= wp(x:=x+y, wp(y:=x*y, x < y))

= wp(x:=x+y, x < y[y ← x ∗ y])

= wp(x:=x+y, x < x ∗ y)

= x < x ∗ y[x ← x + y]

= x + y < (x + y) ∗ y

≡ ((x > −y) → (y > 1)) ∧ ((x < −y) → (y < 1)).

3. Let s be an arbitrary state in which wp(S, p ∧ q) is true. Executing S leads to a
state s′ such that p∧q is true, so p and q are both true in s′. Since s was arbitrary,
we have proved that

{s | |= wp(S, p ∧ q)} ⊆ {s | |= wp(S, p)},

and similarly for q, so |= wp(S, p ∧ q) → wp(S, q) ∧ wp(S, q).

4.

wp(if B then begin S1;S3 end else begin S2;S3 end, q)

= (B → wp(S1;S3, q)) ∧ (¬B → wp(S2;S3, q))
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= (B → wp(S1, wp(S3, q))) ∧ (¬B → wp(S2, wp(S3, q)))

= wp(if B then S1 else S2, wp(S3, q))

= wp(if B then S1 else S2; S3, q).

5. Informally, this can be seen from the figure on page 208. If there no states
leading to ∞, then the two weakest preconditions are complements of each
other. Formally, let s be an arbitrary state in wp(S, p). Executing S results
in a state s′ such that p is true, so ¬ p is false in s′. Thus,

{s | |= wp(S, p)} ⊆ {s | |= wp(S, ¬ p)},

and |= wp(S, p) → ¬wp(S, ¬ p), the converse of Theorem 9.27.

Using this result and Theorem 9.25 we have:

wp(S, p ∨ q)

≡ wp(S, ¬(¬ p ∧ ¬ q))

≡ ¬wp(S, ¬ p ∧ ¬ q)

≡ ¬(wp(S, ¬ p) ∧ wp(S, ¬ q))

≡ ¬wp(S, ¬ p) ∨ ¬wp(S, ¬ q)

≡ wp(S, p) ∨ wp(S, q).

6.
Soundness: Suppose that {p} if B then S1 else S2 {q} is deduced from
{p∧B} S1 {q} and {p∧¬B} S2 {q} using the alternative rule. By the inductive
hypothesis, |= (p∧B)→wp(S1, q) and |= (p∧¬B)→wp(S2, q). By propositional
reasoning, |= p→ ( (B→wp(S1, q)) ∧ (¬B→wp(S2, q)) ) so by Definition 9.21,
|= p → wp(if B then S1 else S2, q).

Completeness: By assumption |= p → wp(if B then S1 else S2, q) which
is equivalent to |= p→ ( (B→wp(S1, q)) ∧ (¬B→wp(S2, q)) ), which by propo-
sitional reasoning implies |= (p∧B)→wp(S1, q) and |= (p∧¬B)→wp(S2, q).
By the inductive hypothesis, ` {p ∧ B} S1 {q} and ` {p ∧ ¬B} S2 {q} so an
application of the alternative rule yields ` {p} if B then S1 else S2 {q}.

7. The program is based on the formula
∑n

k=0(2k + 1) = (n + 1)2. The invariant
(0 ≤ x2 ≤ a) ∧ y = (x + 1)2 is trivially established by the precondition and
initialization, and trivially establishes the postcondition. The invariance of 0 ≤
x2 ≤ a under the loop condition y ≤ a is also trivial since x′2 = (x + 1)2 = y.
The only non-trivial part is the invariance of y = (x + 1)2:

x′ = x + 1

y′ = y + 2x′ + 1
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y′ = (x + 1)2 + 2(x + 1) + 1

y′ = x2 + 4x + 4

y′ = (x + 2)2

y′ = (x′ + 1)2.

8. The program is based on the theorem:

(x > y) → (gcd(x, y) = gcd(x − y, y))
(x < y) → (gcd(x, y) = gcd(x, y − x))
(x = y) → (gcd(x, y) = x = y)

which is proved as follows. Let g = gcd(x, y). By definition, there exist m, n
such that x = gm and y = gn. Then x − y = g(m − n) so g is also a common
divisor of x − y and y. If g is not a greatest common divisor, there is some other
common divisor g′ > g such that x − y = g′m′ and y = g′n′. But

x = y + g′m′ = g′n′ + g′m′ = g′(m′ + n′)

so g′ is also a common divisor of x and y contrary to the assumption that g was
the greatest common divisor. The second formula is symmetrical and the third
is trivial.

By the theorem, it is trivial to show that gcd(x, y) = gcd(a, b) is an invariant
of the while-loop; when the loop terminates, x = y and by the third formula,
x = y = gcd(a, b).

9. The proof is almost the same as the proof of the previous exercise.

10. Take as the loop invariant z · xy = ab. Clearly it holds initially. If y is non-zero
and even, y = 2 ·k for some k and z ·x(2·k) = z · (x2)k, so the invariant is preserved
by the execution of the loop body. Otherwise, z · xy = z · (x · xy−1) = (z · x) · xy−1,
and again the invariant is preserved. When the loop terminates, y = 0 and
z · x0 = z = ab.

10 Programs: Formal Specification with Z

1. This exercise refers to the material in the first edition of the book.

2. The definitions are taken from Section 5.6.2 of Potter, Sinclair & Till (1996).
See also Section 4.3.3 for the notation {Decl | Pred • Expr} which means the
set of Expr such that for some Decl, Pred holds.

The head is the first element of the sequence. If there are n elements, the last
element is the element at position n. front is the domain restriction of the se-
quence to the first #s elements. For tail, the expression gives all mappings for n
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from 2 − 1 to #s − 1 into s n. Concatenation is obtained by taking the maps in s
and adding the maps in t, offset by n. Note that n ∈ 2..#t. should be n ∈ 1..#t.

11 Temporal Logic: Formulas, Models, Tableaux

1. Let A be a valid propositional formula with atoms {p1, . . . , pn} and let A′ be
a PTL formula obtained from A by the substitution [p1 ← A1, . . . , pn ← An],
where each Ai is a PTL formula. Let I′ = (S, ρ) be an arbitrary PTL interpre-
tation for A′ and let s be an arbitrary state in S. Let I be an interpretation for A
defined as follows: vI (pi) = T iff vI′,s(Ai) = T .

We prove by structural induction that vI (A) = vI′,s(A′), so that if A is valid so
is A′. The base case follows by definition. Since A′ is a substitution instance
of A, its principal operator is Boolean and the result follows because the defi-
nition of interpretation on Boolean operators in PTR is the same as it is for the
propositional calculus.

2. Let I = (S, ρ) be an arbitrary interpretation for the formula and let s ∈ S be
an arbitrary state. Assume that s |= ¬3¬ p, so that s 6|= 3¬ p and for all states
s′ ∈ ρ(s), s′ |= p, proving s |= 2p.

3. Let Fi be a linear frame, let I be an arbitrary interpretation based on Fi, and
suppose that I 6|= ©A ↔ ¬©¬A. Assume that I 6|= ©A → ¬©¬A (the proof
for the converse direction is similar). Then I |= ©A and I 6|= ¬©¬A so that
I |= ©¬A. But this is impossible in a linear interpretation where there is only
one successor to any state.

Conversely, suppose that Fi is not linear, and let s ∈ S be a state such that
s′, s′′ ∈ ρ(s) for distinct states s′, s′′. Let I be an interpretation based on Fi such
that vs′ (p) = T and vs′′ (p) = F. From I, s |= ©p and I, s |= ©¬ p, we have
I, s 6|= ©p →¬©¬ p.

4. We must assume reflexivity.

The first formula is called the B axiom and the second the E axiom. The B axiom
characterizes symmetrical frames, that is, frames in which s′ ∈ ρ(s) iff s ∈ ρ(s′).
If the E axiom is satisfied, the frame is both transitive and symmetrical.

Let Fi be a symmetrical frame, let I be an arbitrary interpretation based on Fi,
and let s be an arbitrary state in S. Suppose that s |= A and let s′ be an arbitrary
state in ρ(s). By the assumption of a symmetrical frame, s ∈ ρ(s′) so s′ |= 3A.
Since s′ was arbitrary, s |= 23A.

Conversely, suppose that Fi is not symmetrical, and let s ∈ S be a state such
that s′ ∈ ρ(s) but s 6∈ ρ(s′). Let I be an interpretation based on Fi such that
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vs(p) = T and vt(p) = F for all other states t. Clearly, s′ 6|= 3p, so s 6|= 23p
even though s |= p.

Let Fi be a symmetrical and transitive frame, let I be an arbitrary interpretation
based on Fi, and let s be an arbitrary state in S. Suppose that s |= 3A, so that
s′ |= A for some s′ ∈ ρ(s). Let s′′ be an arbitrary state in ρ(s). By the assumption
of a symmetrical frame, s ∈ ρ(s′′) and by the assumption of a transitive frame,
s′′ ∈ ρ(s′) so s′′ |= 3A. Since s′′ was arbitrary, s |= 23A.

Conversely, suppose that Fi is not symmetrical and let s ∈ S be a state such
that s′ ∈ ρ(s) but s 6∈ ρ(s′). Let I be an interpretation based on Fi such that
vs′ (p) = T and vt(p) = F for all other states t. Clearly, s′ 6|= 3p, so s 6|= 23p
even though s |= 3p. Consider now the instance of E obtained by subsituting
2A: 32A → 232A. By reflexivity 2A → 32A, so 2A → 232A. But the
construction used in the proof of Theorem 11.12 shows that this can only hold
in a transitive frame.

5. We have shown that in a reflexive transitive interpretation, 22A ↔ A. We show
also that 2323A ↔ 23A. These formulas, together with their duals, are suf-
ficient to show that all sequences of temporal operators can be collapsed as
claimed.

Suppose that there is an interpretation and state in which s |= 2323p but
s 6|= 23p, that is s |= 32¬ p. Let s′ ∈ ρ(s) be such that s′ |= 2¬ p. By the
assumption s |= 2323p, we have s′ |= 323p, so there is an s′′ ∈ ρ(s′) such
that s′′ |= 23p, and by reflexivity, s′′ |= 3p. Then for some s′′′ ∈ ρ(s′′), s′′′ |= p.
By transitivity s′′′ ∈ ρ(s′), so s′ |= 3p which is a contradiction.

Conversely, suppose that s |= 23p, but s 6|= 2323p that is s |= 3232¬ p.
As before, there is an s′ such that s′ |= 232¬ p and s′ |= 32¬ p, then an s′′

such that s′′ |= 2¬ p, which is s′′ |= ¬3p, which contradicts s |= 23p.

6. A very long tableau is created by my program. Can anyone shorten it?

7. The elements in the labels of the nodes of a tableau are subformulas of the for-
mula, or their negations, nexttimes or negated nexttimes. As in the propositional
calculus, we can show that the α- and β-rules must eventually produce states.
The number of states is limited by the number of subsets of nexttime formulas,
so eventually the construction can only construct X-nodes that already exist.

8. By Lemma 11.32, a path in a Hintikka structure is a linear Hintikka structure.
Suppose that A is a future formula in some node. If A is fulfilled in its own
component, then by construction there will be a node further along the path in
which it is fulfilled: (a) for a terminal component by the (infinite) repetition of
all the nodes, or (b) for a non-terminal component, we have ensure that every
node appears after every other one in the path. If A is not fulfilled in its own
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component, then it is fulfilled in some other component that is accessible in the
component graph. By construction, the path includes all nodes of all accessible
components.

9. The notation refers to the first edition of the book. The intent here is to give
a list of the formulas in each of the four nodes of the structure. Abbreviating
3(p ∧ q), 3(¬ p ∧ q) and 3(p ∧ ¬ q) by A,B,C, respectively, all nodes include

2(A ∧ B ∧ C), A ∧ B ∧ C, ©2(A ∧ B ∧ C), A, B ∧ C, B, C,

and in addition

s0 = {p ∧ q, p, q,©B,©C}
s1 = {¬ p ∧ q,¬ p, q,©A,©C}
s2 = {p ∧ ¬ q, p,¬ q,©A,©B}
s3 = {©A,©B,©C}.

10. The negation of 23p→32p is equivalent to 23p∧23¬ p, which is satisfied
by the model with states s0 |= p and s1 |= ¬ p and transitions s0 ; s1 and
s1 ; s0.

11. I would be pleased if someone would contribute a program!

12 Temporal Logic: Deduction and Applications

1.
1. ` 2(p ∧ q) → p ∧ q Expansion
2. ` 2(p ∧ q) → p PC
3. ` 22(p ∧ q) → 2p Generalization
4. ` 2(p ∧ q) → 2p Transitivity
5. ` 2(p ∧ q) → 2q (similarly)
6. ` 2(p ∧ q) → 2p ∧ 2q PC

1. ` ©(¬ p ∧ ¬ q) ↔ (©¬ p ∧©¬ q) Theorem 12.3
2. ` ¬©(¬ p ∧ ¬ q) ↔¬(©¬ p ∧©¬ q) PC
3. ` ¬©(¬ p ∧ ¬ q) ↔¬©¬ p ∨ ¬©¬ q) PC
4. ` ©¬(¬ p ∧ ¬ q) ↔ (©p ∨©q) Linearity
5. ` ©(p ∨ q) ↔ (©p ∨©q) PC

2. Except for (e) all are trivial consequences of linearity.

1. ` (2(p ∧ q) ∧ 3p ∧ ¬3q) → (2(p ∧ q) ∧ 3p ∧ 2¬ q) Duality
2. ` (2(p ∧ q) ∧ 3p ∧ ¬3q) → ((p ∧ q) ∧ ¬ q) Expansion
3. ` (2(p ∧ q) ∧ 3p ∧ ¬3q) → false Expansion
4. ` 2(p ∧ q) → (3p →¬2¬ q) PC
5. ` 2(p ∧ q) → (3p → 3q) Duality
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3.
Axiom 2: Suppose that s |= ©(A → B) and s |= ©A. Let s′ = τ(s); by linearity,
there is only one such s′. s′ |= A → B and s′ |= A so s′ |= B by MP. Therefore
s |= ©B.

Axiom 3: Suppose that s |= 2A. By reflexiveness, s ∈ ρ(s), so s |= A. By
definition, s′ = τ(s) implies s′ ∈ rho(s), so s |= ©A. Now let s′ = τ(s) and
let s′′ ∈ ρ(s′) be arbitrary. By definition of ρ as τ∗, s′′ ∈ ρ(s). By assumption
s |= 2A, so s′′ |= A. Then s′ |= 2A since s′′ was arbitrary, and s |= ©2A
follows.

Axiom 6: Suppose that s0 |= AUB. By definition, there exists some n such that
sn |= B and for all 0 ≤ i < n, si |= A. If n = 0, then s0 |= B, otherwise s0 |= A.
Furthermore, if n > 0, then s0 6|= B, so for n (which is ≥ 1), sn |= B and for all
1 ≤ i < n, si |= A. Thus s1 |= AUB and s0 |= ©(AUB).

4. ` 323p ↔ 23p follows immediately by duality.

To prove ` 32p → 23p, let r = 32p ∧ ¬23p and prove that r is inductive
(` r → 2r); the inductive formula will be easy to prove if you first prove the
lemmas ` 2p→©23p and ` ¬3p→©¬32p. Continue the proof as follows:

1. ` (32p ∧ ¬23p) → 232p r → 2r, distribution, PC
2. ` (32p ∧ ¬23p) → 23p Expansion
3. ` 32p → 23p PC

5.
1. ` 2(23p → 3q) → (223p → 23q) Generalization
2. ` 2(23p → 3q) → (23p → 23q) Transitivity
3. ` 2(23p → 3q) → (¬23p ∨ 23q) PC
4. ` 2(23p → 3q) → (32¬ p ∨ 23q) Duality

5. ` 23q → 3q Expansion
6. ` 23q → (¬23p ∨ 3q) Dilution
7. ` 23q → (23p → 3q) PC
8. ` 223q → 2(23p → 3q) Generalization
9. ` 23q → 2(23p → 3q) Transitivity

10. ` 32¬ p → 2(23p → 3q) (similarly)

11. ` 2(23p → 3q) ↔ (23q ∨ 32¬ p) PC

6. The converse is easy:

1. ` 2p → (p ∨ 2q) Expansion, dilution
2. ` 2p → (2p ∨ q) Dilution
3. ` 2p → 2((p ∨ 2q) ∧ (2p ∨ q)) PC, generalization, transitivity
4. ` 2q → 2((p ∨ 2q) ∧ (2p ∨ q)) (similarly)
5. ` (2p ∨ 2q) → 2((p ∨ 2q) ∧ (2p ∨ q)) PC
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For the forward direction:
1. ` s → r ∧ ¬2p ∧ ¬2q Expansion
2. ` s → p ∧ q PC
3. ` s → (p ∧ q) ∧ ¬2p ∧ ¬2q 1, 2, PC
4. ` s → (p ∧ q) ∧ (¬ p ∨©¬2p) ∧ (¬ q ∨©¬2q) Expansion
5. ` s →©¬2p ∧©¬2q PC
6. ` s →©r ∧©¬2p ∧©¬2q Expansion
7. ` s →©s Distribution
8. ` s → 2s Induction
9. ` 2s → 2(p ∧ q) 2, Generalization

10. ` s → 2(p ∧ q) 8, 9, PC
11. ` s → 2p ∧ 2q Distribution
12. ` 2r → 2p ∨ 2q PC

7. In Theorem 12.20, the q’s should be B’s.

Let s0 |= AUB. Then for some n, sn |= B, so s0 |= 3B. For 0 ≤ i < n, si |= A so
s0 |= AWB. Conversely, s0 |= 3B so for some n, sn |= B and the other condition
follows immediately. The proof of the second formula is analogous.

For the third formula, both 3A and trueUA assert that for some n, sn |= A,
while true is trivially true in all states.

Suppose that AW false is true. Since false is always false, for all i, si |= A, so
s0 |= 2A. The converse is similar.

8. If ∃3p then there exists a path π and state s ∈ π such that s |= p. Suppose
that s |= ∀2¬ p. The for all paths, in particular for π and for all states in π, in
particular for s, s |= ¬ p which is a contradiction.

If ∀3p then for all paths πi there is an sij ∈ πi such that sij |= p. Suppose that
s |= ∃2¬ p. Then for some path π′, 2¬ p. But π′ is πi for some i, so sij |= ¬ p
which is a contradiction.

9. If si |= 3−3p then for some sj, j ≤ i, sj |= 3p, so for some sk, j ≥ k, sk |= p.
Suppose that k ≥ i. Since sk |= p reflexively implies sk |= 3−p, we have
si |= 33−p. Otherwise, k < i, so si |= 3−p and reflexively si |= 33−p. Conversely,
suppose that si |= 33−p. Then for j ≥ i, sj |= 3−p, so for some k ≥ 0, sk |= p.
Clearly, s0 |= 3p, so si |= 3−3p.

The forward direction of the second formula is not true in general, only at the
origin. To prove the converse, suppose that si |= ¬(2p ∨ 2q), which is si |=
3¬ p ∧ 3¬ q. Let i′ ≥ i, i′′ ≥ i be such that si′ |= ¬ p and si′′ |= ¬ q. Clearly,
for all j ≥ max(i′, i′′), sj 6|= 2−p and sj 6|= 2−q, so sj 6|= 2(2−p ∨ 2−q) and hence
si 6|= 2(2−p ∨ 2−q).

10. (a) is trivial since Last is initially assigned 1 and subsequent statements can
only assign 1 or 2. (b) should be ` 2(C1 ↔ (Test1 ∨ CS1 ∨ Reset1)) and
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similarly for (c). Consider first C1 → (Test1 ∨ CS1 ∨ Reset1). The implication
is trivially true initially because C1 is assigned false. Now the only way that an
implication can be falsified is if (i) both the antecedent and the consequent are
true and the consequent become false while the antecedent remains true, or (ii)
both are false and the antecedent becomes true which the consequent remains
false. (i) The consequent becomes false only on the transition from Reset1 to
NC1, but the assignent assigns false to C1. (ii) The antecedent becomes true
only on the transition from Set1 to Test1, but the consequent also becomes true.
The converse is similar and the same proof holds for (c) with 1 replaced by 2 in
the names.

11. We prove the first conjunct as the second is symmetric. (i) Suppose that both the
antecedent and the consequent are true and that the consequent becomes false.
Falsifying C2 when P2 is at CS2 is impossible, as is falsifying Last = 1 when
P1 is at Test1. (ii) Suppose that both the antecedent and the consequent are false
and that the antecedent becomes true. By the semantics of conjunction and the
interleaving of transitions, the antecedent can become true only if P1 moves
from Set1 to Test1 while P2 is at CS2, or if P2 moves from Test2 to CS2 while
P1 is at Test1. For the first transition, C2 is and remains true (Lemma 12.16(c)),
while the transition makes Last = 1 true; for the second transition, since C2 is
and remains true, the only way that the consequent could be false is if ¬(Last =
1), which by Lemma 12.26(a) means that Last = 2 is true. Furthermore, Test1
implies that C1 is true. But if C1 ∧ Last = 2 is true then the transition to CS2 is
not taken.

12. The algorithm and its proof are given in Section 3.6 of Ben-Ari(1990).

13. Add P ∧ C as a conjunct in the antecedent of the existing formulas formulas,
and add the formulas P∨C, (¬P∧C)→©(Q = 1) and (P∧¬C)→©(Q = 0).

14. Note that the state 12 is inconsistent and should be deleted both from the text
and Figure 12.6. In the following we denote ©3(S1 ∧ 2¬R1) by N (for next).
From state 13 the only consistent state is 16.((T1, T2, 2),N). Executing P2 leads
back to itself, and execution P1 leads to 17.((R1, T2, 2),N). From state 17, the
execution goes to state 14 or back to itself. From state 14, the P2 transition is
consistent and leads to state 7. From state 15, there are three consistent transi-
tions: to 3, to itself and to 18.((T1, T2, 1),N). From state 18, executing P1 leads
back to itself, and executing P2 leads to 19.((T1, R2, 1),N) which leads to itself
and to state 13.
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