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3.1 Deductive (Proof) System

• Deductive system:
1 (finite) set of axioms
2 (finite) set of rules of inference

• Proof in a deductive system: a finite sequence of formulas
such that each formula in the sequence is either:
(a) an axiom; or
(b) derived from previous formulas in the sequence using a

rule of inference.

• The last formula A in the sequence is called a theorem

` A



In this course, we will study two proof systems for propositional
logic:

1 Gentzen system G
2 Hilbert system H



3.2 Gentzen System G

• this proof system is based on the reversal of semantic
tableaux.

• Main Idea: in order to prove that A is valid, we are trying to
show that ¬A is unsatisfiable, i.e. that its semantic tableau
is closed. After that, we write the proof in G by traversing
the tableau from the bottom to the top, changing every
formula in every node to its negation.



Example
Prove that

` (p ∧ q) → (q ∧ p)

(1) We first construct a tableau for ¬[(p ∧ q) → (q ∧ p)]:

¬[(p ∧ q) → (q ∧ p)]

α

p ∧ q,¬(q ∧ p)
β

qqqqqqq β

MMMMMMM

p ∧ q,¬q
α

p ∧ q,¬p
α

p, q,¬q
×

p, q,¬p
×



The corresponding proof in G:

1. ¬p,¬q, q Axiom
2. ¬p,¬q, p Axiom
3. ¬(p ∧ q), q α-rule applied to 1
4. ¬(p ∧ q), p α-rule applied to 2
5. ¬(p ∧ q), q ∧ p β-rule applied to 3,4
6. (p ∧ q) → (q ∧ p) α-rule applied to 5

�



Gentzen Proof System G

• Axioms: all sets of formulas containing a pair of
complementary literals

• Rules of Inference:

1 α-rules:
` U1 ∪ {α1, α2}
` U1 ∪ {α}

2 β-rules:
` U1 ∪ {β1}, ` U2 ∪ {β2}

` U1 ∪ U2 ∪ {β}



α α1 α2
¬¬A A
¬(A1 ∧ A2) ¬A1 ¬A2
A1 ∨ A2 A1 A2
A1 → A2 ¬A1 A2
¬(A1 ↔ A2) ¬(A1 → A2) ¬(A2 → A1)

β β1 β2
B1 ∧ B2 B1 B2
¬(B1 ∨ B2) ¬B1 ¬B2
¬(B1 → B2) B1 ¬B2
B1 ↔ B2 B1 → B2 B2 → B1



Theorem
Suppose U is a set of formulas and U is the set of
complements of formulas from U. Then

` U

in system G if and only if there is a closed semantic tableau for
U.

Corollary
` A in system G if and only if there is a closed semantic tableau
for ¬A.

Theorem
(Soundness and Completeness)

|= A if and only if `G A



Example
Prove

`G (A → B) → (¬B → ¬A)

A semantic tableau for ¬[(A → B) → (¬B → ¬A)]:
¬[(A → B) → (¬B → ¬A)]

α

A → B,¬(¬B → ¬A)

α

A → B,¬B,¬¬A
α

A → B,¬B, A
β

qqqqqqq β

MMMMMMM

¬A,¬B, A
×

B,¬B, A
×



Proof in G:

1. A, B,¬A Axiom
2. ¬B, B,¬A Axiom
3. ¬(A → B), B,¬A β-rule 1,2
4. ¬(A → B),¬B → ¬A α-rule 3
5. (A → B) → (¬B → ¬A) α-rule 4



3.3 Hilbert System H

• Recall, first, that every propositional formula is equivalent
to one using ¬ and → as its only connectives.

Axioms:
1 ` A → (B → A)

2 ` (A → (B → C)) → ((A → B) → (A → C))

3 ` (¬B → ¬A) → (A → B)

Rule of Inference (Modus Ponens):

MP:
` A, ` A → B

` B



Theorem

`H A → A

Proof.

1. ` A → ((A → A) → A) Axiom 1
2. ` [A → ((A → A) → A)] Axiom 2

→ [((A → (A → A)) → (A → A))]
3. ` (A → (A → A)) → (A → A) MP 1,2
4. ` A → (A → A) Axiom 1
5. ` A → A MP 3,4



• We can simplify proofs in system H by using “shortcuts”;
namely, if we have proved a certain theorem or a rule, we
can use it in later proofs.

Definition
U ` A will mean the following: A can be proved from axioms
and additional assumptions U, using Modus Ponens.



Deduction Rule

U ∪ {A} ` B
U ` A → B

Proof.
Proof is by induction on the length of the proof of

U ∪ {A} ` B



Contrapositive Rule

U ` ¬B → ¬A
U ` A → B

Proof.
Suppose

1. U ` ¬B → ¬A

Then,

2. U ` (¬B → ¬A) → (A → B) Ax.3
3. U ` A → B MP 1,2



Theorem

` (A → B) → [(B → C) → (A → C)]

Proof.

1. {A → B, B → C, A} ` A Assumption
2. {A → B, B → C, A} ` A → B Assumption
3. {A → B, B → C, A} ` B MP 1,2
4. {A → B, B → C, A} ` B → C Assumption
5. {A → B, B → C, A} ` C MP 3,4
6. {A → B, B → C} ` A → C Ded. Rule 5
7. {A → B} ` (B → C) → (A → C) Ded. Rule 6
8. ` (A → B) → [(B → C) → (A → C)] Ded. Rule 7



• We have just proved:

Transitivity Rule

U ` A → B, U ` B → C
U ` A → C



Theorem

` [A → (B → C)] → [B → (A → C)]

Proof.

1. {A → (B → C), B, A} ` A Assumption
2. {A → (B → C), B, A} ` A → (B → C) Assumption
3. {A → (B → C), B, A} ` B → C MP 1,2
4. {A → (B → C), B, A} ` B Assumption
5. {A → (B → C), B, A} ` C MP 4,3
6. {A → (B → C), B} ` A → C Ded. Rule 5
7. {A → (B → C)} ` B → (A → C) Ded. Rule 6
8. ` [A → (B → C)] → [B → (A → C)] Ded. Rule 7



• This proves

Exchange of Antecedent Rule

U ` A → (B → C)

U ` B → (A → C)



Theorem

` ¬A → (A → B)

Proof.

1. {¬A} ` ¬A → (¬B → ¬A) Axiom 1
2. {¬A} ` ¬A Assumption
3. {¬A} ` ¬B → ¬A MP 2,1
4. {¬A} ` (¬B → ¬A) → (A → B) Axiom 3
5. {¬A} ` A → B MP 3,4
6. ` ¬A → (A → B) Ded. Rule 5



One consequence of the preceding theorem is the following:

Corollary

` A → (¬A → B)

Proof.
By the exchange of antecedent rule, applied to

` ¬A → (A → B)



Double Negation Rule

U ` ¬¬A
U ` A

Proof.
We need to show: ` ¬¬A → A

1. {¬¬A} ` ¬¬A → (¬¬¬¬A → ¬¬A) Axiom 1
2. {¬¬A} ` ¬¬A Assumption
3. {¬¬A} ` ¬¬¬¬A → ¬¬A MP 2,1
4. {¬¬A} ` ¬A → ¬¬¬A Contrap. Rule 3
5. {¬¬A} ` ¬¬A → A Contrap. Rule 4
6. {¬¬A} ` A MP 2,5
7. ` ¬¬A → A Ded. Rule 6



One can prove similarly:
1 ` (A → B) → (¬B → ¬A)

2 ` A → ¬¬A

• Notation:

false = any contradictory formula, e.g. ¬(p → p)

true = any valid formula, e.g. p → p



Reduction to Contradiction Rule

U ` ¬A → false
U ` A

• So, we need to prove in H:

` (¬A → false) → A



Proof.

1. {¬A → false} ` ¬A → false Assumption
2. {¬A → false} ` ¬false → ¬¬A Contrap. Rule 1
3. {¬A → false} ` ¬¬A → A Double. Neg. Rule
4. {¬A → false} ` ¬false → A Transitivity 2,3
5. {¬A → false} ` p → p Proved earlier
6. {¬A → false} ` ¬¬(p → p) Double Neg. 5
7. {¬A → false} ` A MP 6,4
8. ` (¬A → false) → A Ded. Rule 7



We can now introduce the remaining logical connectives ∧, ∨,
↔ into our proof system H as abbreviations for certain
equivalent formulas that use ¬ and → only.

A ∧ B means ¬(A → ¬B)
A ∨ B means ¬A → B
A ↔ B means (A → B) ∧ (B → A)

(or: ¬((A → B) → ¬(B → A)))



Example
Prove

` A → (B → A ∧ B)

Solution:

1. {A, B} ` (A → ¬B) → (A → ¬B) Proved earlier
2. {A, B} ` A → ((A → ¬B) → ¬B) Exch. Antec. 1
3. {A, B} ` A Assumption
4. {A, B} ` (A → ¬B) → ¬B MP 3,2
5. {A, B} ` ¬¬B → ¬(A → ¬B) Contrap. Rule 4
6. {A, B} ` B → ¬¬B Double Neg.
7. {A, B} ` B → ¬(A → ¬B) Transitivity 6,5



8. {A, B} ` B Assumption
9. {A, B} ` ¬(A → ¬B) MP 8,7
10. {A} ` B → ¬(A → ¬B) Ded. Rule 9
11. ` A → (B → ¬(A → ¬B)) Ded. Rule 10

�



Example
Prove

` A ∨ B ↔ B ∨ A

Solution: It suffices to show

` A ∨ B → B ∨ A, and
` B ∨ A → A ∨ B

1. {¬A → B,¬B} ` ¬A → B Assumption
2. {¬A → B,¬B} ` ¬B → ¬¬A Contrap. Rule 1
3. {¬A → B,¬B} ` ¬B Assumption
4. {¬A → B,¬B} ` ¬¬A MP 3,2
5. {¬A → B,¬B} ` ¬¬A → A Double Neg.
6. {¬A → B,¬B} ` A MP 4,5
7. {¬A → B} ` ¬B → A Ded. Rule 6
8. ` (¬A → B) → (¬B → A) Ded. Rule 7

The other implication has an analogous proof. �



3.4 Soundness and Completeness;
Consistency

Theorem
Hilbert system H is sound; i.e.

if ` A then |= A

Proof.
By induction on the length n of the proof ` A.

• If n = 1, A is an axiom, and every axiom is a valid formula



• If n > 1, then A is derived from two previous lines of the
proof using Modus Ponens:

...
i. ` B
...
n-1. ` B → A
n. ` A MP i , n − 1

By inductive hypothesis:

|= B, |= B → A

so A must be valid, too. �

Theorem
Hilbert system H is complete; i.e.

if |= A then ` A



Definition
A set of formulas is inconsistent if, for some formula A,

U ` A and U ` ¬A

Theorem
A set of formulas U is inconsistent if, and only if, for all
formulas A,

U ` A



Proof.
(=⇒) Suppose U is an inconsistent set of formulas. Then, for
some formula A,

U ` A, U ` ¬A

We have proved earlier that, for any formula B

U ` ¬A → (A → B)

(reduction to contradiction)

1. U ` ¬A → (A → B) Contrad. Rule
2. U ` ¬A given
3. U ` A → B MP 1,2
4. U ` A given
5. U ` B MP 4,3

So, all formulas B are logical consequences of U.



(⇐=) Suppose that every formula A is a consequence of U.
Then, for any formula B, we have both

U ` B and U ` ¬B

which shows that U is inconsistent. �

• So, if there is a propositional formula in the proof system
which is not valid, the proof system will be consistent.

Theorem
U ` A if and only if U ∪ {¬A} is inconsistent.
Proof. (=⇒) Suppose U ` A. Since

U ∪ {¬A} ` ¬A
U ∪ {¬A} ` A

the set U ∪ {¬A} is inconsistent.



(⇐=) Suppose U ∪ {¬A} is an inconsistent set of formulas.
Then, since any formula can be derived from U ∪ {¬A},

1. U ∪ {¬A} ` false given
2. U ` ¬A → false Ded. Rule 1
3. U ` ¬false → ¬¬A Contrap. Rule 2
4. U ` ¬false Proved earlier
5. U ` ¬¬A MP 4,3
6. U ` A Double Neg. 5

�

• All of these facts also apply to the case when U is an
infinite set of formulas.

• Note the following: an infinite set of formulas is consistent
if and only if every finite subset is consistent.



Compactness Theorem

Theorem
(Compactness Theorem) An infinite set of propositional
formulas U is satisfiable if and only if every finite subset of U is
satisfiable.



Example
(Graph Colorability Problem) We say that a (possibly, infinite)
graph G is n-colorable, if every vertex of G can be assigned
one of the n different colors

{c1, c2, . . . , cn}

in such a way that no two vertices joined by an edge are
assigned the same color.
Given an infinite graph G and some positive integer n > 1,
show that, if every finite induced subgraph of G is n-colorable,
then so is G.



Solution: We will try to capture the n-colorability property
using the language of propositional logic.
Suppose G = (V , E), where

V = {v1, v2, . . . , vm, . . .}.

We need to express two properties:
1 Every vertex vi is assigned exactly one of the colors cj

(j = 1, . . . , n).
2 If (vk , vl) ∈ E is an edge of the graph G, then the colors

assigned to vk and vl have to be different.



First, we introduce infinitely many propositional atoms

pi,j , i = 1, 2, . . . j = 1, 2, . . . , n

whose meaning will be the following:
“ The variable pi,j is true if the vertex vi is assigned the color cj
in a coloring of G.”
Then, our two requirements can be coded as follows:

1 For every i = 1, 2, . . ., we include the formula

(pi,1∧¬pi,2∧. . .∧¬pi,n)∨. . .∨(¬pi,1∧¬pi,2∧. . .∧¬pi,n−1∧pi,n)

2 For every edge (vk , vl) ∈ E , we include the formula

¬(pk ,1 ∧ pl,1) ∧ ¬(pk ,2 ∧ pl,2) ∧ . . . ∧ ¬(pk ,n ∧ pl,n)

Let U denote the infinite set of formulas obtained in this way.
Clearly, G is n-colorable if and only if U is satisfiable.



To show that U is satisfiable, we will use the Compactness
Theorem. So, it suffices to show that every finite subset of U is
satisfiable.
Let U0 be a finite subset of U. Obviously, the formulas in U0 can
mention only finitely many vertices of G.
Let G0 be the induced subgraph of G whose vertices are those
mentioned by U0. Then, G0 is a finite induced subgraph of G
and is n-colorable, by the assumption made about G.
So, the set of formulas U0 is satisfiable, which is precisely what
we were trying to show.
Therefore, U is satisfiable as an infinite set, so G is an
n-colorable graph. �.
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