Chapter 6: Predicate Calculus: Deductive Systems

October 26, 2008

Outline

1 6.1 Gentzen Proof System *G*

6.1 Gentzen Proof System \mathcal{G}

• As in propositional logic, Gentzen proof system is based on the reversal of a semantic tableau for a formula.

Example

Prove that

$$\models (\forall x \ p(x) \lor \forall x \ q(x)) \rightarrow \forall x \ (p(x) \lor q(x))$$

Solution: We will start by constructing a tableau for the negation

$$\neg [(\forall x \ p(x) \lor \forall x \ q(x)) \rightarrow \forall x \ (p(x) \lor q(x))]$$

$$\neg [(\forall x \ p(x) \lor \forall x \ q(x)) \rightarrow \forall x \ (p(x) \lor q(x))] \\ | \\ \forall x \ p(x) \lor \forall x \ q(x), \neg \forall x(p(x) \lor q(x)) \\ \forall x \ p(x), \neg \forall x(p(x) \lor q(x)) \forall x \ q(x), \neg \forall x(p(x) \lor q(x)) \\ | \\ \forall x \ p(x), \neg (p(a) \lor q(a)) \forall x \ q(x), \neg (p(b) \lor q(b)) \\ | \\ \forall x \ p(x), \neg p(a), \neg q(a) \forall x \ q(x), \neg p(b), \neg q(b) \\ | \\ \forall x \ p(x), p(a), \neg p(a), \neg q(a) \forall x \ q(x), q(b), \neg p(b), \neg q(b) \\ \times \end{matrix}$$

Deductive System ${\mathcal G}$

- Axioms: any set of formulas *U* containing a complementary pair of literals
- Rules: α- and β-rules are the same as in propositional logic, plus

$$\frac{U \cup \{\gamma, \gamma(\boldsymbol{a})\}}{U \cup \{\gamma\}} \qquad \frac{U \cup \{\delta(\boldsymbol{a})\}}{U \cup \{\delta\}}$$

where

γ	$\gamma(a)$	δ	$\delta(a)$
$\exists x A(x)$	A(a)	$\forall x A(x)$	A(a)
$\neg \forall x A(x)$	<i>¬A(a</i>)	$\neg \exists A(x)$	<i>¬A(a)</i>

where *a* is an arbitrary constant.

Example

The proof in ${\mathcal{G}}$ for

$$(\forall x \ p(x) \lor \forall x \ q(x)) \rightarrow \forall x \ (p(x) \lor q(x))$$

is

1.	$\neg \forall x \ p(x), \neg p(a), p(a), q(a)$	Axiom
2.	$ eg \forall x \; q(x), \neg q(b), p(b), q(b)$	Axiom
3.	$\neg \forall x \ p(x), p(a), q(a)$	γ -rule 1
4.	$ eg \forall x \; q(x), p(b), q(b)$	γ -rule 2
5.	$ eg \forall x \ p(x), p(a) \lor q(a)$	lpha-rule 3
6.	$ eg \forall x \; q(x), p(b) \lor q(b)$	α -rule 4
7.	$ eg \forall x \ p(x), \forall x(p(x) \lor q(x))$	δ -rule 5
8.	$ eg \forall x \; q(x), \forall x(p(x) \lor q(x))$	δ -rule 6
9.	$ eg [\forall x \ p(x) \lor \forall x \ q(x)], \forall x(p(x) \lor q(x)) $	β -rule 8
10.	$(\forall x \ p(x) \lor \forall x \ q(x)) \rightarrow \forall x \ (p(x) \lor q(x))$	lpha-rule 9

Theorem (Soundness and Completeness) Let U be a set of formulas. There is a Gentzen proof for U if and only if there is a closed semantic tableau for U.

6.2 Hilbert Proof System \mathcal{H}

- Connectives: \neg , \rightarrow
- Quantifier: ∀*x*

Remark

Using $\forall x$ as the only quantifier in predicate formulas is not a genuine restriction, since

$$\exists x \ A(x) \equiv \neg \forall x \ \neg A(x)$$

so \exists can be expressed using \neg and \forall .

Deductive System ${\mathcal H}$

- Axioms: The three axioms for the Hilbert system in propositional logic, plus
- Axiom 4. $\vdash \forall x \ A(x) \rightarrow A(a)$ Axiom 5. $\vdash \forall x(A \rightarrow B(x)) \rightarrow (A \rightarrow \forall x \ B(x))$, assuming x is not free in A.
 - Rules of Inference: Modus Ponens, plus

(Generalization:)

$$\frac{\vdash A(a)}{\vdash \forall x \ A(x)}$$

 There is a problem with the Generalization Rule if it is not being used judiciously; consider the following derivation in the set N with the unary predicate *even*(x):

1. $even(2) \vdash even(2)$ Assumption

- 2. $even(2) \vdash \forall x even(x)$ Gen. Rule 1
- We derived a wrong conclusion that every natural number is even, starting from the true assumption that 2 is even. What went wrong?
- Answer: We should not be able to generalize based on a constant included in the assumptions. Namely, assumptions may contain very specific facts and not simply general logical truths.

Generalization Rule:

$$\frac{U \vdash A(a)}{U \vdash \forall x \ A(x)}$$

provided *a* does not appear in *U*.

Deduction Rule:

$$\frac{U\cup\{A\}\vdash B}{U\vdash A\to B}$$

Theorem (Soundness and Completeness) Hilbert proof system \mathcal{H} for predicate logic is sound and complete.

Specification Rule (Axiom 4):

 $\frac{U \vdash \forall x \ A(x)}{U \vdash A(a)}$

for any constant a.

$$\vdash A(a) \rightarrow \exists x A(x)$$

Proof.

1.
$$\vdash \forall x \neg A(x) \rightarrow \neg A(a)$$
 Axiom 4
2. $\vdash A(a) \rightarrow \neg \forall x \neg A(x)$ Contrap. Rule
3. $\vdash A(a) \rightarrow \exists x A(x)$ Def. of \exists

 $\vdash \forall x \ A(x) \rightarrow \exists x \ A(x)$

Proof.

1. $\forall x \ A(x) \vdash \forall x \ A(x)$ Assumption2. $\forall x \ A(x) \vdash \forall x \ A(x) \rightarrow A(a)$ Axiom 43. $\forall x \ A(x) \vdash A(a)$ MP 1,24. $\forall x \ A(x) \vdash A(a) \rightarrow \exists x \ A(x)$ Proved earlier5. $\forall x \ A(x) \vdash \exists x \ A(x)$ MP 3,46. $\vdash \forall x \ A(x) \rightarrow \exists x \ A(x)$ Ded. Rule 5

$$\vdash \forall x (A(x) \rightarrow B(x)) \rightarrow (\forall x \ A(x) \rightarrow \forall x \ B(x))$$

Proof.

1.
$$\forall x(A(x) \rightarrow B(x)), \forall x A(x) \vdash \forall x A(x)$$

2. $\forall x(A(x) \rightarrow B(x)), \forall x A(x) \vdash A(a)$
3. $\forall x(A(x) \rightarrow B(x)), \forall x A(x) \vdash \forall x(A(x) \rightarrow B(x))$
4. $\forall x(A(x) \rightarrow B(x)), \forall x A(x) \vdash A(a) \rightarrow B(a)$
5. $\forall x(A(x) \rightarrow B(x)), \forall x A(x) \vdash B(a)$
6. $\forall x(A(x) \rightarrow B(x)), \forall x A(x) \vdash \forall x B(x)$
7. $\forall x(A(x) \rightarrow B(x)) \vdash \forall x A(x) \rightarrow \forall x B(x)$
8. $\vdash \forall x(A(x) \rightarrow B(x)) \rightarrow (\forall x A(x) \rightarrow \forall x B(x))$

Assumption Specif. Rule 1 Assumption Specif. Rule 3 MP 2,4 Gen. Rule 5 Ded. Rule 6 Ded. Rule 7 • We have just proved a more general version of the Generalization Rule:

Generalization Rule:

$$\frac{\vdash A(x) \to B(x)}{\vdash \forall x \ A(x) \to \forall x \ B(x)}$$

$$\vdash \exists x \forall y \ A(x,y) \rightarrow \forall y \exists x \ A(x,y)$$

Proof.

1.
$$\vdash A(a, b) \rightarrow \exists x \ A(x, b)$$

2. $\vdash \forall y \ A(a, y) \rightarrow \forall y \exists x \ A(x, y)$
3. $\vdash \neg \forall y \exists x \ A(x, y) \rightarrow \neg \forall y \ A(a, y)$
4. $\vdash \forall x [\neg \forall y \exists x \ A(x, y) \rightarrow \neg \forall y \ A(x, y)]$
5. $\vdash \neg \forall y \exists x \ A(x, y) \rightarrow \forall x \neg \forall y \ A(x, y)$
6. $\vdash \neg \forall x \neg \forall y \ A(x, y) \rightarrow \forall y \exists x \ A(x, y)$
7. $\vdash \exists x \forall y \ A(x, y) \rightarrow \forall y \exists x \ A(x, y)$

Proved earlier Gen. Rule 1 Axiom 4 Gen. Rule 3 Axiom 5 Contrap. Rule 5 Def. of \exists 6

$$\vdash orall x(A
ightarrow B(x)) \leftrightarrow (A
ightarrow orall x B(x))$$

Proof.

1.
$$A \rightarrow \forall x \ B(x) \vdash A \rightarrow \forall x \ B(x)$$
Assumption2. $A \rightarrow \forall x \ B(x) \vdash \forall x \ B(x) \rightarrow B(a)$ Axiom 43. $A \rightarrow \forall x \ B(x) \vdash A \rightarrow B(a)$ Transitivity 1,24. $A \rightarrow \forall x \ B(x) \vdash \forall x (A \rightarrow B(x))$ Gen. Rule 35. $\vdash (A \rightarrow \forall x \ B(x)) \rightarrow \forall x (A \rightarrow B(x))$ Ded. Rule 46. $\vdash \forall x (A \rightarrow B(x)) \rightarrow (A \rightarrow \forall x \ B(x))$ Axiom 57. $\vdash \forall x (A \rightarrow B(x)) \leftrightarrow (A \rightarrow \forall x \ B(x))$ Def. of $\leftrightarrow 5,6$

5,6

One can also prove

Theorem

$$\vdash \forall x (A(x) \to B) \leftrightarrow (\exists x \ A(x) \to B)$$

Proof.

Exercise; see Theorem 6.20 in the textbook.

C-Rule

Suppose *U* is a set of formulas, and *a* a constant symbol which does not appear in any formula from *U* or in $\exists x A(x)$:

$$\frac{U\vdash \exists x \ A(x)}{U\vdash A(a)}$$

Theorem

If $U \vdash A$ using the C-rule, then $U \vdash A$ can be proved without sing the C-rule, with the proviso that nowhere in the proof are we using Generalization Rule on a formula which involves the new constant symbol a.

 $\vdash \exists x \forall y \ A(x, y) \rightarrow \forall y \exists x \ A(x, y)$

Proof.

- 1. $\exists x \forall y \ A(x,y) \vdash \exists x \forall y \ A(x,y)$
- 2. $\exists x \forall y \ A(x,y) \vdash \forall y \ A(a,y)$
- 3. $\exists x \forall y \ A(x,y) \vdash A(a,b)$
- 4. $\exists x \forall y \ A(x,y) \vdash \exists x \ A(x,b)$
- 5. $\exists x \forall y \ A(x,y) \vdash \forall y \exists x \ A(x,y)$
- 6. $\vdash \exists x \forall y \ A(x,y) \rightarrow \forall y \exists x \ A(x,y)$

Assumption C-rule 1 Specif. Rule 2 Proved earlier Gen. Rule 4 Ded. Rule 5