Chapter 5: Predicate Calculus: Formulas,
Models, Tableaux

November 3, 2008

Outline

@ 5.1 Relations and Predicates

@ 5.2 Predicate Formulas

® 5.3 Interpretations

@ 5.4 Equivalence and Substitution
@® 5.5 Semantic Tableaux

@ 5.7 Finite and Infinite Models

@ 5.8 Undecidability of the Predicate Logic

5.1 Relations and Predicates

e R: an n-ary relation on a set D

RCD"=DxDx...xD

ntimes

D: domain of the relation R.

Observation: A unary relation R is simply a subset of D

RCD

Examples
(a) Binary relation < on N:

x < y if x is a positive integer less than y
<=1{(0,1),(0,2),...,(1,2),(1,3),...,(2,3),...}
(b) Unary relation Prime(x) on N:

Prime = {2,3,5,7,11,...}

(c) Given the graph G:

7

d

Figure: Graph G

define the binary relation r as:
r(x,y) <= vertex x is connected by a path to vertex y

a,a), (b, b), (cc),(d,d), (e e),
(b, a), (a ¢),(c,a),(b,c),(c,b),(d,e),(e,d)}

~—
f\

We can think of an n-ary function
(X1, X2, ..., Xn) — F(Xq, X2, ..., Xn)
as an (n+ 1)-ary relation Ry containing the (n+ 1)-tuples
(X1, X2, ..., Xn, F(X1, X2, ..., Xn))

Ry is called the graph of the function f.
Also, we can think of an n-ary relation R C D" as a function

f:D"— {T,F}

R(d1,d2,...,dn):T<:>(d1,d2,...,dn)GR

5.2 Predicate Formulas

Predicate (relation) symbols P={p,q,r,...}
Constant symbols A=A{ab,c,...}
Variables V={xy,2...}

BNF Grammar for Predicate Formulas

argument = X, forany x e V
argument ::= a, foranyac A
argumentList ::= argument
argumentList ::= argument, argumentList
atomicFormula ::== p | p(argumentList), forany p e P

formula

formula :

formula
formula
formula
formula
formula
formula

::= atomicFormula
= —formula

.= formula N formula
.= formula Vv formula

= formula — formula

= formula <~ formula

n=Vx formula,
m=3dx formula,

forall x eV
forall x e Vv

Examples

O p(x,a) (atomic formula)

@ p(x,a) — q(x)

® Ix p(x,a)— vy q(y)

O vx (p(x,a) —q(x,y)) — (vx p(x,a) —Vx q(x,y))

Bound and Free Variables

Definition
Suppose A is a predicate formula. An occurrence of a variable
x in Ais a free variable of A if it is not within the scope of any

quantifier Vx or 3x.

Examples

(@ 3y plx,y)
x-free, y-not free

(b) p(x,y)
x, y-free

(c) Vx3yp(x,y)
neither x nor y are free

(d) Vxp(x) v q(x)
the first occurrence of x is not free while the second
occurrence is

e A variable which is not free is said to be bound.
e If we write
A(X1) X2a e 7Xn)7

we mean that the free variables of the formula A are
among Xy, Xo, ..., Xp.

5.3 Interpretations

e U: a set of formulas
e {p1,p2,...,pm}: all predicate symbols appearing in U
e {a1,a,...,ax}: all constant symbols appearing in U

Definition
An interpretation / of U is a triple

I:(Dv{R17R27"'7Rm}7{d1>d2>"-7dk})

where
e Dis a non-empty set (domain of /)
e R; are nj-ary relations on D.
e d; are some fixed elements of D.

p,-»—>F1’,- i:1,2,...,m
a—d =12k

Example

Consider the formula
Vx p(a,x)

Some of its possible interpretations are:

(1) h = (N, {<},{0})

“For every natural number x, 0 < x.”

() k= (NA{[},{1})

“For every natural number x, 1|x.

(8) 5 = ({0, 1}*, { substring relation }, {¢})
“For every string x over alphabet {0, 1}, empty string is a
substring of x.”

(4) b = (G, E,{a})

“For every vertex x of G, (a, x) is an edge in G”

Definition
Suppose ! is an interpretation for a predicate formula A.An
assignment

o:V—D
is a function which assigns a value in the domain D to any
variable appearing in the formula A.

Truth Value of a Predicate Formula

Suppose:
e A - formula.
e [- an interpretation for A.
e g, - an assignment
We define v;,(A), the truth value of A under ¢, inductively:

(@) If A= p(cq, ¢y, ..., cn) is an atomic formula, where each ¢;
is either a variable x; or a constant symbol a;, then

VU,(A) =Tiff (U/(C1), U/(Cg), R ,U/(Cn)) €R

(b) VU,(—\A) = —\VU/(A).
(C) VJ,(A1 N Ag) = VU/(A1) VAN VU,(AQ).
(d) Vcr/(A1 V A2) = VgI(A1) vV VU,(AQ).

[Similarly for —, «.]

(e) vy, (Vx A) =Tiff v, (A) =Tforall x e D

(f) vo,(3x A) =T iff v, (A) =T for some x € D

Theorem
If A is a closed formula, then v, (A) does not depend on o.
In that case, we write

vi(A)

Theorem
Let A = A(x1, X2, ..., Xn) be a non-closed formula and let | be
an interpretation. Then:

(a) vy, (A) = T for assignment o iff
vi(3xi3xe...3xp A) =T

(b) vy, (A) = T for all assignments o iff
Vi(VX1Vxo ... Vxp A) =T

Definition
A closed formula Ais true in /, or I is a model for A, if v(A) =T.

I=A

Definition
A closed formula A is satisfiable if, for some interpretation /,

IEA
Ais valid if, for all interpretations /,
IEA

We can also define unsatisfiable and falsifiable formulas in the
usual way.

Examples

(@) Vxp(a x)— p(a a) valid

(b) vxVy (p(x,y) — p(y,x)) not valid, satisfiable
() Vx3y p(x,y) not valid, satisfiable
(d) Ix3y (p(x) A —p(y)) not valid, satisfiable
(€) Vx(p(x) Aq(x)) < (Vx p(x) Avx q(x)) valid

(

—n
-

Ax (=p(x) A p(x)) unsatisfiable

5.4 Equivalence and Substitution

Suppose A1, As are two closed formulas. If, for all
interpretations /
Vi(A1) = vi(A2)

we say that Ay and A, are equivalent, and we write
A1 = A2

Suppose U is a set of closed formulas, and A a closed
formula
UEA

means that, in all interpretations / in which all formulas
from U are true, we also have

V/(A) =T.

Examples
(@) ¥x A(x) = —3x -A(x)
(b) Ix A(x) = ~Vx-A(x)
(c) VxVy A(x,y) =Vyvx A(x,y)
(d) Ix3y A(x,y) = Jyax A(x,y)
(e) IxVYA(x,y) # Vy3xA(X, y)
To see that these two formulas are not equivalent, consider

I=(Z,{<}).
Clearly,

I IxVy x <y, I=EVydx x <y

Theorem
(a) A=Bifandonly if= A< B.
(b) Suppose

U={AAs,...

U= Aifand only if = Ay A Ap A

7An}

Examples
The following are valid formulas

[For more pairs of equivalent formulas, see Fig. 5.2 in Section
5.4]

Proof.

(e)

Ix(A(x) — B(x)) = Ix(—A(x) Vv B(x))

Ix—A(x) v Ix B(x)
-Vx A(x) Vv 3x B(x)
Vx A(x) — 3x B(x)

Example

Prove that
Ixvy A(x, y) — Vyax A(x,y)

is a valid formula, yet its converse is not valid.

Solution:
Let / be an interpretation. Suppose

I = 3IxVy A(x,y).
Then, forsome ac D
I'EVvy Aay)

So,
I'=Vy(E3x A(x, y))

which proves that, for every /,

I =3IxVy A(x,y) — Vy3ax A(x,y)

I = (Z,{<}) shows that the implication cannot be reversed if we
want the formula to be valid. O

5.5 Semantic Tableaux

Example
We will try to show that

Vx(p(x) — x)) — (VX p(x) — Vx q(x))
is a valid formula
We consider its negation
~[¥x(p(x) — q(x)) — (¥ p(x) = Vx q(x))]

and try to show that it is unsatisfiable.

~[¥x(p(x) — q(x)) — (VX p(x) — ¥x q(x))]

¥x(p(x) — g(x)), ~(vx p(x) — Vx q(x))
Vx(p(x) — q(x)), Vx p(x), =vx q(x)
¥x(p(x) — a(x)), X p(x), ~q(a)

¥x(p(x) — q(x)). p(a), ~q(a)

p(a) — q(a), p(a), ~q(a)

—p(a).p(a),~q(a) q(a),p(a),—q(a)

X X

Example
Now, we consider the formula

Vx(p(x) v q(x)) — (¥x p(x) Vv ¥x q(x))

which is not valid, but is satisfiable.

~[vx(p(x) v a(x)) — (vx p(x) v ¥x q(x))]
Vx(p(x) v q(x)), =(vx p(x) v ¥x q(x))

vx(p(x) vV q(x)), 3x =p(x), Ix ~q(x)

vx(p(x) v q(x)), ~p(a), Ix—q(x)

p(a) v q(a), ~p(a), Ix—q(x)

p(a), ~p(a), Ix—q(x) q(a), ~p(a), 3-q(x)
X

q(a), ~p(a), ~q(a)

X

Question: What went wrong?

e We used the same constant a twice to eliminate two
distinct existential quantifiers.

e We were forced to use the same constant since, once we
eliminated the universal quantifier in
vx(p(x) vV q(x))
we replaced it with a and were forced to work with that
constant exclusively from that point on.

Solution: We will not delete universal quantifiers from nodes of
the tableau; instead, we introduce some instance of that
variable but keep writing the universal quantifier. E.g.

Vx p(x)

vx p(x), p(a)

Using these guidelines, if we construct a correct tableau for he
formula from the previous example (exercise!), we notice that
one branch ends with the open leaf

p(a), ~q(a), ~p(b), q(b)

In fact, this leaf gives us a model for this satisfiable formula; the
domain is
D= {a, b}

and the unary relations are subsets
p={a}, q={b}

[This is what we will define as an Herbrand model for this
formula in Chapter 7.]

Example
Consider the formulas

A =Vx3y p(x,y)
Az = Vx—p(x, X)
Az = IxVyvz(p(x,y) Ap(y, z) — p(x,2))

Check whether
A=A NANA;

is a satisfiable formula and, if so, find one model for A.

Solution: We will first construct a semantic tableau for the
formula:

vXEI.y p(Xay)’AZ’AS

vx3y p(x,y),y(ar,y), Az, Az

Vx3y p(x,y),p(a1, @), Az, Az

Vx3y p(x,y),3y p(az,y), p(ai, a), Az, As

Vx3y p(x,y),p(az, as),p(ai, a), Az, As

We see that the tableau does not terminate; namely, every time
we drop the universal or an existential quantifier, we can
introduce a new constant symbol a;, to get an infinite sequence
of constants:

a{,das,...,4an,...

The formula does have an obvious infinite model:
I=(N,{<})
Furthermore, one can prove, using the formulas A, and A; (see
the proof of Theorem 5.24 in the textbook) that every model of
A=A NA A A3

must be infinite. So, the tableau construction effectively
produces a “generic” infinite model for A. O

¢ One stark difference in comparison with semantic tableaux
for propositional logic is (as seen in the previous example)
that a tableau of a predicate formula may not terminate.

e The reason for this anomaly is that, in propositional logic,
nodes of a tableau simplify in terms of the formula
complexity. In predicate logic, this is not the case, since we
can never eliminate universal quantifiers.

Algorithm for Semantic Tableaux

¢ Two new types of rules:

Y v(a) g é(a)
Vx A(x) A(a) Ix A(x) A(a)
-3x A(x) | -A(a) =Vx A(x) | -A(a)
e Literal: closed atomic formula p(ay, a, .. ., an) or the

negation of such a formula.

Input: A - a predicate formula

Output: Semantic tableau 7 for A; all branches are either
infinite, or finite with leaves marked x (closed) or ® (open).

(1) Initially, 7 is a single node, labeled {A}.

(2) We build the tableau inductively by choosing an unmarked
leaf /, labeled U(/), and applying one of the following rules:

e If U(/) is a set of literals and ~-formulas containing a pair of
complementary literals
{p(ai,a ...,an),—p(ai,ao,...,an)}, markit as closed (x)
o If U(/) is not a set of literals, choose a formula A in U(/)
which is not a literal:

— «a- and (-rules are applied just as in propositional logic.
— If Ais a y-formula, add a new node /’, a child of /, and label

it
u(r) = ulhu{~(a)}

where ais a constant appearing in U(/). If U(/) consists of
literals and ~-formulas only, mark it x or ®, depending on
whether there is a set of complementary literals.
— If Ais a -formula, create a new node /" as a child of / and
label it
u(ry = (U(l) —{Ay) u{s(a)}

where a is some constant that does not appear in U(/).

Definition
A branch in 7 is closed if it terminates in a leaf marked x.
Otherwise, it is open.

Theorem
(Soundness) Suppose A is a predicate formula and T its
semantic tableau. If T closes, then A is unsatisfiable.

Theorem
(Completeness) Suppose A is a valid formula. Then, the
systematic semantic tableau for A terminates and is closed.

e Systematic tableau: a tableau in which every node is
labeled
W(l) = (U(), C(1))
where U(/) is a list of formulas and C(/) is the list of all
constant symbols appearing in U(/).

¢ In a systematic tableau, if using a y-rule, we do the
following: suppose {~1,...,vm} are all y-formulas in U(/)
and

C(h={ai,....a}
The new node /" will be labeled

(U U {via)}, C(1))

In other words, we create all possible instances of formulas
~; where the variable is replaced by all possible constants
a.

j

5.7 Finite and Infinite Models

Theorem

(Léwenheim) If a formula is satisfiable, then it is satisfiable in a
countable model.

Theorem
(Léwenheim - Skolem) If a countable set of predicate formulas
is satisfiable, then it is satisfiable in a countable model.

Theorem
(Compactness Theorem) Let U be a countable set of formulas.
If all finite subsets of U are satisfiable, then so is U.

5.8 Undecidability of the Predicate
Logic
¢ Turing machines can be viewed as devices which compute

functions on natural numbers; i.e. given a Turing machine
T, we can associate to it a function

fr:N—-N

so that fr(n) = mif T halts with the tape consisting of m
1’s when started on the tape with the input of n
consecutive 1’s. If T never halts on the input of n
consecutive 1’s, then fr(n) is undefined.

Theorem
(Church) It is undecidable whether a Turing machine, started on
a blank tape, will halt.

¢ |n other words, it is undecidable, given a Turing machine T,
whether fr(0) is defined.

Two-Register Machines

Definition

Two-register machine (or, a Minsky machine) M consists of a
pair of registers (x, y) which can store natural numbers, and a
program P = {Ly, L4, ..., Ly}, which is a sequential list of
instructions. L, is always the command “halt”, and for

0 < i < n, L; has one of the two forms

@ r=r+1,forre{xy}

® ifr=0thengotoLjelser:=r—1,forre{x,y},
0<j<n

e Execution of M: sequence of states
Sk = (Lf7 X, y)

where L; is the current instruction during the execution,
and x,y are current contents of the two registers.

¢ Initial state:
So = (Lo, m,0), for some m
o |[f
sk = (Ln, x,y), for some k

then M halts and
y =f(m)
is computed by M.

Theorem
For every Turing machine T that computesf: N — N, a
two-register machine M can be constructed which computes

the same function.
Corollary

It is undecidable whether, given a two-register machine M,
whether fy(0) exists or not.

Theorem
(Church) Validity in predicate calculus is undecidable.

Sketch of the Proof.
To each two-register machine M, we associate a predicate
formula Sy, such that

M halts started at (Ly,0,0) <= [Sy

We use the language:
e Binary relations: pi(x,y) (i=0,1,...,n)
e Unary function: s(x)
e Constant symbol: a
Intended interpretation:
e pi(x,y): Mis at the state (L;, x, y)
e 5(x): successor function s(x) = x + 1
e a2a=0

L | S |

X:=x+1 vxVy(pi(X,y) — Pit1(s(x), ¥))
y=y+1 xVy(pi(X,¥) — Pi+1(X,s(y)))
if x = 0then goto L; | Vy(pi(a,y) — pj(a,y))

else x = x — 1 AVXVY(Di(S(X), ¥) — Piz1(X.¥))
if y = 0 then goto L; | Vx(p;(x,a) — pj(x, a))
elsey:=y—1 AVXVY(pi(X, s(¥)) — Pit1(X,Y))

Finally, define

Sv=(SoANSiA...ANSpApo(a,a)) — 3z13z5 pn(z1, 22)

Sw says the following: if a machine with the program
P={Lo,Ly,...,Ln}

is started at the initial state (Lo, 0, 0), then the computation will
halt with the values at the registers being (zy, z2), for some
natural numbers z;, 2.

Since the Halting Problem for two-register machines is
undecidable, it is impossible to verify algorithmically whether

= Sm

or not. O

Church’s Theorem is also true for some restricted classes of
predicate logic:

© Formulas containing only a finite number of binary
predicate symbols, one unary function symbol, and one
constant symbol.

® Formulas written as Prolog programs.
©® Formulas with no function symbols.

[Skip *Solvable Cases of the Decision Problem’ in Section 5.8]

	5.1 Relations and Predicates
	5.2 Predicate Formulas
	5.3 Interpretations
	5.4 Equivalence and Substitution
	5.5 Semantic Tableaux
	5.7 Finite and Infinite Models
	5.8 Undecidability of the Predicate Logic

