RYERSON UNIVERSITY MTH 714 LAB#2 DAY: SEPTEMBER 18, 2008

- 1. Determine whether the following formulas are valid (tautologies) or not:
 - (a) $((p \to q) \to q) \to q$
 - (b) $((p \rightarrow q) \rightarrow p) \rightarrow p$
 - (c) $(p \land q) \rightarrow (p \lor r)$
 - (d) $(p \lor \neg (q \land r)) \rightarrow ((p \leftrightarrow r) \lor q)$
- 2. Determine whether the following pairs of formulas are equivalent:
 - (a) $(p \to q) \to p$ and p
 - (b) $p \leftrightarrow q$ and $(p \rightarrow q) \land (q \rightarrow p)$
 - (c) $\neg(p \leftrightarrow q)$ and $p \leftrightarrow \neg q$
 - (d) $p \lor (q \leftrightarrow r)$ and $(p \lor q) \leftrightarrow (p \lor r)$
 - (e) $(p \lor (q \lor r)) \land (r \lor \neg p)$ and $(q \land \neg p) \lor r$
- 3. (Duality Theorem) (a) If A is a formula involving only \neg , \land and \lor as its connectives, and A' results from A by replacing each \land by \lor and each \lor by \land , show that A is valid if and only if $\neg A'$ is valid. [Hint: Use structural induction.]

(b) Also, show that if $A \to B$ is valid, for some formula B which only uses \neg, \lor and \land , then $B' \to A'$ is also valid.

4. (a) Show that, if A is a formula containing \rightarrow and \lor as its only connectives, then v(A) = T for every assignment v which assigns T to every atom.

(b) Deduce that the set of connectives $\{\rightarrow,\vee\}$ cannot generate all Boolean operators.

- 5. Show that every one of the connectives from the set $\{\land, \rightarrow, \leftrightarrow\}$ can be expressed in terms of the other two.
- 6. Prove the following theorem: If $\{\circ\}$ is an adequate set of connectives in propositional logic, where \circ is a binary operator, then either $\circ =\uparrow$ or $\circ =\downarrow$.