
Chapter 7: Predicate Calculus: Resolution

November 7, 2008



Outline

1 7.1 Functions and Terms

2 7.2 Clausal Form

3 7.3 Herbrand Models

4 7.4 Herbrand’s Theorem

5 7.5 Ground Resolution

6 7.6 Substitutions

7 7.7 Unification

8 7.8 General Resolution



7.1 Functions and Terms

• We will now allow the language for predicate logic to
contain functions symbols. They will be interpreted as
functions (of appropriate arity) in the domain of an
interpretation.

Example
Consider the formula

p(x , y)→ p(x , f (y))

where p is a binary predicate symbol, and f is a unary function
symbol.



Two possible interpretations of this formula
1 I1 = (N, {<}, {succ(x)}), where succ(x) = x + 1
2 I2 = ({0, 1}∗, {substr}, {f}), where the relation

substr(w1, w2) means that w1 is a substring of w2, and
f (w) = w0, is the function appending 0 to the right end of
word w .



Terms
Suppose

V: variables
A: constant symbols
P: predicate symbols
F : function symbols

term ::= x , x ∈ V
term ::= a, a ∈ A
term ::= f (termList), f ∈ F

termList ::= term
termList ::= term, termList

atomicFormula ::= p(termList), p ∈ P



Examples
Suppose a, b are constant symbols, p a binary predicate
symbol, f is a binary function symbol, and g a unary function
symbol.

1 Examples of terms:

a, g(a), f (x , y), f (x , g(a)), f (f (a, x), b), f (f (x , y), f (b, g(a))), . . .

2 Examples of atomic formulas:

p(a, a), p(f (x , y), g(y)), p(g(b), f (a, g(a))), . . .



Example
Consider the formula

∀x∀y(p(x , y)→ p(f (x , a), f (y , a))

This formula is satisfiable but not valid.

An interpretation in which the formula is true:

I1 = (Z, {<}, {+}, {0})

An interpretation in which the formula is false:

I2 = (Z, {<}, {·}, {0})



Definition
A term or atom is ground if it contains no variables. A formula is
ground if it has no quantifiers and no variables.
A′ is a ground instance of a quantifier-free formula A if it can be
obtained from A by substituting ground terms for free variables.

Examples

1 Examples of ground terms: f (a, a), g(b), f (f (a, b), g(a)), . . .

2 Examples of ground formulas:
¬p(a, a), p(f (a, b), b)→ p(a, a), . . .

3 The formula ¬p(f (a, b), b) ∨ p(a, f (a, a)) is a ground
instance of the formula ¬p(f (x , b), y) ∨ p(x , f (x , x))



Remark
We note that the set of all ground terms in some language can
be systematically enumerated; i.e. there is an algorithm which
produces a listing:

t0, t1, t2, . . . , tn, . . .

of all ground terms in that language.

This listing can be produced using diagonalization method (for
details, see pp.141-142 in the textbook).



7.2 Clausal Form

Definition
We say that a formula A is in prenex conjunctive normal form
(PCNF), if it has the form

Q1x1Q2x2 . . . Qnxn M(x1, x2, . . . , xn)

where Qi (i = 1, 2, . . . , n) are quantifiers and M(x1, x2, . . . , xn)
is a quantifier-free formula in CNF, called the matrix of A.



• We say that a closed formula is in clausal form if it is in
PCNF and all quantifiers Qi are ∀.

• A literal is an atomic formula or its negation; e.g.

p(x , f (a, y)),¬p(g(x), f (x , g(x)))

A literal is said to be ground if it contains no variables.
A clause is a disjunction of literals; e.g.

¬p(x , y) ∨ p(x , f (x))

• C′ is a ground clause if it is a ground instance of a clause
C; e.g. if

C = ¬p(x , y) ∨ p(x , f (x)),

the substitution x ← f (a), y ← a produces the ground
clause

C′ = ¬p(f (a), a) ∨ p(f (a), f (f (a)))



Example
The following formula is in clausal form:

∀x∀y∀z[(p(x , f (y)) ∨ q(z)) ∧ (¬q(f (x)) ∨ ¬p(f (y), z))]

We will write this clausal form in the following way:

{{p(x , f (y)), q(z)}, {¬q(f (x)),¬p(f (y), z)}}

An even more simplified version of this clausal form is:

{pxfyqz,¬qfx¬pfyz}

[In order to properly parse the clauses, we need to keep in
mind the arities of all predicate and function symbols.]



Definition
We write

A ≈ B

to denote the fact that a formula A is satisfiable if and only if B
is satisfiable.

Theorem
(Skolem) Suppose A is a closed formula. Then, there exists a
formula A′ in clausal form such that

A ≈ A′



Proof (Algorithm for converting A to A′).
We start with a particular formula

∀x (p(x)→ q(x))→ (∀x p(x)→ ∀x q(x))

and we will illustrate each step of the algorithm by showing how
it applies to this particular example.

Input: Closed formula A
Output: formula A′ in clausal form, such that A ≈ A′

(1) Rename bound variables (if necessary) so that no variable
appears in the scope of two different quantifiers:

∀x (p(x)→ q(x))→ (∀y p(y)→ ∀z q(z))



(2) Eliminate all propositional connectives, except for ¬,∧, and
∨:

¬∀x(¬p(x) ∨ q(x)) ∨ (¬∀y p(y) ∨ ∀z q(z))

(3) Push all ¬ inward and eliminate double negations:

∃x(p(x) ∧ ¬q(x)) ∨ (∃y¬p(y) ∨ ∀z q(z))

(4) Extract quantifiers from the matrix:

∃x(p(x) ∧ ¬q(x)) ∨ ∃y(¬p(y) ∨ ∀z q(z))

≡ ∃x(p(x) ∧ ¬q(x)) ∨ ∃y∀z(¬p(y) ∨ q(z))

≡ ∃x∃y∀z((p(x) ∧ ¬q(x)) ∨ (¬p(y) ∨ q(z)))



(5) Transform the matrix of the formula into CNF:

∃x∃y∀z((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

(6) Eliminate existential quantifiers:
• If we have ∃x A(x), replace x with a new constant symbol

a.
• If we have ∀x1 . . .∀xn∃y A(x1, . . . , xn, y), replace y with

f (x1, x2, . . . , xn), where f is a new n-ary function symbol.

∃x∃y∀z((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

≈ ∃y∀z((p(a) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(a) ∨ ¬p(y) ∨ q(z)))

≈ ∀z((p(a) ∨ ¬p(b) ∨ q(z)) ∧ (¬q(a) ∨ ¬p(b) ∨ q(z)))

�



Example
Transform the formula

A = ∃x∀yp(x , y)→ ∀y∃xp(x , y)

into a clause form A′ ≈ A.

Solution:

∃x∀y p(x , y)→ ∀y∃x p(x , y)

≡ ∃x∀y p(x , y)→ ∀w∃z p(z, w)

≡ ¬∃x∀y p(x , y) ∨ ∀w∃z p(z, w)

≡ ∀x∃y ¬p(x , y) ∨ ∀w∃z p(z, w)

≡ ∀x∃y∀w∃z (¬p(x , y) ∨ p(z, w))

≈ ∀x∀w∃z (¬p(x , f (x)) ∨ p(z, w))

≈ ∀x∀w (¬p(x , f (x)) ∨ p(g(x , w), w))

�



• The method of converting a closed formula A into a clausal
form A′ so that A ≈ A′ is also called Skolemization of A.

• One way to minimize the arity of the new function symbols
introduced during this method is to perform the steps of the
algorithm in the following sequence:

1 first push all quantifiers inward
2 eliminate all ∃’s
3 extract all ∀ to the front of the formula.



7.3 Herbrand Models

• Once we allow function symbols in the language of
predicate logic, the models can become rather complicated
since, given any function symbol, there are a large number
of functions on the domain that can interpret it.

• We will show that, if a set of clauses has a model (i.e. is
satisfiable), it has a particular canonical (or, generic)
model.



Definition
Let S be a set of clauses and

A: set of constant symbols appearing in S
F : set of function symbols appearing in S

We define HS, the Herbrand universe for S inductively, as
follows:
• a ∈ HS, for every a ∈ A
• f (t1, t2, . . . , tn), for every n-ary function symbol f ∈ F , and

t1, t2, . . . , tn ∈ HS

If there are no constant symbols in S (A = ∅), we initialize the
inductive definition by putting some arbitrary new constant
symbol a in HS.

Remark
The Herbrand universe HS for S will be infinite as soon as there
is a function symbol in S.



Examples

(a) If S1 = {pxy¬qa, qa¬pbx}, we have

HS = {a, b}

(b) If S2 = {¬pxf (y), pwg(w)},

HS = {a, f (a), g(a), f (f (a)), f (g(a)), g(f (a)), g(g(a)), . . .}

(c) For S3 = {¬paf (x , y), pbf (x , y)}

HS = {a, b, f (a, a), f (a, b), f (b, a), f (b, b),

f (a, f (a, a)), f (f (a, a), a), . . .}



Definition
Suppose HS is the Herbrand universe for a set of clauses. The
Herbrand base BS is the set of ground atomic formulas formed
using the predicate symbols in S and terms from HS.

Example
For S3 = {¬paf (x , y), pbf (x , y)}, the Herbrand base is

BS = {p(a, f (a, a)), p(a, f (a, b)), p(a, f (b, a)), p(a, f (b, b)),

. . . ,

p(a, f (f (a, a), a)), . . . , p(b, f (a, a)), p(b, f (a, b)), p(b, f (b, a), p(b, f (b, b)), . . .}



Definition
An Herbrand model for a set of clauses S consists of the
Herbrand universe HS as the domain, the function symbols and
constants are interpreted by themselves, and the relations are
interpreted in some way which would make all the clauses in S
true. In other words, the true relations form some subset of BS
which makes all clauses true.



Example
For S3 = {¬paf (x , y), pbf (x , y)}, we saw that Herbrand
universe is

HS = {a, b, f (a, a), f (a, b), f (b, a), f (b, b),

f (a, f (a, a)), f (f (a, a), a), . . .}

The relations in Herbrand model are given as

v(p(a, f (a, a))) = F, v(p(a, f (b, a))) = F, v(p(a, f (a, b))) = F

v(p(a, f (b, b))) = F,

v(p(b, f (a, a))) = T, v(p(b, f (b, a))) = T

v(p(b, f (a, b))) = T, v(p(b, f (b, b))) = T, . . .



Theorem
Let S be a set of clauses. S has a model if and only if it has an
Herbrand model.



7.4 Herbrand’s Theorem

Theorem
(Herbrand’s Theorem - Semantic Form) A set of clauses S of
predicate logic is unsatisfiable if and only if a finite set of
ground instances of clauses from S is unsatisfiable.

Example
Consider the following unsatisfiable formula:

¬[∀x(p(x)→ q(x))→ (∀x p(x)→ ∀x q(x))]

We saw that its clausal form is

{¬p(x) ∨ q(x), p(y),¬q(z)}



One set of ground instances for this set of clauses is:

{¬p(a) ∨ q(a), p(a),¬q(a)}

obtained by substitution

x ← a, y ← a, z ← a

Now, we can use any method for proving unsatisfiability from
propositional logic (semantic tableaux, resolution, etc.)

1. ¬p(a) ∨ q(a) given
2. p(a) given
3. q(a) Resolution 1,2
4. ¬q(a) given
5. � Resolution 3,4



Semi-Decision Procedure for Checking
Validity

1 Negate the formula.
2 Transform the formula into a clausal form.
3 Generate a finite set of ground instances of clauses.
4 Check if the set of ground clauses from (3) is unsatisfiable.

Step 3 is highly problematic; namely, there are infinitely many
ground terms (if there is at least one function symbol) so it may
be difficult to find a correct substitution for resolution. In fact, if
the set of clauses is satisfiable, there is no such substitution, so
our search for it may run forever. This is not surprising,
however, considering that we already know that the validity in
predicate logic is undecidable (Sec.5.8).



7.5 Ground Resolution
• This is a simpler version of the general resolution method

which will be covered in Section 7.8, but is highly
ineffective, for the reasons described at the end of the
previous section.

Definition
Suppose C1, C2 are ground clauses containing a pair of
clashing literals l , lc , say, l ∈ C1 and lc ∈ C2. The resolvent of
C1 and C2 is the clause

Res(C1, C2) = (C1 − {l}) ∪ (C2 − {lc})

C1 and C2 are said to be the parent clauses in resolution.

Theorem
The resolvent C is satisfiable if and only if C1 and C2 are
simultaneously satisfiable.



7.6 Substitutions

Definition
Suppose x1, x2, . . . , xn are distinct variables and t1, t2, . . . , tn
terms such that ti is not equal to xi (i = 1, 2, . . . , n). The
substitution

{x1 ← t1, x2 ← t2, . . . , xn ← tn}

is the mapping assigning the term ti to the variable xi .

• Generally, we will use Greek letters λ, µ, σ, τ, . . . to denote
substitutions.



Definition
An expression is any term, literal, a clause, or a set of clauses.
If E is an expression and

σ = {x1 ← t1, x2 ← t2, . . . , xn ← tn}

is a substitution, the instance Eσ is obtained by simultaneously
applying the substitution σ to all occurrences of xi ’s in E .

Example
Suppose the expression E is the clause

E = p(x , y) ∨ ¬q(f (x))

and σ is the substitution

σ = {x ← a, y ← f (x)}

Then the instance Eσ of E is:

Eσ = p(a, f (x)) ∨ ¬q(f (a))



Definition
Suppose

θ = {x1 ← t1, . . . , xn ← tn}, σ = {y1 ← s1, . . . , yk ← sk}

are two substitutions with X = {x1, . . . , xn}, Y = {y1, . . . , yk}.
The composition of θ and σ is the substitution

θσ = {xi ← tiσ : xi 6= tiσ} ∪ {yj ← sj : yj ∈ Y , yj 6∈ X}

In plain English: first apply the substitution σ to the terms ti that
appear in θ. If some substitutions become xi ← xi , delete them.
Finally, append all yj ← sj to the list, for which yj is not one of
the variables xi in θ.



Example
We are given two substitutions

θ = {x ← f (y), y ← f (a), z ← u}
σ = {y ← g(a), u ← z, v ← f (f (a))}

Then,

θσ = {x ← f (g(a)), y ← f (a), u ← z, v ← f (f (a))}

If we are given a 5-ary relation E = p(x , y , z, u, v) it is easy to
see that

Eθ = p(f (y), f (a), u, u, v)

(Eθ)σ = p(f (g(a)), f (a), z, z, f (f (a)))

E(θσ) = p(f (g(a)), f (a), z, z, f (f (a)))



Lemma
If E is an expression and θ and σ are two substitutions,

E(θσ) = (Eθ)σ

Lemma
The composition of substitutions is associative: if θ, σ, and λ
are substitutions,

θ(σλ) = (θσ)λ

Remark
In general, the composition of two substitutions is not
commutative; i.e.

θσ 6= σθ



7.7 Unification
Consider the pair of literals

p(f (x), g(y)), ¬p(f (f (a)), g(z)).

This pair cannot be resolved using the method of ground
resolution. However, the substitution

{x ← f (a), y ← a, z ← a}
will turn the pair into

p(f (f (a)), g(a)), ¬p(f (f (a)), g(a))

to which ground resolution can be applied.
In fact, a simpler substitution

{x ← f (a), y ← z}
will also accomplish this, even though we will not end up with a
pair of ground literals, but

p(f (f (a)), g(z)), ¬p(f (f (a)), g(z)),

which are still clashing.



Definition
Given a set of atoms, a unifier is a substitution which makes the
atoms identical. A most general unifier, or m.g.u, for short, is a
unifier µ such that, if θ is any unifier for the set of atoms

θ = µλ,

for some substitution λ.
In other words, every unifier for that set of atoms can be
obtained from an m.g.u. through further substitution.

Example
The unifier

µ = {x ← f (a), y ← z}

is an m.g.u. for the set of atoms p(f (x), g(y)) and
p(f (f (a)), g(z)) from the beginning of the section. In fact,

{x ← f (a), y ← a, z ← a} = µ{z ← a}



Question: When is it impossible to unify two atomic formulas?

1 if they start with different predicate symbols (obvious).
2 a trickier obstacle: consider the pair of atoms

p(a, x), p(a, f (x))

No matter what substitution we attempt to use, the problem
is that we will never be able to make the terms x and f (x)
identical.
The reason for this is that the two terms we are attempting
to unify contain the same variable.



• If we want to unify two atoms

p(t1, t2, . . . , tn), p(t ′1, t ′2, . . . , t ′n)

we are trying to unify pairs of terms t1 and t ′1, t2 and t ′2, . . . ,
tn and t ′n.

• We can view this problem as attempting to solve a system
of n term equations:

t1 = t ′1
t2 = t ′2

...
tn = t ′n



Example
The problem of trying to unify the pair of atoms

p(x , f (y)), p(f (f (y)), g(a))

can be viewed as solving the system of two term equations:

x = f (f (y))

f (y) = g(a)

Based on previous remarks, this system cannot be solved since
the terms in the second equation start with different function
symbols.

Remark
So far we have considered the problem of unifying a pair of
atomic formulas. Everything mentioned so far and what follows
in the rest of this section can be easily adapted to the problem
of unifying a set of three or more atomic formulas.



Definition
A set of term equations is in solved form if:

1 all equations are of the form

x = t , x − variable , t − term not containing x

2 every variable x which appears in the left-hand side of one
of the equations does not appear in any other equation in
the system.

If the solved form of the system is

x1 = t1, x2 = t2, . . . , xn = tn

the solving substitution is

σ = {x1 ← t1, x2 ← t2, . . . , xn ← tn}



Unification Algorithm
Input: a set of term equations
Output: a set of term equations in solved form or the answer
“not unifiable”.

(1) Transform every equation of the form t = x (x-variable,
t-term which is not a variable) into x = t ;

(2) Delete all trivial equations of the form x = x (x-variable)
(3) Suppose t ′ = t ′′ is an equation where neither term t ′, t ′′ is a

variable. If starting function symbols of t ′ and t ′′ are not the
same, output “not unifiable”; otherwise, if

t ′ = f (t ′1, . . . , t ′k ), t ′′ = f (t ′′1 , . . . , t ′′k ),

replace the equation with k new equations

t ′1 = t ′′1 , t ′2 = t ′′2 , . . . , t ′k = t ′′k



(4) If x = t is an equation such that x appears elsewhere in
the system:

• if x appears in t , output “not unifiable”
• if x appears in other equations, replace all occurrences of x

in those equation with t .



Example
Consider the system of term equations:

g(y) = x
f (x , h(x), y) = f (g(z), w , z)

We start by using Rule 3 to replace the second equation with
three equations:

g(y) = x
x = g(z)

h(x) = w
y = z



Next, we use Rule 1 to rewrite the first and the third equation:

x = g(y)

x = g(z)

w = h(x)

y = z

Using the first equation, we eliminate x from the right-hand
sides of the remaining equations:

x = g(y)

g(y) = g(z)

w = h(g(y))

y = z



Next, using Rule 3, we can rewrite the second equation:

x = g(y)

y = z
w = h(g(y))

y = z

So, we see that the last equation is redundant (it is identical to
the second equation) and we can delete it:

x = g(y)

y = z
w = h(g(y))



Finally, we use the second equation to eliminate y from the
right-hand sides of other equations:

x = g(z)

y = z
w = h(g(z))

This system is in solved form, so we have an m.g.u:

µ = {x ← g(z), y ← z, w ← h(g(z))}



• Suppose A and A′ are two atoms starting with the same
predicate symbol.

• Let k be the first position within these two atoms,
considered as strings, where they differ (if such a position
exists)

• The pair of terms t , t ′ in A, A′, respectively, which start at
the k -th position in these two atoms are called the
disagreement set for A and A′.



Robinson’s Unification Algorithm
Input: two atoms A and A′ starting with the same predicate
symbol.
Output: an m.g.u. for A and A′ or the answer “not unifiable”.

1 Initialize A0 := A, A′
0 := A′.

2 Suppose Ai and A′
i have been constructed.

3 Let {t , t ′} be the disagreement set for A and A′. If one term
is a variable xi+1 and the other one is a term ti+1 such that
xi+1 does not appear in ti+1, define

σi+1 = {xi+1 ← ti+1}, Ai+1 := Aiσi+1, A′
i+1 := A′

iσi+1

4 If, at some point, it is impossible to complete Step 3, output
“not unifiable”. If, at the step n, we have An = A′

n, output
“unifiable” and an m.g.u is

µ = σ1σ2 . . . σn



Example
Consider the pair of atoms

A = p(g(y), f (x , h(x), y)), A′ = p(x , f (g(z), w , z))

The disagreement set is {g(y), x}, so

σ1 = {x ← g(y)}

and

A1 = p(g(y), f (g(y), h(g(y)), y)), A′
1 = p(g(y), f (g(z), w , z))

The disagreement set for A1 and A′
1 is {y , z} so we can take

σ2 = {y ← z}

and we get

A2 = p(g(z), f (g(z), h(g(z)), z), A2 = p(g(z), f (g(z), w , z))



Finally, the disagreement set for A2 and A′
2 is {h(g(z)), w} so

we take the substitution

σ3 = {w ← h(g(z))}

After that, we have

A3 = p(g(z), f (g(z), h(g(z)), z), A′
3 = p(g(z), f (g(z), h(g(z)), z)

Since A3 = A′
3, the output is “unifiable” and an m.g.u. is

µ = σ1σ2σ3 = {x ← g(y)}{y ← z}{w ← h(g(z))}

= {x ← g(z), y ← z, w ← h(g(z))}

[This is the same m.g.u. as the one obtained by solving the
system of term equations.]



7.8 General Resolution

Definition
Suppose L = {l1, l2, . . . , lm} is a set of literals. Then, we define
its complement as Lc = {lc1 , lc2 , . . . , lcm}.

General Resolution Rule: Suppose C1 and C2 are two clauses
with no variables in common. Let

L1 = {l11, . . . , l1m} ⊆ C1

L2 = {l21, . . . , l2n} ⊆ C2

so that L1 and Lc
2 can be unified using an m.g.u. σ. Then, C1

and C2 are said to be clashing clauses and their resolvent is

Res(C1, C2) = (C1σ − L1σ) ∪ (C2σ − L2σ)



Example
Consider the two clauses

C1 = p(f (x), g(y)) ∨ q(x , y)

C2 = ¬p(f (f (a), g(z)) ∨ q(f (a), g(z))

These two clauses contain the following literals:

L1 = {p(f (x), g(y))}
L2 = {¬p(f (f (a), g(z))}

so that Lc
2 = {p(f (f (a)), g(z))}.



It is easy to check that the literals in L1 and Lc
2 are unifiable with

an m.g.u.
σ = {x ← f (a), y ← z}

so the clauses C1 and C2 are clashing, and their resolvent is:

Res(C1, C2) = (C1σ − L1σ) ∪ (C2σ − L2σ)

= {q(f (a), z)} ∪ {q(f (a), g(z))}

so that we get the clause

q(f (a), z) ∨ q(f (a), g(z))

�



• Most often, the two clauses we are trying to resolve will
have variables in common, so we cannot use the
Resolution Rule as stated before.

• Before we attempt to resolve such pairs of clauses, we
have to standardize apart; i.e. we have to rename the
variables so that the clauses no longer have any variables
in common.



Example
Consider the two literals

p(f (x), y), ¬p(x , a)

The two atoms contain the same variable x , so we have to
standardize them apart before attempting to resolve; e.g. we
can replace x in the second atom with z:

p(f (x), y), ¬p(z, a)

It is easy to see that an m.g.u. is

σ = {z ← f (x), y ← a}



The m.g.u. transforms the pair of literals into:

p(f (x), a), ¬p(f (x), a)

Now, we can apply resolution to this pair of literals to obtain the
empty clause �.



General Resolution Procedure
Input: a set of clauses S
Output: “satisfiable” or “not satisfiable”, in the case the
algorithm terminates.

• Set S0 := S
• Suppose Si has been constructed.
• Choose a pair of clashing clauses C1, C2 in Si and find

C = Res(C1, C2)

(we may need to standardize apart certain clauses during
this step)

• If C = �, terminate the procedure and output “not
satisfiable”; otherwise, put

Si+1 := Si ∪ {C}

• If Si+1 = Si , for all possible pairs of clashing clauses in Si ,
terminate the procedure and output “satisfiable”.



Example
We will show, using the general resolution procedure, that the
following set of clauses is unsatisfiable:

1. ¬p(x) ∨ q(x) ∨ r(x , f (x))
2. ¬p(x) ∨ q(x) ∨ s(f (x))
3. t(a)
4. p(a)
5. ¬r(a, y) ∨ t(y)
6. ¬t(x) ∨ ¬q(x)
7. ¬t(x) ∨ ¬s(x)



8. ¬q(a) 3,6 y ← a
9. ¬p(a) ∨ s(f (a)) 2,8 x ← a
10. ¬p(a) ∨ r(a, f (a)) 1,8 x ← a
11. s(f (a)) 4,9
12. r(a, f (a)) 4,10
13. t(f (a)) 5,12 y ← f (a)
14. ¬t(f (a)) 11,7 x ← f (a)
15. � 13,14

�



Theorem
(Soundness of Resolution) If the empty clause � is derived by
general resolution, then S is unsatisfiable.

Theorem
(Completeness of Resolution) If a set of clauses S is
unsatisfiable, then the empty clause � can be derived from S
using general resolution.



Example
In this example, we will prove that the set of clauses (1)-(4) is
unsatisfiable. However, we will se that it is not necessary to use
ground clauses in derivation.

1. ¬p(x , y) ∨ p(y , x)
2. ¬p(x , y) ∨ ¬p(y , z) ∨ p(x , z)
3. p(x , f (x))
4. ¬p(x , x)



3’. p(x ′, f (x ′)) 3 Rename x to x ′

5. p(f (x), x) 1,3 x ′ ← x , y ← f (x)
3”. p(x ′′, f (x ′′)) 3 Rename x to x ′′

6. ¬p(f (x), z) ∨ p(x , z) 3”,2 y ← f (x), x ′′ ← x
5”’. p(f (x ′′′), x ′′′) 5 Rename x to x ′′′

7. p(x , x) 6,5 z ← x , x ′′′ ← x
4””. ¬p(x ′′′′, x ′′′′) 4 Rename x to x ′′′′

8. � 7,4”” x ′′′′ ← x

The composition of all unifiers in steps (3’)-(8) is:

σ = {y ← f (x), z ← x , x ′ ← x , x ′′ ← x , x ′′′ ← x , x ′′′′ ← x}

which, restricted to the original variables x , y nad z is

σ = {y ← f (x), z ← x}

�


	7.1 Functions and Terms
	7.2 Clausal Form
	7.3 Herbrand Models
	7.4 Herbrand's Theorem
	7.5 Ground Resolution
	7.6 Substitutions
	7.7 Unification
	7.8 General Resolution

