Matrices and Graphs

P. Danziger

1 Matrices and Graphs

Definition 1 Given a digraph \(G \) we can represent \(G = (\{v_1, v_2, \ldots, v_n\}, E) \) by a matrix \(A = (a_{ij}) \) where \(a_{ij} = \) the number of edges joining \(v_i \) to \(v_j \). \(A \) is called the incidence matrix of \(G \). If the edges of \(G \)

Clearly if a digraph, \(G = (V, E) \), satisfies \((v_i, v_j) \in E \Rightarrow (v_j, v_i) \in E \) (\(A = A^T \)) then \(G \) is equivalent to an undirected graph.

So \(G \) is a graph (as opposed to a digraph) if and only if its incidence matrix is symmetric. (i.e. the matrix is equal to its transpose, \(A = A^T \)).

Alternatively, we can create a digraph from an undirected graph by replacing each edge \(\{u, v\} \) of the undirected graph by the pair of directed edges \((u, v)\) and \((v, u)\).

Definition 2 A weighted graph is a graph in which each edge has an associated weight or cost.

In a weighted graph we usually denote that weight of an edge \(e \) by \(w(e) \), or if \(e = uv \) we can write \(w(u, v) \). If no explicit weight is given we assume that each edge has weight 1 and each non edge weight 0.

Definition 3 Given a weighted graph \(G \), the adjacency matrix is the matrix \(A = (a_{ij}) \), where \(a_{ij} = w(v_i, v_j) \).

For most purposes the adjacency matrix and incidence matrix are equivalent. Note that if \(G \) is not connected then the connected components of \(G \) form blocks in the adjacency matrix, all other entries being zero.

Theorem 4 Let \(G \) be a graph with connected components \(G_1, \ldots, G_k \). Let \(n_i \) be the number of vertices in \(G_i \), and let \(A_i \) be the adjacency matrix of \(G_i \), then the adjacency matrix of \(G \) has the form

\[
A_1 \quad 0 \quad \cdots \quad 0 \\
0 \quad A_2 \quad 0 \\
\quad \quad \quad \vdots \\
0 \quad \cdots \quad A_k
\]

Theorem 5 Given two graphs, \(G \) and \(H \), with adjacency matrices \(A \) and \(B \) respectively, \(G \cong H \) if and only if there is a permutation of the row and columns of \(A \) which gives \(B \).

Isomorphism is just a relabeling of the rows and columns of the adjacency matrix.
2 Storing Graphs

We wish to be able to store graphs in computer memory. Obviously the incidence matrix or adjacency matrix provide a useful way of holding a graph in an array. One disadvantage to using an array is that it is wasteful, each edge information is stored twice, once as \[a[i][j] \] and once as \[a[j][i] \]. Further just to specify the adjacency matrix requires \(O(n^2) \) steps. There are two other (related) standard methods for storing graph in computer memory, adjacency lists and adjacency tables. We use a list rather than an array, for each vertex we list those vertices adjacent to it. Note that in practice this can be done either as a matrix or a list. If it is done as a matrix then the matrix has size \(n \times \Delta \) and is called an adjacency table.

In an adjacency list the vertices adjacent to a vertex \(i \) are stored as a list, usually the end of the list is indicated by a non valid value. Thus for each \(i \) \(L(i, 0) \) gives the adjacent vertex number, \(L(i, 1) \) gives a pointer to the next list entry, or 0 for none.

Example 6

![Graph diagram]

<table>
<thead>
<tr>
<th>Adjacency Matrix</th>
<th>Adjacency Table</th>
<th>Adjacency List</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\] | \[
\begin{pmatrix}
1 & 3 \\
2 & 3 \\
3 & 1 & 2 & 4 \\
4 & 3
\end{pmatrix}
\] | \[
\begin{array}{ccc}
i & L(i, 0) & L(i, 1) \\
1 & 3 & 0 \\
2 & 3 & 0 \\
3 & 1 & 5 \\
4 & 3 & 0 \\
5 & 2 & 6 \\
6 & 4 & 0
\end{array}
\]

The maximum number of edges in a simple graph is \(O(n^2) \), a graph with relatively few edges, say \(o(n^2) \), is called a sparse graph.

2.1 Matrices and Walks

Definition 7 Given a walk \(v_1e_1 \ldots e_{k-1}v_k \) in a graph \(G \), the length of the walk is the number of edges it contains \((k - 1)\).

Problem given a positive integer \(k \), a (directed) graph \(G \) and two vertices \(v_i \) and \(v_j \) in \(G \), find the number of walks from \(v_i \) to \(v_j \) of length \(k \).

Theorem 8 If \(G \) is a graph with adjacency matrix \(A \), and vertices \(v_1, \ldots, v_n \), then for each positive integer \(k \) the \(ij \)th entry of \(A^k \) is the number of walks of length \(k \) from \(v_i \) to \(v_j \).
Theorem 9 \(W_n(i,j)\) is the length of the shortest path from \(v_i\) to \(v_j\).

Proof: For a given value of \(k\) let \(S_k = \{v_1, \ldots, v_k\}\). We show that \(W_k(i,j)\) is the length of the shortest path from \(v_i\) to \(v_j\) using only the vertices in the subset \(S_k\) by induction on \(k\).

Base Case When \(k = 0\), \(W_0(i,j)\) is the weight of the edge \(v_iv_j\), if it exists.

Inductive Step Now assume that \(W_k(i,j)\) is the length of the shortest path from \(v_i\) to \(v_j\) using only the vertices in \(S_k\).

Consider \(W_{k+1}(i,j)\), if there is a shorter \(v_iv_j\)-path using the vertex \(v_{k+1}\) as well, it will have length equal to the shortest \(v_iv_{k+1}\)-path using only vertices from \(S_k\) plus the length of the shortest \(v_{k+1}v_j\)-path using only vertices from \(S_k\), that is \(W_k(i,k+1) + W_k(k+1,j)\). On the other hand, if there is no shorter path using \(v_{k+1}\), the value \(W_k(i,j)\) will remain unchanged.

Now, \(S_n = V\), so the result follows. \(\square\)

This suggests an algorithm for building the shortest path list.

Initialization:

Initialise \(W\)

Iteration:

for \(k = 1\) to \(n\)

for \(i = 1\) to \(n\)

for \(j = 1\) to \(n\)

\[W_k(i,j) = \min(W_{k-1}(i,j), W_{k-1}(i,k-1) + W_{k-1}(k-1,j))\]

This algorithm has running time \(O(n^3)\).