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[6 marks] (2) (a) Show that the set of connectives {→, false} is adequate, where false is a constant function whose value
is always F (false). [Hint: It is sufficient to show that ¬ can be expressed in terms of → and false.]

Solution: Notice, first, that
p → false ≡ ¬p

and this suffices to show that the set {→, false} is adequate, since {→,¬} is an adequate set of connectives.

(b) Explain why the set of connectives {∧,→} is not adequate.

Solution: If A(p) is a formula which has p as its only atom and whose connectives are from the set {∧,→}, then it is easy
to see that, when v(p) = T , we must have v(A) = T .

For that reason, it is impossible to have
A ≡ ¬p

which shows that the set {∧,→} is not adequate.
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[6 marks] (3) Using the method of semantic tableaux, show that the formula

(p → q) → ((¬p → q) → q)

is valid.

Solution:

¬[(p → q) → ((¬p → q) → q)]
|

p → q, ¬[(¬p → q) → q]
|

p → q, ¬p → q, ¬q
/ \

¬p, ¬p → q, ¬q ¬q, ¬p → q, q
/ |

¬p, p, ¬q ¬p, q, ¬q

Since all the leaves of the tableau are closed, the formula

¬[(p → q) → ((¬p → q) → q)]

is unsatisfiable. Therefore,
(p → q) → ((¬p → q) → q)

is valid.
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[6 marks] (4) Consider the proof of the valid formula

A → (B → (A ∧B))

in the Hilbert’s proof system H

Step Formula Justification
1. {A,B} ` (A → ¬B) → (A → ¬B) Theorem from class (` A → A)
2. {A,B} ` A → ((A → ¬B) → ¬B) Exchange of Hypotheses Rule 1
3. {A,B} ` A Assumption
4. {A,B} ` (A → ¬B) → ¬B MP 3,2
5. {A,B} ` ¬¬B → ¬(A → ¬B) Contrapositive Rule 4
6. {A,B} ` B Assumption
7. {A,B} ` ¬¬B Double Negation Rule 6
8. {A,B} ` ¬(A → ¬B) MP 7,5
9. {A} ` B → ¬(A → ¬B) Deduction Rule 8
10. ` A → (B → ¬(A → ¬B)) Deduction Rule 9
11. ` A → (B → (A ∧B)) Definition of ∧

Provide justification for each step in this proof. You may use any rule proved or stated in lectures.
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[6 marks] (5) Convert the following formula into a CNF:

((A → ¬B) → (C → ¬A)) → (¬B → ¬C)

Solution:

((A → ¬B) → (C → ¬A)) → (¬B → ¬C)
≡ ((¬A ∨ ¬B) → (¬C ∨ ¬A)) → (B ∨ ¬C)
≡ (¬(¬A ∨ ¬B) ∨ (¬C ∨ ¬A)) → (B ∨ ¬C)
≡ ((A ∧B) ∨ (¬C ∨ ¬A)) → (B ∨ ¬C)
≡ ¬((A ∧B) ∨ (¬C ∨ ¬A)) ∨ (B ∨ ¬C)
≡ (¬(A ∧B) ∧ ¬(¬C ∨ ¬A)) ∨ (B ∨ ¬C)
≡ ((¬A ∨ ¬B) ∧ (C ∧A)) ∨ (B ∨ ¬C)

≡ (¬A ∨ ¬B ∨B ∨ ¬C) ∧ (C ∨B ∨ ¬C) ∧ (A ∨B ∨ ¬C)

[The simplest possible expression for this CNF is A ∨B ∨ ¬C.]
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[6 marks] (6) Using resolution, determine whether the following set of clauses is satisfiable or not:

{pq, pr, qs, rs, s}

Solution:
S0 = {pq, pr, qs, rs, s}

The literals rs and s are clashing and Res(rs, s) = r. Then,

S1 = {pq, pr, qs, rs, s, r}

The literals r and pr are clashing, and Res(pr, r) = p and

S2 = {pq, pr, qs, rs, s, r, p}

Now, the literals pr and p are clashing and Res(pr, p) = r so we get

S3 = {pq, pr, qs, rs, s, r, p, r}

Finally, the literals r and r are clashing and Res(r, r) = �, which proves the unsatisfiability of the original set of clauses.
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