
Chapter 5: Predicate Calculus: Formulas,
Models, Tableaux

November 3, 2008

Outline

1 5.1 Relations and Predicates

2 5.2 Predicate Formulas

3 5.3 Interpretations

4 5.4 Equivalence and Substitution

5 5.5 Semantic Tableaux

6 5.7 Finite and Infinite Models

7 5.8 Undecidability of the Predicate Logic

5.1 Relations and Predicates

• R: an n-ary relation on a set D

R ⊆ Dn = D × D × . . .× D︸ ︷︷ ︸
n times

D: domain of the relation R.

Observation: A unary relation R is simply a subset of D

R ⊆ D

Examples
(a) Binary relation < on N:

x < y if x is a positive integer less than y

<= {(0, 1), (0, 2), . . . , (1, 2), (1, 3), . . . , (2, 3), . . .}

(b) Unary relation Prime(x) on N:

Prime = {2, 3, 5, 7, 11, . . .}

(c) Given the graph G:

Figure: Graph G

define the binary relation r as:

r(x , y) ⇐⇒ vertex x is connected by a path to vertex y

r = {(a, a), (b, b), (c, c), (d , d), (e, e),
(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d , e), (e, d)}

• We can think of an n-ary function

(x1, x2, . . . , xn) 7→ f (x1, x2, . . . , xn)

as an (n + 1)-ary relation Rf containing the (n + 1)-tuples

(x1, x2, . . . , xn, f (x1, x2, . . . , xn))

Rf is called the graph of the function f .
• Also, we can think of an n-ary relation R ⊆ Dn as a function

f : Dn → {T, F}

R(d1, d2, . . . , dn) = T ⇐⇒ (d1, d2, . . . , dn) ∈ R

5.2 Predicate Formulas

Predicate (relation) symbols P = {p, q, r , . . .}
Constant symbols A = {a, b, c, . . .}
Variables V = {x , y , z, . . .}

BNF Grammar for Predicate Formulas

argument ::= x , for any x ∈ V
argument ::= a, for any a ∈ A

argumentList ::= argument
argumentList ::= argument , argumentList

atomicFormula ::= p | p(argumentList), for any p ∈ P

formula ::= atomicFormula
formula ::= ¬formula
formula ::= formula ∧ formula
formula ::= formula ∨ formula
formula ::= formula → formula
formula ::= formula ↔ formula
formula ::= ∀x formula, for all x ∈ V
formula ::= ∃x formula, for all x ∈ V

Examples

1 p(x , a) (atomic formula)
2 p(x , a) → q(x)

3 ∃x p(x , a) → ∀y q(y)

4 ∀x (p(x , a) → q(x , y)) → (∀x p(x , a) → ∀x q(x , y))

Bound and Free Variables

Definition
Suppose A is a predicate formula. An occurrence of a variable
x in A is a free variable of A if it is not within the scope of any
quantifier ∀x or ∃x .

Examples

(a) ∃y p(x , y)
x-free, y -not free

(b) p(x , y)
x , y -free

(c) ∀x∃yp(x , y)
neither x nor y are free

(d) ∀xp(x) ∨ q(x)
the first occurrence of x is not free while the second
occurrence is

• A variable which is not free is said to be bound.
• If we write

A(x1, x2, . . . , xn),

we mean that the free variables of the formula A are
among x1, x2, . . . , xn.

5.3 Interpretations

• U: a set of formulas
• {p1, p2, . . . , pm}: all predicate symbols appearing in U
• {a1, a2, . . . , ak}: all constant symbols appearing in U

Definition
An interpretation I of U is a triple

I = (D, {R1, R2, . . . , Rm}, {d1, d2, . . . , dk})

where
• D is a non-empty set (domain of I)
• Ri are ni -ary relations on D.
• di are some fixed elements of D.

pi 7→ Ri i = 1, 2, . . . , m
aj 7→ dj j = 1, 2, . . . , k

Example
Consider the formula

∀x p(a, x)

Some of its possible interpretations are:

(1) I1 = (N, {≤}, {0})
“For every natural number x , 0 ≤ x .”

(2) I2 = (N, {|}, {1})
“For every natural number x , 1|x .”

(3) I3 = ({0, 1}∗, { substring relation }, {ε})
“For every string x over alphabet {0, 1}, empty string is a
substring of x .”

(4) I4 = (G, E , {a})

“For every vertex x of G, (a, x) is an edge in G.”

Definition
Suppose I is an interpretation for a predicate formula A.An
assignment

σI : V → D

is a function which assigns a value in the domain D to any
variable appearing in the formula A.

Truth Value of a Predicate Formula

Suppose:
• A - formula.
• I - an interpretation for A.
• σI - an assignment

We define vσI (A), the truth value of A under σI , inductively:

(a) If A = p(c1, c2, . . . , cn) is an atomic formula, where each ci
is either a variable xj or a constant symbol aj , then

vσI (A) = T iff (σI(c1), σI(c2), . . . , σI(cn)) ∈ R

(b) vσI (¬A) = ¬vσI (A).

(c) vσI (A1 ∧ A2) = vσI (A1) ∧ vσI (A2).

(d) vσI (A1 ∨ A2) = vσI (A1) ∨ vσI (A2).

[Similarly for →, ↔.]

(e) vσI (∀x A) = T iff vσI (A) = T for all x ∈ D

(f) vσI (∃x A) = T iff vσI (A) = T for some x ∈ D

Theorem
If A is a closed formula, then vσI (A) does not depend on σI .
In that case, we write

vI(A)

Theorem
Let A′ = A(x1, x2, . . . , xn) be a non-closed formula and let I be
an interpretation. Then:
(a) vσI (A

′) = T for assignment σI iff

vI(∃x1∃x2 . . .∃xn A′) = T

(b) vσI (A
′) = T for all assignments σI iff

vI(∀x1∀x2 . . .∀xn A′) = T

Definition
A closed formula A is true in I, or I is a model for A, if vI(A) = T.

I |= A

Definition
A closed formula A is satisfiable if, for some interpretation I,

I |= A

A is valid if, for all interpretations I,

I |= A

We can also define unsatisfiable and falsifiable formulas in the
usual way.

Examples

(a) ∀x p(a, x) → p(a, a) valid
(b) ∀x∀y (p(x , y) → p(y , x)) not valid, satisfiable
(c) ∀x∃y p(x , y) not valid, satisfiable
(d) ∃x∃y (p(x) ∧ ¬p(y)) not valid, satisfiable
(e) ∀x(p(x) ∧ q(x)) ↔ (∀x p(x) ∧ ∀x q(x)) valid
(f) ∃x (¬p(x) ∧ p(x)) unsatisfiable

5.4 Equivalence and Substitution
• Suppose A1, A2 are two closed formulas. If, for all

interpretations I
vI(A1) = vI(A2)

we say that A1 and A2 are equivalent, and we write

A1 ≡ A2

• Suppose U is a set of closed formulas, and A a closed
formula

U |= A

means that, in all interpretations I in which all formulas
from U are true, we also have

vI(A) = T.

Examples

(a) ∀x A(x) ≡ ¬∃x ¬A(x)

(b) ∃x A(x) ≡ ¬∀x¬A(x)

(c) ∀x∀y A(x , y) ≡ ∀y∀x A(x , y)

(d) ∃x∃y A(x , y) ≡ ∃y∃x A(x , y)

(e) ∃x∀yA(x , y) 6≡ ∀y∃xA(x , y)
To see that these two formulas are not equivalent, consider

I = (Z, {≤}).

Clearly,

I 6|= ∃x∀y x ≤ y , I |= ∀y∃x x ≤ y

Theorem

(a) A ≡ B if and only if |= A ↔ B.
(b) Suppose

U = {A1, A2, . . . , An}

U |= A if and only if |= A1 ∧ A2 ∧ . . . An → A.

Examples
The following are valid formulas
(a) ∃x(A(x) ∨ B(x)) ↔ ∃x A(x) ∨ ∃x B(x)

(b) ∀x(A(x) ∧ B(x)) ↔ ∀x A(x) ∧ ∀x B(x)

(c) ∃x(A(x) ∧ B) ↔ ∃x A(x) ∧ B, if x is not free in B.
(d) ∀x(A(x) ∨ B) ↔ ∀x A(x) ∨ B, if x is not free in B.
(e) ∃x(A(x) → B(x)) ↔ (∀x A(x) → ∃x B(x))

(f) ∀x(A(x) → B(x)) ↔ (∃x A(x) → ∀x B(x))

[For more pairs of equivalent formulas, see Fig. 5.2 in Section
5.4]

Proof.
(e)

∃x(A(x) → B(x)) ≡ ∃x(¬A(x) ∨ B(x))

≡ ∃x¬A(x) ∨ ∃x B(x)

≡ ¬∀x A(x) ∨ ∃x B(x)

≡ ∀x A(x) → ∃x B(x)

Example
Prove that

∃x∀y A(x , y) → ∀y∃x A(x , y)

is a valid formula, yet its converse is not valid.
Solution:
Let I be an interpretation. Suppose

I |= ∃x∀y A(x , y).

Then, for some a ∈ D

I |= ∀y A(a, y)

So,
I |= ∀y(∃x A(x , y))

which proves that, for every I,

I |= ∃x∀y A(x , y) → ∀y∃x A(x , y)

I = (Z, {≤}) shows that the implication cannot be reversed if we
want the formula to be valid. �

5.5 Semantic Tableaux

Example
We will try to show that

∀x(p(x) → q(x)) → (∀x p(x) → ∀x q(x))

is a valid formula

We consider its negation

¬[∀x(p(x) → q(x)) → (∀x p(x) → ∀x q(x))]

and try to show that it is unsatisfiable.

¬[∀x(p(x) → q(x)) → (∀x p(x) → ∀x q(x))]

∀x(p(x) → q(x)), ¬(∀x p(x) → ∀x q(x))

∀x(p(x) → q(x)), ∀x p(x), ¬∀x q(x)

∀x(p(x) → q(x)), ∀x p(x), ¬q(a)

∀x(p(x) → q(x)), p(a), ¬q(a)

p(a) → q(a), p(a), ¬q(a)

qqqqqqq
MMMMMMM

¬p(a),p(a),¬q(a)

×
q(a),p(a),¬q(a)

×

Example
Now, we consider the formula

∀x(p(x) ∨ q(x)) → (∀x p(x) ∨ ∀x q(x))

which is not valid, but is satisfiable.

¬[∀x(p(x) ∨ q(x)) → (∀x p(x) ∨ ∀x q(x))]

∀x(p(x) ∨ q(x)), ¬(∀x p(x) ∨ ∀x q(x))

∀x(p(x) ∨ q(x)), ∃x ¬p(x), ∃x ¬q(x)

∀x(p(x) ∨ q(x)), ¬p(a), ∃x¬q(x)

p(a) ∨ q(a), ¬p(a), ∃x¬q(x)

qqqqqqq
MMMMMMM

p(a),¬p(a),∃x¬q(x)

×
q(a),¬p(a),∃¬q(x)

q(a),¬p(a),¬q(a)

×

Question: What went wrong?

• We used the same constant a twice to eliminate two
distinct existential quantifiers.

• We were forced to use the same constant since, once we
eliminated the universal quantifier in

∀x(p(x) ∨ q(x))

we replaced it with a and were forced to work with that
constant exclusively from that point on.

Solution: We will not delete universal quantifiers from nodes of
the tableau; instead, we introduce some instance of that
variable but keep writing the universal quantifier. E.g.

∀x p(x)

∀x p(x), p(a)

Using these guidelines, if we construct a correct tableau for he
formula from the previous example (exercise!), we notice that
one branch ends with the open leaf

p(a),¬q(a),¬p(b), q(b)

In fact, this leaf gives us a model for this satisfiable formula; the
domain is

D = {a, b}

and the unary relations are subsets

p = {a}, q = {b}

[This is what we will define as an Herbrand model for this
formula in Chapter 7.]

Example
Consider the formulas

A1 = ∀x∃y p(x , y)

A2 = ∀x¬p(x , x)

A3 = ∀x∀y∀z(p(x , y) ∧ p(y , z) → p(x , z))

Check whether
A = A1 ∧ A2 ∧ A3

is a satisfiable formula and, if so, find one model for A.

Solution: We will first construct a semantic tableau for the
formula:

∀x∃y p(x , y), A2, A3

∀x∃y p(x , y),∃y(a1, y), A2, A3

∀x∃y p(x , y), p(a1, a2), A2, A3

∀x∃y p(x , y),∃y p(a2, y), p(a1, a2), A2, A3

∀x∃y p(x , y), p(a2, a3), p(a1, a2), A2, A3

...

We see that the tableau does not terminate; namely, every time
we drop the universal or an existential quantifier, we can
introduce a new constant symbol ai , to get an infinite sequence
of constants:

a1, a2, . . . , an, . . .

The formula does have an obvious infinite model:

I = (N, {<})

Furthermore, one can prove, using the formulas A2 and A3 (see
the proof of Theorem 5.24 in the textbook) that every model of

A = A1 ∧ A2 ∧ A3

must be infinite. So, the tableau construction effectively
produces a “generic” infinite model for A. �

• One stark difference in comparison with semantic tableaux
for propositional logic is (as seen in the previous example)
that a tableau of a predicate formula may not terminate.

• The reason for this anomaly is that, in propositional logic,
nodes of a tableau simplify in terms of the formula
complexity. In predicate logic, this is not the case, since we
can never eliminate universal quantifiers.

Algorithm for Semantic Tableaux

• Two new types of rules:

γ γ(a)

∀x A(x) A(a)

¬∃x A(x) ¬A(a)

δ δ(a)

∃x A(x) A(a)

¬∀x A(x) ¬A(a)

• Literal: closed atomic formula p(a1, a2, . . . , an) or the
negation of such a formula.

Input: A - a predicate formula

Output: Semantic tableau T for A; all branches are either
infinite, or finite with leaves marked × (closed) or � (open).

(1) Initially, T is a single node, labeled {A}.

(2) We build the tableau inductively by choosing an unmarked
leaf l , labeled U(l), and applying one of the following rules:

• If U(l) is a set of literals and γ-formulas containing a pair of
complementary literals
{p(a1, a, . . . , an),¬p(a1, a2, . . . , an)}, mark it as closed (×)

• If U(l) is not a set of literals, choose a formula A in U(l)
which is not a literal:

– α- and β-rules are applied just as in propositional logic.
– If A is a γ-formula, add a new node l ′, a child of l , and label

it
U(l ′) = U(l) ∪ {γ(a)}

where a is a constant appearing in U(l). If U(l) consists of
literals and γ-formulas only, mark it × or �, depending on
whether there is a set of complementary literals.

– If A is a δ-formula, create a new node l ′ as a child of l and
label it

U(l ′) = (U(l)− {A}) ∪ {δ(a)}

where a is some constant that does not appear in U(l).

Definition
A branch in T is closed if it terminates in a leaf marked ×.
Otherwise, it is open.

Theorem
(Soundness) Suppose A is a predicate formula and T its
semantic tableau. If T closes, then A is unsatisfiable.

Theorem
(Completeness) Suppose A is a valid formula. Then, the
systematic semantic tableau for A terminates and is closed.

• Systematic tableau: a tableau in which every node is
labeled

W (l) = (U(l), C(l))

where U(l) is a list of formulas and C(l) is the list of all
constant symbols appearing in U(l).

• In a systematic tableau, if using a γ-rule, we do the
following: suppose {γ1, . . . , γm} are all γ-formulas in U(l)
and

C(l) = {a1, . . . , ak}

The new node l ′ will be labeled

(U(l) ∪ {γi(aj)}, C(l))

In other words, we create all possible instances of formulas
γi where the variable is replaced by all possible constants
aj .

5.7 Finite and Infinite Models

Theorem
(Löwenheim) If a formula is satisfiable, then it is satisfiable in a
countable model.

Theorem
(Löwenheim - Skolem) If a countable set of predicate formulas
is satisfiable, then it is satisfiable in a countable model.

Theorem
(Compactness Theorem) Let U be a countable set of formulas.
If all finite subsets of U are satisfiable, then so is U.

5.8 Undecidability of the Predicate
Logic

• Turing machines can be viewed as devices which compute
functions on natural numbers; i.e. given a Turing machine
T , we can associate to it a function

fT : N → N

so that fT (n) = m if T halts with the tape consisting of m
1’s when started on the tape with the input of n
consecutive 1’s. If T never halts on the input of n
consecutive 1’s, then fT (n) is undefined.

Theorem
(Church) It is undecidable whether a Turing machine, started on
a blank tape, will halt.

• In other words, it is undecidable, given a Turing machine T ,
whether fT (0) is defined.

Two-Register Machines

Definition
Two-register machine (or, a Minsky machine) M consists of a
pair of registers (x , y) which can store natural numbers, and a
program P = {L0, L1, . . . , Ln}, which is a sequential list of
instructions. Ln is always the command “halt”, and for
0 ≤ i < n, Li has one of the two forms

1 r := r + 1, for r ∈ {x , y}
2 if r = 0 then go to Lj else r := r − 1, for r ∈ {x , y},

0 ≤ j ≤ n.

• Execution of M: sequence of states

sk = (Li , x , y)

where Li is the current instruction during the execution,
and x ,y are current contents of the two registers.

• Initial state:

s0 = (L0, m, 0), for some m

• If
sk = (Ln, x , y), for some k

then M halts and
y = f (m)

is computed by M.

Theorem
For every Turing machine T that computes f : N → N, a
two-register machine M can be constructed which computes
the same function.

Corollary
It is undecidable whether, given a two-register machine M,
whether fM(0) exists or not.

Theorem
(Church) Validity in predicate calculus is undecidable.
Sketch of the Proof.
To each two-register machine M, we associate a predicate
formula SM such that

M halts started at (L0, 0, 0) ⇐⇒ |= SM

We use the language:
• Binary relations: pi(x , y) (i = 0, 1, . . . , n)
• Unary function: s(x)

• Constant symbol: a
Intended interpretation:
• pi(x , y): M is at the state (Li , x , y)

• s(x): successor function s(x) = x + 1
• a: a = 0

Li Si

x := x + 1 ∀x∀y(pi(x , y) → pi+1(s(x), y))

y := y + 1 ∀x∀y(pi(x , y) → pi+1(x , s(y)))

if x = 0 then goto Lj ∀y(pi(a, y) → pj(a, y))
else x := x − 1 ∧∀x∀y(pi(s(x), y) → pi+1(x , y))

if y = 0 then goto Lj ∀x(pi(x , a) → pj(x , a))
else y := y − 1 ∧∀x∀y(pi(x , s(y)) → pi+1(x , y))

Finally, define

SM = (S0 ∧ S1 ∧ . . . ∧ Sn ∧ p0(a, a)) → ∃z1∃z2 pn(z1, z2)

SM says the following: if a machine with the program

P = {L0, L1, . . . , Ln}

is started at the initial state (L0, 0, 0), then the computation will
halt with the values at the registers being (z1, z2), for some
natural numbers z1, z2.

Since the Halting Problem for two-register machines is
undecidable, it is impossible to verify algorithmically whether

|= SM

or not. �

Church’s Theorem is also true for some restricted classes of
predicate logic:

1 Formulas containing only a finite number of binary
predicate symbols, one unary function symbol, and one
constant symbol.

2 Formulas written as Prolog programs.
3 Formulas with no function symbols.

[Skip ’Solvable Cases of the Decision Problem’ in Section 5.8]

	5.1 Relations and Predicates
	5.2 Predicate Formulas
	5.3 Interpretations
	5.4 Equivalence and Substitution
	5.5 Semantic Tableaux
	5.7 Finite and Infinite Models
	5.8 Undecidability of the Predicate Logic

