Chapter 5: Predicate Calculus: Formulas, Models, Tableaux

November 3, 2008

Outline

- 2 5.2 Predicate Formulas
- 3 5.3 Interpretations
- 4 5.4 Equivalence and Substitution
- 5 5.5 Semantic Tableaux
- 6 5.7 Finite and Infinite Models
- 5.8 Undecidability of the Predicate Logic

5.1 Relations and Predicates

• R: an *n*-ary relation on a set D

$$R \subseteq D^n = \underbrace{D \times D \times \ldots \times D}_{n \text{ times}}$$

D: **domain** of the relation *R*.

Observation: A unary relation *R* is simply a subset of *D*

 $R \subseteq D$

Examples (a) Binary relation < on \mathbb{N} :

x < y if x is a positive integer less than y $<= \{(0,1), (0,2), \dots, (1,2), (1,3), \dots, (2,3), \dots\}$

(b) Unary relation Prime(x) on \mathbb{N} :

 $Prime = \{2, 3, 5, 7, 11, \ldots\}$

(c) Given the graph G:

Figure: Graph G

define the binary relation r as:

 $r(x, y) \iff$ vertex x is connected by a path to vertex y $r = \{(a, a), (b, b), (c, c), (d, d), (e, e), d\}$

$$(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, e), (e, d)$$

• We can think of an *n*-ary function

$$(x_1, x_2, \ldots, x_n) \mapsto f(x_1, x_2, \ldots, x_n)$$

as an (n + 1)-ary relation R_f containing the (n + 1)-tuples

$$(x_1, x_2, \ldots, x_n, f(x_1, x_2, \ldots, x_n))$$

 R_f is called the **graph** of the function f.

• Also, we can think of an *n*-ary relation $R \subseteq D^n$ as a function

$$f: D^n \to {\mathsf{T},\mathsf{F}}$$

$$R(d_1, d_2, \dots, d_n) = \mathsf{T} \Longleftrightarrow (d_1, d_2, \dots, d_n) \in \mathsf{R}$$

5.2 Predicate Formulas

Predicate (relation) symbols Constant symbols Variables

$$\mathcal{P} = \{p, q, r, \ldots\}$$
$$\mathcal{A} = \{a, b, c, \ldots\}$$
$$\mathcal{V} = \{x, y, z, \ldots\}$$

BNF Grammar for Predicate Formulas

 $\begin{array}{ll} argument ::= x, & \text{for any } x \in \mathcal{V} \\ argument ::= a, & \text{for any } a \in \mathcal{A} \\ argumentList ::= argument \\ argumentList ::= argument, argumentList \\ atomicFormula ::= p & | p(argumentList), & \text{for any } p \in \mathcal{P} \end{array}$

formula ::= atomicFormula formula ::= \neg formula formula ::= formula \land formula formula ::= formula \lor formula formula ::= formula \rightarrow formula formula ::= formula \leftrightarrow formula formula ::= $\forall x$ formula, for all $x \in \mathcal{V}$ formula ::= $\exists x$ formula, for all $x \in \mathcal{V}$

Examples

- p(x, a) (atomic formula)
- $e p(x,a) \rightarrow q(x)$

Bound and Free Variables

Definition

Suppose *A* is a predicate formula. An occurrence of a variable *x* in *A* is a free variable of *A* if it is not within the scope of any quantifier $\forall x$ or $\exists x$.

Examples

- (a) $\exists y \quad p(x, y)$ *x*-free, *y*-not free
- (b) *p*(*x*, *y*) *x*, *y*-free
- (c) $\forall x \exists y p(x, y)$ neither x nor y are free
- (d) $\forall xp(x) \lor q(x)$

the first occurrence of x is not free while the second occurrence is

- A variable which is not free is said to be bound.
- If we write

$$A(x_1, x_2, \ldots, x_n),$$

we mean that the free variables of the formula A are among x_1, x_2, \ldots, x_n .

5.3 Interpretations

- U: a set of formulas
- {*p*₁, *p*₂,..., *p_m*}: all predicate symbols appearing in *U*
- $\{a_1, a_2, \ldots, a_k\}$: all constant symbols appearing in U

Definition An interpretation *I* of *U* is a triple

$$I = (D, \{R_1, R_2, \dots, R_m\}, \{d_1, d_2, \dots, d_k\})$$

where

- *D* is a non-empty set (**domain** of *I*)
- *R_i* are *n_i*-ary relations on *D*.
- *d_i* are some fixed elements of *D*.

$$p_i \mapsto R_i$$
 $i = 1, 2, \dots, m$
 $a_j \mapsto d_j$ $j = 1, 2, \dots, k$

Example Consider the formula

 $\forall x \quad p(a,x)$

Some of its possible interpretations are:

(1) $I_1 = (\mathbb{N}, \{\leq\}, \{0\})$ "For every natural number *x*, $0 \le x$."

(2) $I_2 = (\mathbb{N}, \{|\}, \{1\})$ "For every natural number *x*, 1|*x*." (3) $I_3 = (\{0, 1\}^*, \{ \text{ substring relation } \}, \{\epsilon\})$ "For every string *x* over alphabet $\{0, 1\}$, empty string is a substring of *x*."

(4) $I_4 = (G, E, \{a\})$

"For every vertex x of G, (a, x) is an edge in G."

Definition

Suppose *I* is an interpretation for a predicate formula *A*.An assignment

 $\sigma_I: \mathcal{V} \to D$

is a function which assigns a value in the domain D to any variable appearing in the formula A.

Truth Value of a Predicate Formula

Suppose:

- A formula.
- I an interpretation for A.
- σ_I an assignment

We define $v_{\sigma_l}(A)$, the truth value of A under σ_l , inductively:

(a) If $A = p(c_1, c_2, ..., c_n)$ is an atomic formula, where each c_i is either a variable x_i or a constant symbol a_j , then

$$v_{\sigma_l}(A) = \mathsf{T} ext{ iff } (\sigma_l(c_1), \sigma_l(c_2), \dots, \sigma_l(c_n)) \in R$$

(b)
$$v_{\sigma_l}(\neg A) = \neg v_{\sigma_l}(A)$$
.
(c) $v_{\sigma_l}(A_1 \land A_2) = v_{\sigma_l}(A_1) \land v_{\sigma_l}(A_2)$.
(d) $v_{\sigma_l}(A_1 \lor A_2) = v_{\sigma_l}(A_1) \lor v_{\sigma_l}(A_2)$.
[Similarly for \rightarrow , \leftrightarrow .]

(e)
$$v_{\sigma_l}(\forall x \ A) = \mathsf{T}$$
 iff $v_{\sigma_l}(A) = \mathsf{T}$ for all $x \in D$

(f)
$$v_{\sigma_l}(\exists x \ A) = \mathsf{T}$$
 iff $v_{\sigma_l}(A) = \mathsf{T}$ for some $x \in D$

Theorem

If A is a closed formula, then $v_{\sigma_l}(A)$ does not depend on σ_l . In that case, we write

 $v_l(A)$

Theorem

Let $A' = A(x_1, x_2, ..., x_n)$ be a non-closed formula and let I be an interpretation. Then:

(a) $v_{\sigma_l}(A') = T$ for assignment σ_l iff

$$v_I(\exists x_1 \exists x_2 \ldots \exists x_n A') = T$$

(b) $v_{\sigma_l}(A') = T$ for all assignments σ_l iff

$$v_I(\forall x_1\forall x_2\ldots\forall x_n A')=T$$

Definition

A closed formula A is true in I, or I is a model for A, if $v_I(A) = T$.

 $I \models A$

Definition A closed formula *A* is satisfiable if, for **some** interpretation *I*,

 $I \models A$

A is valid if, for all interpretations I,

 $I \models A$

We can also define unsatisfiable and falsifiable formulas in the usual way.

Examples

(a)
$$\forall x \ p(a, x) \rightarrow p(a, a)$$
 views (b) $\forall x \forall y \ (p(x, y) \rightarrow p(y, x))$ n
(c) $\forall x \exists y \ p(x, y)$ n
(d) $\exists x \exists y \ (p(x) \land \neg p(y))$ n
(e) $\forall x (p(x) \land q(x)) \leftrightarrow (\forall x \ p(x) \land \forall x \ q(x)))$ views (f) $\exists x \ (\neg p(x) \land p(x))$ u

valid not valid, satisfiable not valid, satisfiable not valid, satisfiable valid unsatisfiable

5.4 Equivalence and Substitution

• Suppose *A*₁, *A*₂ are two closed formulas. If, for all interpretations *I*

$$v_l(A_1)=v_l(A_2)$$

we say that A_1 and A_2 are equivalent, and we write

$$A_1 \equiv A_2$$

• Suppose *U* is a set of closed formulas, and *A* a closed formula

$$U \models A$$

means that, in all interpretations I in which all formulas from U are true, we also have

$$v_l(A) = \mathsf{T}.$$

Examples

(a) ∀x A(x) ≡ ¬∃x ¬A(x)
(b) ∃x A(x) ≡ ¬∀x¬A(x)
(c) ∀x∀y A(x,y) ≡ ∀y∀x A(x,y)
(d) ∃x∃y A(x,y) ≡ ∃y∃x A(x,y)
(e) ∃x∀yA(x,y) ≠ ∀y∃xA(x,y) To see that these two formulas are not equivalent, consider

$$I = (\mathbb{Z}, \{\leq\}).$$

Clearly,

$$I \not\models \exists x \forall y \ x \leq y, \qquad I \models \forall y \exists x \ x \leq y$$

Theorem

(a) $A \equiv B$ if and only if $\models A \leftrightarrow B$. (b) Suppose $U = \{A_1, A_2, \dots, A_n\}$

 $U \models A$ if and only if $\models A_1 \land A_2 \land \ldots \land A_n \rightarrow A$.

Examples

The following are valid formulas

(a)
$$\exists x (A(x) \lor B(x)) \leftrightarrow \exists x \ A(x) \lor \exists x \ B(x)$$

(b)
$$\forall x (A(x) \land B(x)) \leftrightarrow \forall x \ A(x) \land \forall x \ B(x)$$

(c) $\exists x(A(x) \land B) \leftrightarrow \exists x A(x) \land B$, if x is not free in B.

(d) $\forall x(A(x) \lor B) \leftrightarrow \forall x A(x) \lor B$, if x is not free in B.

(e)
$$\exists x (A(x) \rightarrow B(x)) \leftrightarrow (\forall x \ A(x) \rightarrow \exists x \ B(x))$$

(f)
$$\forall x (A(x) \rightarrow B(x)) \leftrightarrow (\exists x \ A(x) \rightarrow \forall x \ B(x))$$

[For more pairs of equivalent formulas, see Fig. 5.2 in Section 5.4]

Proof. (e)

$$\exists x (A(x) \to B(x)) \equiv \exists x (\neg A(x) \lor B(x)) \\ \equiv \exists x \neg A(x) \lor \exists x B(x) \\ \equiv \neg \forall x A(x) \lor \exists x B(x) \\ \equiv \forall x A(x) \to \exists x B(x) \end{cases}$$

Example

Prove that

$$\exists x \forall y \ A(x,y) \rightarrow \forall y \exists x \ A(x,y)$$

is a valid formula, yet its converse is not valid. **Solution:**

Let I be an interpretation. Suppose

$$I \models \exists x \forall y \ A(x, y).$$

Then, for some $a \in D$

 $I \models \forall y \ A(a, y)$

So,

$$I \models \forall y (\exists x \ A(x, y))$$

which proves that, for every *I*,

$$I \models \exists x \forall y \ A(x,y) \rightarrow \forall y \exists x \ A(x,y)$$

 $I = (\mathbb{Z}, \{\leq\})$ shows that the implication cannot be reversed if we want the formula to be valid.

5.5 Semantic Tableaux

Example We will try to show that

$$\forall x(p(x) \rightarrow q(x)) \rightarrow (\forall x \ p(x) \rightarrow \forall x \ q(x))$$

is a valid formula

We consider its negation

$$eg [orall x(
ho(x)
ightarrow q(x))
ightarrow (orall x \
ho(x)
ightarrow orall x \ q(x))]$$

and try to show that it is unsatisfiable.

Example

Now, we consider the formula

$$\forall x(p(x) \lor q(x)) \rightarrow (\forall x \ p(x) \lor \forall x \ q(x))$$

which is not valid, but is satisfiable.

$$\neg [\forall x(p(x) \lor q(x)) \rightarrow (\forall x \ p(x) \lor \forall x \ q(x))] \\ | \\ \forall x(p(x) \lor q(x)), \neg (\forall x \ p(x) \lor \forall x \ q(x)) \\ | \\ \forall x(p(x) \lor q(x)), \exists x \neg p(x), \exists x \neg q(x) \\ | \\ \forall x(p(x) \lor q(x)), \neg p(a), \exists x \neg q(x) \\ | \\ p(a) \lor q(a), \neg p(a), \exists x \neg q(x) \\ \land q(a), \neg p(a), \exists \neg q(x) \\ \times | \\ q(a), \neg p(a), \neg q(a) \\ \times \end{vmatrix}$$

Question: What went wrong?

- We used the same constant *a* twice to eliminate two distinct existential quantifiers.
- We were forced to use the same constant since, once we eliminated the universal quantifier in

 $\forall x(p(x) \lor q(x))$

we replaced it with *a* and were forced to work with that constant exclusively from that point on.

Solution: We will not delete universal quantifiers from nodes of the tableau; instead, we introduce some instance of that variable but keep writing the universal quantifier. E.g.

$$\forall x \ p(x) \\ | \\ \forall x \ p(x), p(a)$$

Using these guidelines, if we construct a correct tableau for he formula from the previous example (exercise!), we notice that one branch ends with the open leaf

$$p(a), \neg q(a), \neg p(b), q(b)$$

In fact, this leaf gives us a model for this satisfiable formula; the domain is

$$D = \{a, b\}$$

and the unary relations are subsets

$$p = \{a\}, \qquad q = \{b\}$$

[This is what we will define as an Herbrand model for this formula in Chapter 7.]

Example

Consider the formulas

$$\begin{aligned} & A_1 = \forall x \exists y \ p(x, y) \\ & A_2 = \forall x \neg p(x, x) \\ & A_3 = \forall x \forall y \forall z (p(x, y) \land p(y, z) \rightarrow p(x, z)) \end{aligned}$$

Check whether

$$A = A_1 \land A_2 \land A_3$$

is a satisfiable formula and, if so, find one model for A.

Solution: We will first construct a semantic tableau for the formula:

$$\forall x \exists y \ p(x, y), A_2, A3$$

$$|$$

$$\forall x \exists y \ p(x, y), \exists y(a_1, y), A_2, A_3$$

$$|$$

$$\forall x \exists y \ p(x, y), p(a_1, a_2), A_2, A_3$$

$$|$$

$$\forall x \exists y \ p(x, y), \exists y \ p(a_2, y), p(a_1, a_2), A_2, A_3$$

$$|$$

$$\forall x \exists y \ p(x, y), p(a_2, a_3), p(a_1, a_2), A_2, A_3$$

$$|$$

$$\vdots$$

We see that the tableau does not terminate; namely, every time we drop the universal or an existential quantifier, we can introduce a new constant symbol a_i , to get an infinite sequence of constants:

 $a_1, a_2, \ldots, a_n, \ldots$

The formula does have an obvious infinite model:

 $I = (\mathbb{N}, \{<\})$

Furthermore, one can prove, using the formulas A_2 and A_3 (see the proof of Theorem 5.24 in the textbook) that **every** model of

$$A = A_1 \land A_2 \land A_3$$

must be infinite. So, the tableau construction effectively produces a "generic" infinite model for *A*.

- One stark difference in comparison with semantic tableaux for propositional logic is (as seen in the previous example) that a tableau of a predicate formula may not terminate.
- The reason for this anomaly is that, in propositional logic, nodes of a tableau simplify in terms of the formula complexity. In predicate logic, this is not the case, since we can never eliminate universal quantifiers.

Algorithm for Semantic Tableaux

Two new types of rules:

δ	$\delta(a)$
$\exists x A(x)$	A(a)
$\neg \forall x A(x)$	$\neg A(a)$

• Literal: closed atomic formula $p(a_1, a_2, ..., a_n)$ or the negation of such a formula.

Input: A - a predicate formula

Output: Semantic tableau \mathcal{T} for A; all branches are either infinite, or finite with leaves marked \times (closed) or \odot (open).

(1) Initially, T is a single node, labeled $\{A\}$.

(2) We build the tableau inductively by choosing an unmarked leaf *I*, labeled U(I), and applying one of the following rules:

- If U(I) is a set of literals and γ-formulas containing a pair of complementary literals
 {p(a₁, a ..., a_n), ¬p(a₁, a₂,..., a_n)}, mark it as closed (×)
- If *U*(*I*) is not a set of literals, choose a formula *A* in *U*(*I*) which is not a literal:
 - α and β -rules are applied just as in propositional logic.
 - If A is a γ -formula, add a new node I', a child of I, and label it

$$U(I') = U(I) \cup \{\gamma(a)\}$$

where *a* is a constant appearing in U(I). If U(I) consists of literals and γ -formulas only, mark it \times or \odot , depending on whether there is a set of complementary literals.

- If A is a δ -formula, create a new node I' as a child of I and label it

$$U(I') = (U(I) - \{A\}) \cup \{\delta(a)\}$$

where *a* is some constant that does not appear in U(I).

Definition

A branch in \mathcal{T} is closed if it terminates in a leaf marked \times . Otherwise, it is open.

Theorem (Soundness) Suppose A is a predicate formula and T its semantic tableau. If T closes, then A is unsatisfiable.

Theorem (Completeness) Suppose A is a valid formula. Then, the systematic semantic tableau for A terminates and is closed. • Systematic tableau: a tableau in which every node is labeled

$$W(I) = (U(I), C(I))$$

where U(I) is a list of formulas and C(I) is the list of all constant symbols appearing in U(I).

In a systematic tableau, if using a *γ*-rule, we do the following: suppose {*γ*₁,...,*γ*_m} are all *γ*-formulas in *U*(*I*) and

$$C(I) = \{a_1,\ldots,a_k\}$$

The new node l' will be labeled

$$(U(I) \cup \{\gamma_i(a_j)\}, C(I))$$

In other words, we create all possible instances of formulas γ_i where the variable is replaced by all possible constants a_j .

5.7 Finite and Infinite Models

Theorem

(Löwenheim) If a formula is satisfiable, then it is satisfiable in a countable model.

Theorem

(Löwenheim - Skolem) If a countable set of predicate formulas is satisfiable, then it is satisfiable in a countable model.

Theorem

(Compactness Theorem) Let U be a countable set of formulas. If all finite subsets of U are satisfiable, then so is U.

5.8 Undecidability of the Predicate Logic

 Turing machines can be viewed as devices which compute functions on natural numbers; i.e. given a Turing machine *T*, we can associate to it a function

$$f_T:\mathbb{N}\to\mathbb{N}$$

so that $f_T(n) = m$ if *T* halts with the tape consisting of *m* 1's when started on the tape with the input of *n* consecutive 1's. If *T* never halts on the input of *n* consecutive 1's, then $f_T(n)$ is undefined.

Theorem

(Church) It is undecidable whether a Turing machine, started on a blank tape, will halt.

In other words, it is undecidable, given a Turing machine *T*, whether *f*_T(0) is defined.

Two-Register Machines

Definition

Two-register machine (or, a Minsky machine) *M* consists of a pair of registers (x, y) which can store natural numbers, and a program $P = \{L_0, L_1, \ldots, L_n\}$, which is a sequential list of instructions. L_n is always the command "halt", and for $0 \le i < n$, L_i has one of the two forms

1
$$r := r + 1$$
, for $r \in \{x, y\}$

2 if
$$r = 0$$
 then go to L_j else $r := r - 1$, for $r \in \{x, y\}$, $0 \le j \le n$.

• Execution of M: sequence of states

$$\mathbf{s}_k = (L_i, \mathbf{x}, \mathbf{y})$$

where L_i is the current instruction during the execution, and x,y are current contents of the two registers.

Initial state:

$$s_0 = (L_0, m, 0),$$
 for some m

• If

$$s_k = (L_n, x, y), \text{ for some } k$$

then M halts and

$$y = f(m)$$

is computed by *M*.

Theorem

For every Turing machine T that computes $f : \mathbb{N} \to \mathbb{N}$, a two-register machine M can be constructed which computes the same function.

Corollary

It is undecidable whether, given a two-register machine M, whether $f_M(0)$ exists or not.

Theorem

(Church) Validity in predicate calculus is undecidable.

Sketch of the Proof.

To each two-register machine M, we associate a predicate formula S_M such that

M halts started at $(L_0, 0, 0) \iff \models S_M$

We use the language:

- Binary relations: $p_i(x, y)$ (*i* = 0, 1, ..., *n*)
- Unary function: *s*(*x*)
- Constant symbol: a

Intended interpretation:

- $p_i(x, y)$: *M* is at the state (L_i, x, y)
- s(x): successor function s(x) = x + 1

L _i	S_i
x := x + 1	$\forall x \forall y (p_i(x, y) \rightarrow p_{i+1}(s(x), y))$
<i>y</i> := <i>y</i> + 1	$\forall x \forall y (p_i(x, y) \rightarrow p_{i+1}(x, s(y)))$
if $x = 0$ then goto L_j	$orall y(p_i(a,y) ightarrow p_j(a,y))$
else $x := x - 1$	$\wedge \forall x \forall y (p_i(s(x), y) \rightarrow p_{i+1}(x, y))$
if $y = 0$ then goto L_j	$\forall x(p_i(x,a) \rightarrow p_j(x,a))$
else $y := y - 1$	$\wedge \forall x \forall y (p_i(x, s(y)) \rightarrow p_{i+1}(x, y))$

Finally, define

$$S_M = (S_0 \land S_1 \land \ldots \land S_n \land p_0(a, a)) \rightarrow \exists z_1 \exists z_2 \ p_n(z_1, z_2)$$

 S_M says the following: if a machine with the program

$$\boldsymbol{P} = \{L_0, L_1, \ldots, L_n\}$$

is started at the initial state (L_0 , 0, 0), then the computation will halt with the values at the registers being (z_1 , z_2), for some natural numbers z_1 , z_2 .

Since the Halting Problem for two-register machines is undecidable, it is impossible to verify algorithmically whether

$$\models S_M$$

or not.

Church's Theorem is also true for some restricted classes of predicate logic:

- Formulas containing only a finite number of binary predicate symbols, one unary function symbol, and one constant symbol.
- 2 Formulas written as Prolog programs.
- **3** Formulas with no function symbols.

[Skip 'Solvable Cases of the Decision Problem' in Section 5.8]