RYERSON UNIVERSITY MTH 714 ASSIGNMENT #1 - SOLUTIONS

1. Any valid formula A would meet the requirements of the problem, e.g.

$$A = p \lor \neg p.$$

Namely, for any truth assignment v, if v(A) = T,

$$v(((A \land q) \to \neg p) \to ((p \to \neg q) \to A)) = T$$

2. Notice the following:

$$\neg p \equiv p \leftrightarrow false$$

Namely, when v(p) = T, $v(p \leftrightarrow false) = F$ and when v(p) = F, we have $v(p \leftrightarrow false) = T$.

Now, $\{\neg, \lor\}$ form an adequate set of connectives, and since \neg can be expressed in terms of \leftrightarrow and *false*, the set of connectives $\{\lor, \leftrightarrow, false\}$ is also adequate.

3. Prove that

$$\vdash ((\neg B \to \neg A) \to A) \to A$$

(a) We construct a semantic tableau for

(1) $\neg [((\neg B \rightarrow \neg A) \rightarrow A) \rightarrow A]$

The descendent node contains the formulas

$$(2) \quad (\neg B \to \neg A) \to A, \neg A$$

Since an implication creates two branching possibilities, we get two new descendant nodes:

$$(3) \neg (\neg B \rightarrow \neg A), \neg A \text{ and } (4)A, \neg A$$

Now, we can mark the node (4) as closed. The node (3) produces a single descendant

 $(5)\neg B, \neg \neg A, \neg A$

which in turn creates the descendant node

$$(6)\neg B, A, \neg A$$

which is also closed.

Since all branches of the tableau lead to closed leaves, the negation of the original formula is unsatisfiable and, therefore,

$$((\neg B \to \neg A) \to A) \to A$$

is valid.

- (b) In the Gentzen axiom system \mathcal{G} , the proof of this formula , using the tableau constructed in (a), has the following form:
 - $\begin{array}{ll} 1. & B, \neg A, A & \text{axiom} \\ 2. & \neg B \rightarrow \neg A, A & \alpha \text{-rule 1} \\ 3. & \neg A, A & \text{axiom} \\ 4. & \neg((\neg B \rightarrow \neg A) \rightarrow A), A & \beta \text{-rule 2,3} \\ 5. & ((\neg B \rightarrow \neg A) \rightarrow A) \rightarrow A & \alpha \text{-rule 4} \end{array}$

4. (a)

1.	$\{\neg B \to \neg A, \neg B \to A\} \vdash \neg B \to \neg A$	Assumption
2.	$\{\neg B \to \neg A, \neg B \to A\} \vdash \neg B \to A$	Assumption
3.	$\{\neg B \to \neg A, \neg B \to A\} \vdash A \to B$	Contrap. Rule 1
4.	$\{\neg B \to \neg A, \neg B \to A\} \vdash \neg B \to B$	Transitivity 2,3
5.	$\{\neg B \to \neg A, \neg B \to A\} \vdash (\neg B \to B) \to B$	Theorem 3.28
6.	$\{\neg B \to \neg A, \neg B \to A\} \vdash B$	MP $4,5$
7.	$\{\neg B \to \neg A\} \vdash (\neg B \to A) \to B$	Deduction Rule 6
8.	$\vdash (\neg B \to \neg A) \to ((\neg B \to A) \to B)$	Deduction Rule 7

(b) The proof of Axiom 3 from the formula

$$(\neg B \to \neg A) \to ((\neg B \to A) \to B)$$

and Axioms 1 and 2 can be constructed in the following way:

1.	$\{(\neg B \to \neg A) \to ((\neg B \to A) \to B), \neg B \to \neg A, A\} \vdash \neg B \to \neg A$	Assumptio
2.	$\{(\neg B \to \neg A) \to ((\neg B \to A) \to B), \neg B \to \neg A, A\} \vdash (\neg B \to \neg A) \to ((\neg B \to A) \to B)$	Assumptio
3.	$\{(\neg B \to \neg A) \to ((\neg B \to A) \to B), \neg B \to \neg A, A\} \vdash (\neg B \to A) \to B$	MP 1,2
4.	$\{(\neg B \to \neg A) \to ((\neg B \to A) \to B), \neg B \to \neg A, A\} \vdash A \to (\neg B \to A)$	Axiom 1
5.	$\{(\neg B \to \neg A) \to ((\neg B \to A) \to B), \neg B \to \neg A, A\} \vdash A$	Assumptio
6.	$\{(\neg B \to \neg A) \to ((\neg B \to A) \to B), \neg B \to \neg A, A\} \vdash \neg B \to A$	MP 5,4
7.	$\{(\neg B \to \neg A) \to ((\neg B \to A) \to B), \neg B \to \neg A, A\} \vdash B$	MP 6,3
8.	$\{(\neg B \to \neg A) \to ((\neg B \to A) \to B), \neg B \to \neg A\} \vdash A \to B$	Deduction
9.	$\{(\neg B \to \neg A) \to ((\neg B \to A) \to B)\} \vdash (\neg B \to \neg A) \to (A \to B)$	Deduction

(c) Since Axiom 3 can be proved from the formula

$$(\neg B \to \neg A) \to ((\neg B \to A) \to B)$$

and Axioms 1 and 2, if we replace Axiom 3 with this new formula, all valid formulas can still be derived. Namely, in the proof of any valid formula in \mathcal{H} , whenever we invoke Axiom 3, we can insert the proof above instead. Therefore, the proof system given by Axioms 1 and 2 along with the formula

$$(\neg B \to \neg A) \to ((\neg B \to A) \to B)$$

is still complete for propositional logic.

5. (a) Number the formulas in the set of clauses

$$F = \{pq\bar{r}, \bar{p}, pqr, p\bar{q}\}$$

as (1)-(4). Then, one refutation is e.g.

5.	pq	Res $1,3$
6.	p	Res $5,4$
7.		Res $6,2$

(b) The negation of the formula

$$A = (\neg p \land \neg q \land r) \lor (\neg p \land \neg r) \lor (q \land r) \lor p$$

is equivalent to:

$$\neg A \equiv (p \lor q \lor \neg r) \land (p \lor r) \land (\neg q \lor \neg r) \land \neg p$$

The corresponding clausal form is:

 $\{(1)pq\overline{r},(2)pr,(3)\overline{q}\overline{r},(4)\overline{p}\}$

One refutation of this set of clauses is:

5.	$q\overline{r}$	Res $1,4$
6.	\overline{r}	Res $5,3$
7.	p	Res $2,6$
8.		Res 4,7