
Chapter 2: Propositional Calculus: Formulas,
Models, Tableaux

August 22, 2008

Outline

1 2.1 Boolean Operators

2 2.2 Propositional Formulas

3 2.3 Interpretations

4 2.4 Equivalence and Substitution

5 2.5 Satisfiability, Validity, and Consequence

6 2.6 Semantic Tableaux

7 2.7 Soundness and Completeness

2.1 Boolean Operators

• Boolean type: T (true), F (false)
• Boolean operator: a function on the set {T,F}.

These operators can be unary, binary, etc.
• Question: How many n-ary Boolean operators are there

on {T,F}?

22n

• We single out the following five operators:

¬ (unary)

∨,∧,→,↔ (binary)

• There are other binary operators that are sometimes used
e.g. in the theory of Boolean circuits:

⊕ (XOR, exclusive OR)
↑ (NAND)
↓ (NOR, Sheffer’s stroke)

p q p ⊕ q
T T F
T F T
F T T
F F F

p q p ↑ q
T T F
T F T
F T T
F F T

p q p ↓ q
T T F
T F F
F T F
F F T

2.2 Propositional Formulas

BNF (Backus-Naur Form) Grammars:
• rules of the form

symbol ::= symbol1symbol2 . . . symboln, or
symbol ::= symbol1|symbol2| . . . |symboln

• symbol is a non-terminal symbol of the grammar.
• symbols that can never occur on the left-hand side of a

grammar rule are called terminal symbols.

• P - set of all propositional letters (atoms)

P = {p, q, r , . . .}

Definition
A formula in the propositional logic is any string that can be
derived from the initial non-terminal fml using the following BNF
rules:

1 fml ::= p, for any p ∈ P
2 fml ::= (¬fml)
3 fml ::= (fml ∨ fml)
4 fml ::= (fml ∧ fml)
5 fml ::= (fml → fml)
6 fml ::= (fml ↔ fml)

Remark
If we want to use additional operators such as e.g. ⊕, ↑, ↓, etc,
the BNF grammar can be easily modified by adding appropriate
rules to handle these connectives.

Example
Derivation of

(p ∧ (r → (p ∨ (¬q))))

fml ::= (fml ∧ fml)
::= (p ∧ fml)
::= (p ∧ (fml → fml))
::= (p ∧ (r → fml))
::= (p ∧ (r → (fml ∨ fml)))
::= (p ∧ (r → (p ∨ fml)))
::= (p ∧ (r → (p ∨ (¬fml))))
::= (p ∧ (r → (p ∨ (¬q))))

• Derivation tree: tree representing the derivation of the
formula using the BNF grammar for propositional logic.

• Formation tree: tree representing the structure of the
formula; i.e. the tree whose nodes are the connectives
occurring in the formula and whose leaves are
propositional variables.

Remark
For any formula, the formation tree can be easily obtained from
its derivation tree; namely, replace the fml symbol in every
node of the derivation tree by the connective used in the rule
applied to fml.

Convention: We can omit writing unnecessary pairs of brackets
in a propositional formula, if we introduce the following
hierarchy (order of priority) of the Boolean connectives:

1 ¬
2 ∨, ∧
3 →, ↔

Definition
If the propositional formula A is not an atom (variable), the
operator at the root of its formation tree is called the principal
operator of A.

Theorem
(Structural Induction) To show that some property holds for all
propositional formulas A, it suffices to show the following:

1 every atom (variable) p has the property.
2 assuming that a formula A has the required property, show

that
¬A

has the property.
3 assuming that the formulas A and B have the required

property, show that the formulas

A ∨ B, A ∧ B, A→ B, A↔ B

have the property.

Example
Prove that every formula A, formed using BNF form for
propositional formulas, is balanced; i.e. A contains the same
number of left and right brackets.

Proof.
We will prove this by structural induction.
1. any atom (variable) p is trivially balanced, since it contains
no left or right brackets.
2. assume A is a balanced propositional formula, i.e. A
contains the same number of left and right brackets.
Consider ¬A. Since A is balanced, so is ¬A.
3. suppose A and B are both balanced formulas. Consider, say,
A∨B. Clearly, the number of left brackets in A∨B is the sum of
the left brackets in A and B, and similarly for right brackets.
Since both A and B are balanced, it is easy to see that this
holds for A ∨ B, too. [Similarly for other three connectives
∧,→,↔.]

2.3 Interpretations

• P - set of all propositional variables (atoms)

Definition
An assignment is a function

v : P → {T,F}

v assigns a truth value to any atom in a given formula.
Suppose F denotes the set of all propositional formulas. We
can extend an assignment v to a function

v : F → {T,F},

which assigns the truth value v(A) to any formula A ∈ F .

Example
Suppose v is an assignment for which

v(p) = F, v(q) = T.

If
A = (¬p → q)↔ (p ∨ q)

what is v(A)?
Solution:

v(A) = v((¬p → q)↔ (p ∨ q))

= v(¬p → q)↔ v(p ∨ q)

= (v(¬p)→ v(q))↔ (v(p) ∨ v(q))

= (¬v(p)→ v(q))↔ (v(p) ∨ v(q))

= (¬F→ T)↔ (F ∨ T)

= (T→ T)↔ (F ∨ T)

= T↔ T
= T

Theorem
An assignment can be extended to exactly one interpretation.
In other words: for a given set of truth values of atoms, the truth
value of a formula is uniquely determined.

• In fact: if two assignments agree on all atoms that appear
in the formula, the interpretations they induce also agree
on that formula.

Suppose
S = {A1, A2, . . . , An}

is a set of formulas and v is an assignment which assigns truth
values to all atoms that appear in the set of formulas S. Any
interpretation that extends v to all propositional atoms P will be
called an interpretation for S.

Example
The assignment

v(p) = F, v(q) = T, v(r) = T

determines the following interpretation of the set of formulas

S = {p ∨ ¬q, q, p ∧ r ↔ (r → q)}

v(p ∨ ¬q) = F, v(q) = T, v(p ∧ r → (r → q)) = F

2.4 Equivalence and Substitution
Definition
If A, B ∈ F are such that

v(A) = v(B)

for all interpretations v , A is (logically) equivalent to B.

A ≡ B

Example

¬p ∨ q ≡ p → q

since both formulas are true in all interpretations except when

v(p) = T, v(q) = F

and are false for that particular interpretation.

Caution: ≡ does not mean the same thing as↔:
• A↔ B is a formula (syntax)
• A ≡ B is a relation between two formula (semantics)

Theorem
A ≡ B if and only if A↔ B is true in every interpretation; i.e.
A↔ B is a tautology.

Definition
A is a subformula of B if it is a formula occurring within B; i.e.
the formation tree for A is a subtree of the formation tree for B.

Example
The subformulas of

p ∧ (r ↔ p ∨ ¬q)

are

p ∧ (r ↔ p ∨ ¬q), p, r ↔ p ∨ ¬q, r , p ∨ ¬q, ¬q, q

Definition
Suppose A is a subformula of B, and A′ is any formula. Then,
we say that B′ is a formula that results from substitution of A′ for
A in B, and we write it as

B′ = B{A← A′}

if we obtain B′ from B by replacing all occurrences of A in B
with A′.

Example
Suppose

B = (p → q)↔ (¬q → ¬p), A = p → q, A′ = ¬p ∨ q

Then,
B′ = B{A← A′} = (¬p ∨ q)↔ (¬q → ¬p)

Theorem
Let A be a subformula of B, and let A′ be a formula such that
A ≡ A′. Then

B ≡ B{A← A′}

Proof.
By induction on the depth of the highest occurrence of the
formation tree of A as a subtree of B.

Logically Equivalent Formulas

A ≡ ¬¬A
A ∨ B ≡ B ∨ A A ∧ B ≡ B ∧ A
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C) (A ∧ B) ∧ C ≡ A ∧ (B ∧ C)
A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C)
A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)
¬(A ∧ B) ≡ ¬A ∨ ¬B ¬(A ∨ B) ≡ ¬A ∧ ¬B
A ∧ true ≡ A A→ false ≡ ¬A

Example
Simplify

p ∨ (¬p ∧ q)

Solution:

p ∨ (¬p ∧ q) ≡ (p ∨ ¬p) ∧ (p ∨ q)

≡ T ∧ (p ∨ q)

≡ p ∨ q

Adequate Sets of Connectives

Definition
A set of connectives is adequate if it generates all possible
Boolean functions.

Example
The usual set of connectives

{¬,∧,∨,→,↔}

is adequate for propositional logic, since every Boolean function
can be generated from these five operators. [A nontrivial fact!]

Example

1. The set {¬,∧,∨} is adequate.

A→ B ≡ ¬A ∨ B
A↔ B ≡ (A→ B) ∧ (B → A)

≡ (¬A ∨ B) ∧ (¬B ∨ A)

2. {¬,∧} is adequate
We know that {¬,∧,∨} is adequate, so it would suffice to
show that ∨ can be expressed using ¬,∧ only:

A ∨ B ≡ ¬(¬A ∧ ¬B)

3. {¬,∨} is adequate [Exercise.]
4. {¬,→} is adequate.

A ∨ B ≡ ¬A→ B
A ∧ B ≡ ¬(A→ ¬B)

5. {¬,↔} is not adequate. [This will be proved in the lab.]

Hint: Proving the following fact would be useful in order to
show inadequacy:
If A is a formula involving at least two atoms, then the
number of truth assignments that make A true is even and
the same is true of the number of truth assignments that
make A false.

6. {↑} is adequate.

It is enough to show that {↑} generates ¬ and ∧, since we
know that these form an adequate set of connectives:

¬A ≡ A ↑ A
A ∧ B ≡ ¬(A ↑ B)

≡ (A ↑ B) ↑ (A ↑ B)

2.5 Satisfiability, Validity, and
Consequence

Definition
We say that a propositional formula A is satisfiable if and only if
v(A) = T in some interpretation v . Such an interpretation is
called a model for A.

• A is valid (or, a tautology) if v(A) = T, for all interpretations
v

|= A

• A is unsatisfiable (or, contradictory) if it is false in every
interpretation.

• A is not valid (or, falsifiable), if we can find some
interpretation v , such that v(A) = F

6|= A

Examples

1 (p → q)→ (¬q → ¬p)

Valid (tautology).

2 q → (q → p)
Not valid (take v(p) = F, v(q) = T), but it is satisfiable
(take e.g. v(p) = v(q) = T).

3 (p ∧ ¬p) ∨ (q ∧ ¬q)

False (contradiction).

Theorem

(a) A is valid if and only if ¬A is unsatisfiable.
(b) A is satisfiable if and only if ¬A is falsifiable.

Definition
Suppose V is a set of formulas. An algorithm is a decision
procedure for V if, given an arbitrary formula A, the algorithm
terminates and returns as the answer either
(a) ’yes, A ∈ V ’; or
(b) ’no, A 6∈ V ’

Main Problem: develop an algorithm which decides whether a
propositional formula A is valid or not (So, the set V in this
particular problem is the set of all valid propositional formulas.)

• Truth-Table Method: provides a decision algorithm but it
is too time-consuming; in general, it requires exponential
time for the majority of propositional formulas.

• A different approach: instead of A, consider ¬A and try to
decide whether ¬A is satisfiable or not.

Definition
Let U = {A1, A2, . . . , An} be a set of formulas.
We say that U is satisfiable if we can find an interpretation v
such that

v(A1) = v(A2) = . . . = v(An) = T

Such an interpretation is called a model for U. U is
unsatisfiable if no such interpretation exists.

Facts

1 If U is satisfiable, then so is U −{Ai} for any i = 1, 2, . . . , n.
2 If U is satisfiable and B is valid, then U ∪ {B} is also

satisfiable.
3 If U is unsatisfiable and B is any formula, U ∪ {B} is also

unsatisfiable.
4 If U is unsatisfiable and some Ai is valid, then U − {Ai} is

also unsatisfiable.

Definition
Let U be a set of formulas and A a formula. We say that A is a
(logical) consequence of U, if any interpretation v which is a
model of U is also a model for A.

U |= A

Example

{p ∧ r ,¬q ∨ (p ∧ ¬p)} |= (p ∧ ¬q)→ r

If some interpretation v is a model for the set
{p ∧ r ,¬q ∨ (p ∧ ¬p)}, it must satisfy

v(p) = v(r) = T, v(q) = F

but in this interpretation, we also have

v((p ∧ ¬q)→ r) = T

Theorem

1 U |= A if and only if

|= (A1 ∧ A2 ∧ . . . ∧ An)→ A

2 If U |= A, then U ∪ {B} |= A, for any formula B.
3 If U |= A and B is valid, then

U − {B} |= A

Theories

Definition
A set f formulas T is a theory if it closed under logical
consequence. This means that, for every formula A, if

T |= A,

then A ∈ T .

• Let U be a set of formulas. Then, the set of all
consequences of U

T (U) = {A | U |= A}

is called the theory of U.
The formulas in U are called the axioms for the theory
T (U).

2.6 Semantic Tableaux

• a more efficient method for deciding satisfiability of a
propositional formula than using truth-tables.

Definition
A literal is an atom or its negation.
• atom: positive literal
• negation of an atom: negative literal

• {p,¬p} - complementary pair of literals
• {A,¬A} - complementary pair of formulas

Example
Consider the formula

A = p ∧ (¬q ∨ ¬p).

When is v(A) = T?

1 First, we must have

v(p) = T, v(¬q ∨ ¬p) = T

2 This splits into two cases; either
(a) v(p) = T, v(¬q) = T; or
(b) v(p) = T, v(¬p) = T.

and the second case is clearly impossible.

So, the truth assignment

v(p) = T, v(q) = F

makes A true, showing that A is satisfiable.

p ∧ (¬q ∨ ¬p)

p,¬q ∨ ¬p

qqqqqqq
MMMMMMM

p,¬q
�

p,¬p
×

General Idea: Given a formula A, first transform it into an
equivalent formula, which is a disjunction of conjunctions of
literals.
After this, we can analyze this new form of A to see if we can
construct a truth assignment v , such that v(A) = T. If there is
one, A is satisfiable; if there is no such v , A is not satisfiable.

Example
Determine if

B = (p ∨ q) ∧ (¬p ∧ ¬q)

is satisfiable.

(p ∨ q) ∧ (¬p ∧ ¬q)

p ∨ q,¬p ∧ ¬q

qqqqqqq
MMMMMMM

p,¬p ∧ ¬q q,¬p ∧ ¬q

p,¬p,¬q
×

q,¬p,¬q
×

• This is another example of a semantic tableau.

• In order to use this method, we had to rewrite the formula
using ¬, ∨, and ∧ only.

• The method can be made more general if we can also
eliminate the connectives→ and↔ within a tableau.

α α1 α2
¬¬A A
A1 ∧ A2 A1 A2
¬(A1 ∨ A2) ¬A1 ¬A2
¬(A1 → A2) A1 ¬A2
A1 ↔ A2 A1 → A2 A2 → A1

β β1 β2
¬(B1 ∧ B2) ¬B1 ¬B2
B1 ∨ B2 B1 B2
B1 → B2 ¬B1 B2
¬(B1 ↔ B2) ¬(B1 → B2) ¬(B2 → B1)

Algorithm (Construction of a Semantic
Tableau)

• INPUT: formula A
• OUTPUT: a tableau T for A, all of whose leaves are

marked as open or closed.

• Initially, T is a single node (root) labeled {A}.
• We build the tableau inductively, by choosing an unmarked

leaf l which is labeled by a set of formulas U(l), and apply
one of the following rules:

1 If U(l) is just a set of literals, check if it contains a pair of
complementary literals. If it does, mark the leaf as closed
(×); if not, mark it as open (�)

2 If U(l) is not just a set of literals, choose one formula in
U(l) which is not a literal.
(a) if one of the α-rules applies, replace U(l) with

(U(l)− {α}) ∪ {α1, α2}.
(b) if one of the β-rules applies, replace U(l) with two

descendent nodes labeled (U(l)− {β}) ∪ {β1} and
(U(l)− {β}) ∪ {β2}.

Definition
A tableau is said to be completed if its construction terminates;
i.e. eventually, all branches end with leaves containing literals
only. It is closed if all its leaves are closed; otherwise, we say
that the tableau is open.

Theorem
The construction of a semantic tableau for a propositional
formula always terminates.

• this construction can be extended to non-atomically closed
tableaux: all leaves eventually contain a pair of
complementary formulas A,¬A.

2.7 Soundness and Completeness

Main Theorem: A completed semantic tableau for a formula A
is closed if and only if A is unsatisfiable.

• Soundness: If a tableau is closed, then A is unsatisfiable.
• Completeness: If A is unsatisfiable, then any tableau for A

is closed.

Corollary
A is a satisfiable formula if and only if any tableau for A is open.

Corollary
A is a valid formula (tautology) if and only if a tableau for ¬A is
closed.

Corollary
The method of semantic tableaux is a decision procedure for
the validity of formulas in propositional logic.
[Stop at Example 2.54 in the textbook.]

	2.1 Boolean Operators
	2.2 Propositional Formulas
	2.3 Interpretations
	2.4 Equivalence and Substitution
	2.5 Satisfiability, Validity, and Consequence
	2.6 Semantic Tableaux
	2.7 Soundness and Completeness

