Chapter 3: Propositional Calculus: Deductive Systems

September 19, 2008

Outline

1 3.1 Deductive (Proof) System

2 3.2 Gentzen System \mathcal{G}

3 3.3 Hilbert System \mathcal{H}

4 3.4 Soundness and Completeness; Consistency

3.1 Deductive (Proof) System

Deductive system:

- (finite) set of axioms
- (finite) set of rules of inference
- Proof in a deductive system: a finite sequence of formulas such that each formula in the sequence is either:
 - (a) an axiom; or
 - (b) derived from previous formulas in the sequence using a rule of inference.
- The last formula A in the sequence is called a theorem

$\vdash A$

In this course, we will study two proof systems for propositional logic:

- $\textbf{1} \quad \textbf{Gentzen system } \mathcal{G}$
- **2** Hilbert system \mathcal{H}

3.2 Gentzen System \mathcal{G}

- this proof system is based on the reversal of semantic tableaux.
- Main Idea: in order to prove that A is valid, we are trying to show that ¬A is unsatisfiable, i.e. that its semantic tableau is closed. After that, we write the proof in G by traversing the tableau from the bottom to the top, changing every formula in every node to its negation.

Example Prove that

$$\vdash (p \land q) \rightarrow (q \land p)$$

(1) We first construct a tableau for $\neg[(p \land q) \rightarrow (q \land p)]$:

The corresponding proof in \mathcal{G} :

1.
$$\neg p, \neg q, q$$

2. $\neg p, \neg q, p$
3. $\neg (p \land q), q$
4. $\neg (p \land q), p$
5. $\neg (p \land q), q \land p$
6. $(p \land q) \rightarrow (q \land p)$

Axiom Axiom α -rule applied to 1 α -rule applied to 2 β -rule applied to 3,4 α -rule applied to 5

Gentzen Proof System \mathcal{G}

- Axioms: all sets of formulas containing a pair of complementary literals
- Rules of Inference:

1
$$\alpha$$
-rules:
$$\frac{\vdash U_1 \cup \{\alpha_1, \alpha_2\}}{\vdash U_1 \cup \{\alpha\}}$$

2 β -rules:
$$\frac{\vdash U_1 \cup \{\beta_1\}, \quad \vdash U_2 \cup \{\beta_2\}}{\vdash U_1 \cup U_2 \cup \{\beta\}}$$

α	α	1	α_2	
$\neg \neg A$	A			
$\neg (A_1 \land A_2) \mid \neg A_2$		A ₁	$\neg A_2$	
$A_1 \vee A_2$ A_1		1	A ₂	
$A_1 \rightarrow A_2 \qquad \neg A_2$		A ₁	A ₂	
$\neg (A_1 \leftrightarrow A_2) \mid \neg (A_1 \land A_2) \mid \neg (A_2 \land A_2) \mid \land (A_2 \land A_2) \mid \neg (A_2 \land A_2) \mid \land (A_2 \land A_2) \mid \land (A_2 \land A_2) \mid (A_2 \land A$		$(A_1 \rightarrow A_2)$	$\neg (A_2 \rightarrow A_2)$	l ₁)
β		β_1	β_2	
$B_1 \wedge B_2$		<i>B</i> ₁	<i>B</i> ₂	1
$\neg(B_1 \lor B_2)$		$\neg B_1$	$\neg B_2$	
$ eg(B_1 o B_2)$		<i>B</i> ₁	$\neg B_2$	
$B_1 \leftrightarrow B_2$		$B_1 \rightarrow B_2$	$B_2 ightarrow B_1$	

Theorem Suppose U is a set of formulas and \overline{U} is the set of complements of formulas from U. Then

$\vdash U$

in system \mathcal{G} if and only if there is a closed semantic tableau for \overline{U} .

Corollary

 \vdash A in system G if and only if there is a closed semantic tableau for \neg A.

Theorem

(Soundness and Completeness)

 \models A if and only if $\vdash_{\mathcal{G}} A$

Example

Х

Prove

$$\vdash_{\mathcal{G}} (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A semantic tableau for $\neg [(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)]$: $\neg[(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)]$ α $A \rightarrow B, \neg (\neg B \rightarrow \neg A)$ α $A \rightarrow B, \neg B, \neg \neg A$ α $A \xrightarrow{\beta} B, \neg B, A$ $\neg A, \neg B, A = B, \neg B, A$

Х

Proof in G:

1. $A, B, \neg A$ Axiom2. $\neg B, B, \neg A$ Axiom3. $\neg (A \rightarrow B), B, \neg A$ β -rule 1,24. $\neg (A \rightarrow B), \neg B \rightarrow \neg A$ α -rule 35. $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ α -rule 4

3.3 Hilbert System ${\cal H}$

 Recall, first, that every propositional formula is equivalent to one using ¬ and → as its only connectives.

Axioms:

Rule of Inference (Modus Ponens):

MP:
$$\frac{\vdash A, \quad \vdash A \rightarrow B}{\vdash B}$$

Theorem

$$\vdash_{\mathcal{H}} A \to A$$

Proof.

1.
$$\vdash A \rightarrow ((A \rightarrow A) \rightarrow A)$$
Axiom 12. $\vdash [A \rightarrow ((A \rightarrow A) \rightarrow A)]$ Axiom 2 $\rightarrow [((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))]$ 3. $\vdash (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$ 3. $\vdash (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$ MP 1,24. $\vdash A \rightarrow (A \rightarrow A)$ Axiom 15. $\vdash A \rightarrow A$ MP 3,4

• We can simplify proofs in system \mathcal{H} by using "shortcuts"; namely, if we have proved a certain theorem or a rule, we can use it in later proofs.

Definition

 $U \vdash A$ will mean the following: A can be proved from axioms and additional assumptions U, using Modus Ponens.

Deduction Rule

$$\frac{U \cup \{A\} \vdash B}{U \vdash A \to B}$$

Proof. Proof is by induction on the length of the proof of

 $U \cup \{A\} \vdash B$

Contrapositive Rule

$$\frac{U \vdash \neg B \to \neg A}{U \vdash A \to B}$$

Proof.

Suppose

1.
$$U \vdash \neg B \rightarrow \neg A$$

Then,

2.
$$U \vdash (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$$
 Ax.3
3. $U \vdash A \rightarrow B$ MP 1,2

Theorem

$$\vdash (A \rightarrow B) \rightarrow [(B \rightarrow C) \rightarrow (A \rightarrow C)]$$

Proof.

1.
$$\{A \rightarrow B, B \rightarrow C, A\} \vdash A$$
Assumption2. $\{A \rightarrow B, B \rightarrow C, A\} \vdash A \rightarrow B$ Assumption3. $\{A \rightarrow B, B \rightarrow C, A\} \vdash B$ MP 1,24. $\{A \rightarrow B, B \rightarrow C, A\} \vdash B \rightarrow C$ Assumption5. $\{A \rightarrow B, B \rightarrow C, A\} \vdash C$ MP 3,46. $\{A \rightarrow B, B \rightarrow C\} \vdash A \rightarrow C$ Ded. Rule 57. $\{A \rightarrow B\} \vdash (B \rightarrow C) \rightarrow (A \rightarrow C)$ Ded. Rule 68. $\vdash (A \rightarrow B) \rightarrow [(B \rightarrow C) \rightarrow (A \rightarrow C)]$ Ded. Rule 7

• We have just proved:

Transitivity Rule

$$\frac{U\vdash A\to B, \quad U\vdash B\to C}{U\vdash A\to C}$$

Theorem

$$\vdash [A
ightarrow (B
ightarrow C)]
ightarrow [B
ightarrow (A
ightarrow C)]$$

Proof.

1.
$$\{A \rightarrow (B \rightarrow C), B, A\} \vdash A$$

2. $\{A \rightarrow (B \rightarrow C), B, A\} \vdash A \rightarrow (B \rightarrow C)$
3. $\{A \rightarrow (B \rightarrow C), B, A\} \vdash B \rightarrow C$
4. $\{A \rightarrow (B \rightarrow C), B, A\} \vdash B$
5. $\{A \rightarrow (B \rightarrow C), B, A\} \vdash C$
6. $\{A \rightarrow (B \rightarrow C), B\} \vdash A \rightarrow C$
7. $\{A \rightarrow (B \rightarrow C)\} \vdash B \rightarrow (A \rightarrow C)$
8. $\vdash [A \rightarrow (B \rightarrow C)] \rightarrow [B \rightarrow (A \rightarrow C)]$

Assumption Assumption MP 1,2 Assumption MP 4,3 Ded. Rule 5 Ded. Rule 5 Ded. Rule 7 • This proves

Exchange of Antecedent Rule

$$\frac{U \vdash A \to (B \to C)}{U \vdash B \to (A \to C)}$$

Theorem

$$\vdash \neg A
ightarrow (A
ightarrow B)$$

Proof.

1.
$$\{\neg A\} \vdash \neg A \rightarrow (\neg B \rightarrow \neg A)$$
Axiom 12. $\{\neg A\} \vdash \neg A$ Assumption3. $\{\neg A\} \vdash \neg B \rightarrow \neg A$ MP 2,14. $\{\neg A\} \vdash (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$ Axiom 35. $\{\neg A\} \vdash A \rightarrow B$ MP 3,46. $\vdash \neg A \rightarrow (A \rightarrow B)$ Ded. Rule 5

One consequence of the preceding theorem is the following: Corollary

$$\vdash A \rightarrow (\neg A \rightarrow B)$$

Proof. By the exchange of antecedent rule, applied to

$$\vdash \neg A \rightarrow (A \rightarrow B)$$

Double Negation Rule

$$\frac{U \vdash \neg \neg A}{U \vdash A}$$

Proof.

We need to show: $\vdash \neg \neg A \rightarrow A$

1.
$$\{\neg\neg A\} \vdash \neg\neg A \rightarrow (\neg\neg\neg\neg A \rightarrow \neg\neg A)$$
Axiom 12. $\{\neg\neg A\} \vdash \neg\neg A$ Assumption3. $\{\neg\neg A\} \vdash \neg\neg \neg A \rightarrow \neg\neg A$ MP 2,14. $\{\neg\neg A\} \vdash \neg A \rightarrow \neg\neg \neg A$ Contrap. Rule 35. $\{\neg\neg A\} \vdash \neg A \rightarrow A$ Contrap. Rule 46. $\{\neg\neg A\} \vdash A$ MP 2,57. $\vdash \neg\neg A \rightarrow A$ Ded. Rule 6

One can prove similarly:

$$(+ (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A))$$

• Notation:

false = any contradictory formula, e.g. $\neg(p \rightarrow p)$ *true* = any valid formula, e.g. $p \rightarrow p$

Reduction to Contradiction Rule

$$\frac{U \vdash \neg A \rightarrow \textit{false}}{U \vdash A}$$

• So, we need to prove in \mathcal{H} :

$$\vdash (\neg A \rightarrow \mathit{false}) \rightarrow A$$

Proof.

1.
$$\{\neg A \rightarrow false\} \vdash \neg A \rightarrow false$$

2. $\{\neg A \rightarrow false\} \vdash \neg false \rightarrow \neg \neg A$
3. $\{\neg A \rightarrow false\} \vdash \neg \neg A \rightarrow A$
4. $\{\neg A \rightarrow false\} \vdash \neg \neg false \rightarrow A$
5. $\{\neg A \rightarrow false\} \vdash p \rightarrow p$
6. $\{\neg A \rightarrow false\} \vdash p \neg (p \rightarrow p)$
7. $\{\neg A \rightarrow false\} \vdash A$
8. $\vdash (\neg A \rightarrow false) \rightarrow A$

Assumption Contrap. Rule 1 Double. Neg. Rule Transitivity 2,3 Proved earlier Double Neg. 5 MP 6,4 Ded. Rule 7 We can now introduce the remaining logical connectives \land , \lor , \leftrightarrow into our proof system \mathcal{H} as abbreviations for certain equivalent formulas that use \neg and \rightarrow only.

$A \wedge B$	means	eg(A ightarrow eg B)
$A \lor B$	means	eg A o B
$A \leftrightarrow B$	means	$({\it A} ightarrow {\it B}) \wedge ({\it B} ightarrow {\it A})$
		$(or: \neg ((A \to B) \to \neg (B \to A)))$

Example

Prove

$$\vdash A \rightarrow (B \rightarrow A \land B)$$

Solution:

1.
$$\{A, B\} \vdash (A \rightarrow \neg B) \rightarrow (A \rightarrow \neg B)$$

2. $\{A, B\} \vdash A \rightarrow ((A \rightarrow \neg B) \rightarrow \neg B)$
3. $\{A, B\} \vdash A$
4. $\{A, B\} \vdash (A \rightarrow \neg B) \rightarrow \neg B$
5. $\{A, B\} \vdash \neg \neg B \rightarrow \neg (A \rightarrow \neg B)$
6. $\{A, B\} \vdash B \rightarrow \neg \neg B$
7. $\{A, B\} \vdash B \rightarrow \neg (A \rightarrow \neg B)$

Proved earlier Exch. Antec. 1 Assumption MP 3,2 Contrap. Rule 4 Double Neg. Transitivity 6,5

8.
$$\{A, B\} \vdash B$$
Assumption9. $\{A, B\} \vdash \neg (A \rightarrow \neg B)$ MP 8,710. $\{A\} \vdash B \rightarrow \neg (A \rightarrow \neg B)$ Ded. Rule 911. $\vdash A \rightarrow (B \rightarrow \neg (A \rightarrow \neg B))$ Ded. Rule 10

Example Prove

$$\vdash A \lor B \leftrightarrow B \lor A$$

Solution: It suffices to show

$$\vdash A \lor B \to B \lor A, \text{ and}$$
$$\vdash B \lor A \to A \lor B$$

1.
$$\{\neg A \rightarrow B, \neg B\} \vdash \neg A \rightarrow B$$
Assumption2. $\{\neg A \rightarrow B, \neg B\} \vdash \neg B \rightarrow \neg \neg A$ Contrap. Rule 13. $\{\neg A \rightarrow B, \neg B\} \vdash \neg B$ Assumption4. $\{\neg A \rightarrow B, \neg B\} \vdash \neg \neg A$ MP 3,25. $\{\neg A \rightarrow B, \neg B\} \vdash \neg \neg A \rightarrow A$ Double Neg.6. $\{\neg A \rightarrow B, \neg B\} \vdash A$ MP 4,57. $\{\neg A \rightarrow B\} \vdash \neg B \rightarrow A$ Ded. Rule 68. $\vdash (\neg A \rightarrow B) \rightarrow (\neg B \rightarrow A)$ Ded. Rule 7

The other implication has an analogous proof.

3.4 Soundness and Completeness; Consistency

Theorem Hilbert system H is sound; i.e.

if
$$\vdash A$$
 then $\models A$

Proof.

By induction on the length *n* of the proof $\vdash A$.

• If n = 1, A is an axiom, and every axiom is a valid formula

• If *n* > 1, then *A* is derived from two previous lines of the proof using Modus Ponens:

$$\begin{array}{ll} \vdots \\ i. & \vdash B \\ \vdots \\ n-1. & \vdash B \rightarrow A \\ n. & \vdash A & \text{MP } i, n-1 \end{array}$$

By inductive hypothesis:

$$\models B, \qquad \models B \to A$$

so A must be valid, too.

Theorem Hilbert system \mathcal{H} is complete; i.e.

if $\models A$ then $\vdash A$

Definition A set of formulas is inconsistent if, for **some** formula *A*,

 $U \vdash A$ and $U \vdash \neg A$

Theorem

A set of formulas U is inconsistent if, and only if, **for all** formulas A,

 $U \vdash A$

Proof.

 (\Longrightarrow) Suppose *U* is an inconsistent set of formulas. Then, for some formula *A*,

$$U \vdash A$$
, $U \vdash \neg A$

We have proved earlier that, for any formula B

$$U \vdash \neg A
ightarrow (A
ightarrow B)$$

(reduction to contradiction)

1.	$U \vdash \neg A ightarrow (A ightarrow B)$	Contrad. Rule
2.	$U \vdash \neg A$	given
3.	$U \vdash A ightarrow B$	MP 1,2
4.	$U \vdash A$	given
5.	$U \vdash B$	MP 4,3

So, **all** formulas *B* are logical consequences of *U*.

(\Leftarrow) Suppose that every formula *A* is a consequence of *U*. Then, for any formula *B*, we have both

 $U \vdash B$ and $U \vdash \neg B$

which shows that U is inconsistent.

• So, if there is a propositional formula in the proof system which is not valid, the proof system will be consistent.

Theorem

 $U \vdash A$ if and only if $U \cup \{\neg A\}$ is inconsistent. Proof. (\Longrightarrow) Suppose $U \vdash A$. Since

$$U \cup \{\neg A\} \vdash \neg A$$
$$U \cup \{\neg A\} \vdash A$$

the set $U \cup \{\neg A\}$ is inconsistent.

(\Leftarrow) Suppose $U \cup \{\neg A\}$ is an inconsistent set of formulas. Then, since any formula can be derived from $U \cup \{\neg A\}$,

1. $U \cup \{\neg A\} \vdash false$ given2. $U \vdash \neg A \rightarrow false$ Ded. Rule 13. $U \vdash \neg false \rightarrow \neg \neg A$ Contrap. Rule 24. $U \vdash \neg false$ Proved earlier5. $U \vdash \neg \neg A$ MP 4,36. $U \vdash A$ Double Neg. 5

- All of these facts also apply to the case when U is an infinite set of formulas.
- Note the following: an infinite set of formulas is consistent if and only if every finite subset is consistent.

Compactness Theorem

Theorem (Compactness Theorem) An infinite set of propositional formulas U is satisfiable if and only if every finite subset of U is satisfiable.

Example

(Graph Colorability Problem) We say that a (possibly, infinite) graph G is *n*-colorable, if every vertex of G can be assigned one of the *n* different colors

 $\{c_1, c_2, \ldots, c_n\}$

in such a way that no two vertices joined by an edge are assigned the same color.

Given an infinite graph *G* and some positive integer n > 1, show that, if every finite induced subgraph of *G* is *n*-colorable, then so is *G*.

Solution: We will try to capture the *n*-colorability property using the language of propositional logic. Suppose G = (V, E), where

$$V = \{v_1, v_2, \ldots, v_m, \ldots\}.$$

We need to express two properties:

- Every vertex v_i is assigned exactly one of the colors c_j (j = 1, ..., n).
- 2 If (v_k, v_l) ∈ E is an edge of the graph G, then the colors assigned to v_k and v_l have to be different.

First, we introduce infinitely many propositional atoms

$$p_{i,j}, \quad i = 1, 2, \dots, j = 1, 2, \dots, n$$

whose meaning will be the following:

" The variable $p_{i,j}$ is true if the vertex v_i is assigned the color c_j in a coloring of *G*."

Then, our two requirements can be coded as follows:

1 For every i = 1, 2, ..., we include the formula

$$(p_{i,1} \land \neg p_{i,2} \land \ldots \land \neg p_{i,n}) \lor \ldots \lor (\neg p_{i,1} \land \neg p_{i,2} \land \ldots \land \neg p_{i,n-1} \land p_{i,n})$$

2 For every edge $(v_k, v_l) \in E$, we include the formula

$$\neg(p_{k,1} \land p_{l,1}) \land \neg(p_{k,2} \land p_{l,2}) \land \ldots \land \neg(p_{k,n} \land p_{l,n})$$

Let U denote the infinite set of formulas obtained in this way. Clearly, G is *n*-colorable if and only if U is satisfiable. To show that U is satisfiable, we will use the Compactness Theorem. So, it suffices to show that every finite subset of U is satisfiable.

Let U_0 be a finite subset of U. Obviously, the formulas in U_0 can mention only finitely many vertices of G.

Let G_0 be the induced subgraph of G whose vertices are those mentioned by U_0 . Then, G_0 is a finite induced subgraph of Gand is *n*-colorable, by the assumption made about G.

So, the set of formulas U_0 is satisfiable, which is precisely what we were trying to show.

 \square

Therefore, *U* is satisfiable as an infinite set, so *G* is an *n*-colorable graph.