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3.1 Deductive (Proof) System

e Deductive system:

© (finite) set of axioms
@ (finite) set of rules of inference

e Proof in a deductive system: a finite sequence of formulas
such that each formula in the sequence is either:

(a) an axiom; or
(b) derived from previous formulas in the sequence using a
rule of inference.

e The last formula A in the sequence is called a theorem

FA



In this course, we will study two proof systems for propositional
logic:

@ Gentzen system G

® Hilbert system H



3.2 Gentzen System G

e this proof system is based on the reversal of semantic
tableaux.

e Main Idea: in order to prove that A is valid, we are trying to
show that —A is unsatisfiable, i.e. that its semantic tableau
is closed. After that, we write the proof in G by traversing
the tableau from the bottom to the top, changing every
formula in every node to its negation.



Example
Prove that
F(pAg)— (gAPp)

(1) We first construct a tableau for —[(p A g) — (g A p)]:
~l(lpAq) — (g A p)]

Ag,—(g A
pAg (qﬁp)

pAQ,—~q PAQG,—P

o o

p,q,—q p,q,—p
X X



The corresponding proof in G:

1
2
3.
4.
5
6

-p.—q,q
—-p,~q,p
-(PAQ),q
—~(PAQ),p
-(PAQ),gApP
(bAQ) — (qAP)

Axiom

Axiom

a-rule applied to 1
a-rule applied to 2
(G-rule applied to 3,4
a-rule applied to 5



Gentzen Proof System G

e Axioms: all sets of formulas containing a pair of
complementary literals

e Rules of Inference:

U U {()&1 R Ozg}
FU U {a}

L FU OB}, FUU{B

® [-rules: F{U1 EJ U0 (0] {62}

© o-rules:




(07 Qaq (07%]
——A A
(A1 N Az) | A -Ap
A1V A Aq Ao
A — A =Aq Ao
—\(A1 g A2) —\(A1 — A2) —\(A2 — A1
g 55 e
By A B B; B,
~(By Vv Bz) | By -B,
(B, — By) | B, B,
B, B, |B —B, By,— B




Theorem B
Suppose U is a set of formulas and U is the set of
complements of formulas from U. Then

U

in system G if and only if there is a closed semantic tableau for
U.

Corollary

- A in system G if and only if there is a closed semantic tableau
for —A.

Theorem
(Soundness and Completeness)

= Aifand only if -g A



Example

Prove

A semantic tableau for -[(A — B) — (=B — —-A)]:
=[(A— B) — (=B — —A)]
A— B,-B,~-A
A— B,—-B,A
2N
-A,-B,A B,-B,A
X X



Proof in G:

okrwn =

A B, -A

-B,B,-A

~(A— B),B,—-A
~(A— B),~B — —A
(A— B) = (=B — -A)

Axiom
Axiom
B-rule 1,2
a-rule 3
a-rule 4



3.3 Hilbert System H

e Recall, first, that every propositional formula is equivalent
to one using — and — as its only connectives.
Axioms:
O-A—(B— A
@FA—-(B—-C)—(A=-B)—(A-0)
®-(-B—-A)—-(A-B)
Rule of Inference (Modus Ponens):

FA FA—B

MP: B




Theorem

Proof.

NN —

»w

o

A A

FA— ((A— A)— A)
FIA— ((A— A) — A)]

(A (A A) — (A— A))]
(A= (A= A) - (A A
FA— (A— A)

FA—-A

Axiom 1
Axiom 2

MP 1,2
Axiom 1
MP 3,4



e We can simplify proofs in system H by using “shortcuts”;
namely, if we have proved a certain theorem or a rule, we
can use it in later proofs.

Definition
U F A will mean the following: A can be proved from axioms
and additional assumptions U, using Modus Ponens.



Deduction Rule

UU{A} - B
UFA—B

Proof.
Proof is by induction on the length of the proof of

UU{A} B



Contrapositive Rule

UF-B—-A
U-A—B
Proof.
Suppose
1. UF-B— —-A
Then,

2. UF(-B— -A)—(A—B) Ax.3
3. U-A—B MP 1,2



Theorem

Proof.

©NOOhAWN =

F(A—=B)—=[(B—C)—= (A= C)]

{A—B,B— C,A}-A
{A—-B,B— C,A-FA—B
{A—B,B— C,A}+-B
{A—-B,B—-CA-FB—C
{A—-B,B— CA}+C
{A—-B,B—-C}FA—-C
{A—-B}-(B—C)— (A— ()
(A~ B)~[(B— C)— (A— C)]

Assumption
Assumption
MP 1,2

Assumption
MP 3,4

Ded. Rule 5
Ded. Rule 6
Ded. Rule 7



e We have just proved:

Transitivity Rule

U-rA—B, U-B—C

UFA—C



Theorem

FA=(B—=0)]—[B—=(A-C)

Proof.
1. {A—-(B—C),BA}JFA Assumption
2. {A—-(B—C),B,A}+A— (B— C) Assumption
3. {A—-(B—C),BA}-B—C MP 1,2
4. {A—-(B—C),B,A}+-B Assumption
5. {A—-(B—C),B,A}-C MP 4,3
6. {A-(B—C),Bj-rA—C Ded. Rule 5
7. {A—>(B—> )}l—B—>(A—> C) Ded. Rule 6
8. FA—-(B—C)]—[B—(A— 0)] Ded. Rule 7



e This proves

Exchange of Antecedent Rule

UFA—(B— C)

UFB— (A— QC)



Theorem

Proof.

ok wN~

F-A— (A— B)

{-A} +-A — (=B — -A)
{-A} F-A

{-A} +-B— -A

{-A}+ (-B— —-A) — (A— B)
{-A}-FA—B

F-A— (A— B)

Axiom 1
Assumption
MP 2,1
Axiom 3
MP 3,4
Ded. Rule 5

OJ



One consequence of the preceding theorem is the following:
Corollary

FA— (-A— B)

Proof.
By the exchange of antecedent rule, applied to

F-A— (A— B)



Double Negation Rule

Uur--A
UFA

Proof.
We need to show: - ——A — A

1. {——A}F--A— (-———A— —-—A) Axiom 1

2. {——A}F--A Assumption

3. {—AtF—-—"A——-A MP 2,1

4. {—|—|A} F-A— —-—-A Contrap. Rule 3
5. {——A}F-—-A—-A Contrap. Rule 4
6. {——A}FA MP 2,5

7. F——A—-A Ded. Rule 6



One can prove similarly:
O-FA—- A

e Notation:

false = any contradictory formula, e.g. —(p — p)
true = any valid formula, e.g. p — p



Reduction to Contradiction Rule

UF -A — false
UFA

e So, we need to prove in H:

F(—-A— false) — A



Proof.

ONOO WD =

{-A — false} + -A — false
{-A — false} + —false — ——A
{-A— false} - -—-A— A
{-A — false} - —false — A
{-A— false}Fp—p

{-A — false} F ——(p — p)
{-A — false} - A

F(-A — false) — A

Assumption
Contrap. Rule 1
Double. Neg. Rule
Transitivity 2,3
Proved earlier
Double Neg. 5

MP 6,4

Ded. Rule 7



We can now introduce the remaining logical connectives A, V,
— into our proof system H as abbreviations for certain
equivalent formulas that use — and — only.

AANB means —(A— —B)
AvB means -A— B
A~ B means (A— B)A(B— A)
(or: —|((A — B) — —\(B — A)))



Example

Prove
FA— (B — AA B)

Solution:

1. {AB}+(A— -B) — (A— —B)

2. {ABlFA— ((A— —B)— —-B)

3. {AB}FA

4. {AB}+(A—-B)— -B

5. {AB}+--B— —(A— -B)

6. {AB}+B——--B

7. {AB}rB— —(A— —B)

Proved earlier
Exch. Antec. 1
Assumption

MP 3,2
Contrap. Rule 4
Double Neg.
Transitivity 6,5



10.
11.

{A,B} B

{A, B} + —(A— -B)

{A} B — —(A— —-B)
FA— (B— -(A— —B))

Assumption
MP 8,7

Ded. Rule 9
Ded. Rule 10



Example

Prove
FAVB— BVA

Solution: It suffices to show

FAvVB— BVA, and
FBVA— AVB

1. {-A—-B,-B}-r-A—B Assumption

2. {-A— B,-B}+-B— —-—-A Contrap. Rule 1
3. {(-A—B,-B}+-B Assumption

4. {-A— B,-B}F—--A MP 3,2

5. {—|A — B, —|B} F-—A— A Double Neg

6. {-A—B,-B}FA MP 4,5

7. {(-A—-B}F-B— A Ded. Rule 6

8. F (ﬂA — B) — (—|B — A) Ded. Rule 7

The other implication has an analogous proof.



3.4 Soundness and Completeness;
Consistency

Theorem
Hilbert system 'H is sound; i.e.

if —Athen = A

Proof.
By induction on the length n of the proof - A.

e If n=1, Ais an axiom, and every axiom is a valid formula



e If n> 1,then Ais derived from two previous lines of the
proof using Modus Ponens:

B
n-1. -FB—A
n. FA MPi,n—1

By inductive hypothesis:
=B, EB—A
so A must be valid, too.

Theorem
Hilbert system 'H is complete; i.e.

if =Athen A



Definition
A set of formulas is inconsistent if, for some formula A,

UFAand U+ -A

Theorem
A set of formulas U is inconsistent if, and only if, for all

formulas A,
UFA



Proof.
(=) Suppose U is an inconsistent set of formulas. Then, for
some formula A,

U A, Utr-A

We have proved earlier that, for any formula B
Ur-A— (A— B)

(reduction to contradiction)

1. UF-A— (A— B) Contrad. Rule
2. UF--A given

3. UFA—-B MP 1,2

4. UFA given

5. UFB MP 4,3

So, all formulas B are logical consequences of U.



(«==) Suppose that every formula A is a consequence of U.
Then, for any formula B, we have both

UFBand Ut —-B

which shows that U is inconsistent. O
e So, if there is a propositional formula in the proof system
which is not valid, the proof system will be consistent.

Theorem
U Aifand only if U U {-A} is inconsistent.

Proof. (=) Suppose U + A. Since

UU{—|A}|_—|A
UU{-A} I A

the set U U {—A} is inconsistent.



(«<=) Suppose U U {—A} is an inconsistent set of formulas.
Then, since any formula can be derived from U U {-A},

1. UU{-A} I false  given

2. UF-A— false Ded. Rule 1

3. Ut —false — ——A Contrap. Rule 2
4. Ut —false Proved earlier
5. UF—--A MP 4,3

6. UFA Double Neg. 5

¢ All of these facts also apply to the case when U is an
infinite set of formulas.

¢ Note the following: an infinite set of formulas is consistent
if and only if every finite subset is consistent.



Compactness Theorem

Theorem
(Compactness Theorem) An infinite set of propositional

formulas U is satisfiable if and only if every finite subset of U is
satisfiable.



Example

(Graph Colorability Problem) We say that a (possibly, infinite)
graph G is n-colorable, if every vertex of G can be assigned
one of the n different colors

{C1,Cg,...,Cn}

in such a way that no two vertices joined by an edge are
assigned the same color.

Given an infinite graph G and some positive integer n > 1,
show that, if every finite induced subgraph of G is n-colorable,
then sois G.



Solution: We will try to capture the n-colorability property
using the language of propositional logic.
Suppose G = (V, E), where

V={vi,vo,...,Vm,...}.

We need to express two properties:
@ Every vertex v; is assigned exactly one of the colors ¢;
(J=1,...,n).
® If (v, v)) € E is an edge of the graph G, then the colors
assigned to v, and v; have to be different.



First, we introduce infinitely many propositional atoms
Pij i:1,2,... j:1,2,...,n

whose meaning will be the following:

“ The variable p; ; is true if the vertex v; is assigned the color ¢;
in a coloring of G”

Then, our two requirements can be coded as follows:

© Foreveryi=1,2,..., weinclude the formula
(Pi, 1 A=Pi2 - - APi)V .. NV (=Pi 1 A=Pi2 A . . A=Pjn—1/\Pin)
® For every edge (v, v)) € E, we include the formula

(k1 APr1) A—(Pr2 APi2) A ... A= (Pr,n A Prn)

Let U denote the infinite set of formulas obtained in this way.
Clearly, G is n-colorable if and only if U is satisfiable.



To show that U is satisfiable, we will use the Compactness
Theorem. So, it suffices to show that every finite subset of U is
satisfiable.

Let Uy be a finite subset of U. Obviously, the formulas in Uy can
mention only finitely many vertices of G.

Let Gy be the induced subgraph of G whose vertices are those
mentioned by Uy. Then, Gy is a finite induced subgraph of G
and is n-colorable, by the assumption made about G.

So, the set of formulas U, is satisfiable, which is precisely what
we were trying to show.

Therefore, U is satisfiable as an infinite set, so G is an
n-colorable graph. 0.
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