
Chapter 6: Predicate Calculus: Deductive
Systems

October 26, 2008



Outline

1 6.1 Gentzen Proof System G

2 6.2 Hilbert Proof System H



6.1 Gentzen Proof System G

• As in propositional logic, Gentzen proof system is based
on the reversal of a semantic tableau for a formula.

Example
Prove that

|= (∀x p(x) ∨ ∀x q(x)) → ∀x (p(x) ∨ q(x))

Solution: We will start by constructing a tableau for the
negation

¬[(∀x p(x) ∨ ∀x q(x)) → ∀x (p(x) ∨ q(x))]



¬[(∀x p(x) ∨ ∀x q(x)) → ∀x (p(x) ∨ q(x))]

∀x p(x) ∨ ∀x q(x),¬∀x(p(x) ∨ q(x))

qqqqqqq
MMMMMMM

∀x p(x),¬∀x(p(x) ∨ q(x)) ∀x q(x),¬∀x(p(x) ∨ q(x))

∀x p(x),¬(p(a) ∨ q(a)) ∀x q(x),¬(p(b) ∨ q(b))

∀x p(x),¬p(a),¬q(a) ∀x q(x),¬p(b),¬q(b)

∀x p(x), p(a),¬p(a),¬q(a)

×
∀x q(x), q(b),¬p(b),¬q(b)

×



Deductive System G

• Axioms: any set of formulas U containing a
complementary pair of literals

• Rules: α- and β-rules are the same as in propositional
logic, plus

U ∪ {γ, γ(a)}
U ∪ {γ}

U ∪ {δ(a)}
U ∪ {δ}

where



γ γ(a)

∃x A(x) A(a)
¬∀x A(x) ¬A(a)

δ δ(a)

∀x A(x) A(a)
¬∃ A(x) ¬A(a)

where a is an arbitrary constant.



Example
The proof in G for

(∀x p(x) ∨ ∀x q(x)) → ∀x (p(x) ∨ q(x))

is

1. ¬∀x p(x),¬p(a), p(a), q(a) Axiom
2. ¬∀x q(x),¬q(b), p(b), q(b) Axiom
3. ¬∀x p(x), p(a), q(a) γ-rule 1
4. ¬∀x q(x), p(b), q(b) γ-rule 2
5. ¬∀x p(x), p(a) ∨ q(a) α-rule 3
6. ¬∀x q(x), p(b) ∨ q(b) α-rule 4
7. ¬∀x p(x),∀x(p(x) ∨ q(x)) δ-rule 5
8. ¬∀x q(x),∀x(p(x) ∨ q(x)) δ-rule 6
9. ¬[∀x p(x) ∨ ∀x q(x)],∀x(p(x) ∨ q(x)) β-rule 8
10. (∀x p(x) ∨ ∀x q(x)) → ∀x (p(x) ∨ q(x)) α-rule 9



Theorem
(Soundness and Completeness) Let U be a set of formulas.
There is a Gentzen proof for U if and only if there is a closed
semantic tableau for U.



6.2 Hilbert Proof System H

• Connectives: ¬, →
• Quantifier: ∀x

Remark
Using ∀x as the only quantifier in predicate formulas is not a
genuine restriction, since

∃x A(x) ≡ ¬∀x ¬A(x)

so ∃ can be expressed using ¬ and ∀.



Deductive System H

• Axioms: The three axioms for the Hilbert system in
propositional logic, plus

Axiom 4. ` ∀x A(x) → A(a)
Axiom 5. ` ∀x(A → B(x)) → (A → ∀x B(x)), assuming x is not free

in A.

• Rules of Inference: Modus Ponens, plus

(Generalization:)
` A(a)

` ∀x A(x)



• There is a problem with the Generalization Rule if it is not
being used judiciously; consider the following derivation in
the set N with the unary predicate even(x):

1. even(2) ` even(2) Assumption
2. even(2) ` ∀x even(x) Gen. Rule 1

• We derived a wrong conclusion that every natural number
is even, starting from the true assumption that 2 is even.
What went wrong?

• Answer: We should not be able to generalize based on a
constant included in the assumptions. Namely,
assumptions may contain very specific facts and not simply
general logical truths.



Generalization Rule:

U ` A(a)

U ` ∀x A(x)

provided a does not appear in U.

Deduction Rule:

U ∪ {A} ` B
U ` A → B



Theorem
(Soundness and Completeness) Hilbert proof system H for
predicate logic is sound and complete.

Specification Rule (Axiom 4):

U ` ∀x A(x)

U ` A(a)

for any constant a.



Theorem

` A(a) → ∃x A(x)

Proof.

1. ` ∀x ¬A(x) → ¬A(a) Axiom 4
2. ` A(a) → ¬∀x ¬A(x) Contrap. Rule
3. ` A(a) → ∃x A(x) Def. of ∃



Theorem

` ∀x A(x) → ∃x A(x)

Proof.

1. ∀x A(x) ` ∀x A(x) Assumption
2. ∀x A(x) ` ∀x A(x) → A(a) Axiom 4
3. ∀x A(x) ` A(a) MP 1,2
4. ∀x A(x) ` A(a) → ∃x A(x) Proved earlier
5. ∀x A(x) ` ∃x A(x) MP 3,4
6. ` ∀x A(x) → ∃x A(x) Ded. Rule 5



Theorem

` ∀x(A(x) → B(x)) → (∀x A(x) → ∀x B(x))

Proof.

1. ∀x(A(x) → B(x)),∀x A(x) ` ∀x A(x) Assumption
2. ∀x(A(x) → B(x)),∀x A(x) ` A(a) Specif. Rule 1
3. ∀x(A(x) → B(x)),∀x A(x) ` ∀x(A(x) → B(x)) Assumption
4. ∀x(A(x) → B(x)),∀x A(x) ` A(a) → B(a) Specif. Rule 3
5. ∀x(A(x) → B(x)),∀x A(x) ` B(a) MP 2,4
6. ∀x(A(x) → B(x)),∀x A(x) ` ∀x B(x) Gen. Rule 5
7. ∀x(A(x) → B(x)) ` ∀x A(x) → ∀x B(x) Ded. Rule 6
8. ` ∀x(A(x) → B(x)) → (∀x A(x) → ∀x B(x)) Ded. Rule 7



• We have just proved a more general version of the
Generalization Rule:

Generalization Rule:
` A(x) → B(x)

` ∀x A(x) → ∀x B(x)



Theorem

` ∃x∀y A(x , y) → ∀y∃x A(x , y)

Proof.

1. ` A(a, b) → ∃x A(x , b) Proved earlier
2. ` ∀y A(a, y) → ∀y∃x A(x , y) Gen. Rule 1
3. ` ¬∀y∃x A(x , y) → ¬∀y A(a, y) Axiom 4
4. ` ∀x [¬∀y∃x A(x , y) → ¬∀y A(x , y)] Gen. Rule 3
5. ` ¬∀y∃x A(x , y) → ∀x¬∀y A(x , y) Axiom 5
6. ` ¬∀x¬∀y A(x , y) → ∀y∃x A(x , y) Contrap. Rule 5
7. ` ∃x∀y A(x , y) → ∀y∃x A(x , y) Def. of ∃ 6



Theorem

` ∀x(A → B(x)) ↔ (A → ∀x B(x))

Proof.

1. A → ∀x B(x) ` A → ∀x B(x) Assumption
2. A → ∀x B(x) ` ∀x B(x) → B(a) Axiom 4
3. A → ∀x B(x) ` A → B(a) Transitivity 1,2
4. A → ∀x B(x) ` ∀x(A → B(x)) Gen. Rule 3
5. ` (A → ∀x B(x)) → ∀x(A → B(x)) Ded. Rule 4
6. ` ∀x(A → B(x)) → (A → ∀x B(x)) Axiom 5
7. ` ∀x(A → B(x)) ↔ (A → ∀x B(x)) Def. of ↔ 5,6



One can also prove

Theorem

` ∀x(A(x) → B) ↔ (∃x A(x) → B)

Proof.
Exercise; see Theorem 6.20 in the textbook.



C-Rule

Suppose U is a set of formulas, and a a constant symbol which
does not appear in any formula from U or in ∃x A(x):

U ` ∃x A(x)

U ` A(a)

Theorem
If U ` A using the C-rule, then U ` A can be proved without
sing the C-rule, with the proviso that nowhere in the proof are
we using Generalization Rule on a formula which involves the
new constant symbol a.



Theorem

` ∃x∀y A(x , y) → ∀y∃x A(x , y)

Proof.

1. ∃x∀y A(x , y) ` ∃x∀y A(x , y) Assumption
2. ∃x∀y A(x , y) ` ∀y A(a, y) C-rule 1
3. ∃x∀y A(x , y) ` A(a, b) Specif. Rule 2
4. ∃x∀y A(x , y) ` ∃x A(x , b) Proved earlier
5. ∃x∀y A(x , y) ` ∀y∃x A(x , y) Gen. Rule 4
6. ` ∃x∀y A(x , y) → ∀y∃x A(x , y) Ded. Rule 5


	6.1 Gentzen Proof System G
	6.2 Hilbert Proof System H

