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1 Matrices and Graphs

Definition 1 Given a digraph G we can represent G = ({vy,ve,..., v}, E) by a matriz A = (a;;)
where a;; = the number of edges joining v; to vj. A is called the inidence matriz of G. If the edges

of G.

Clearly if a digraph, G = (V, E), satisfies (v;,v;) € E = (v;,v;) € E (A = A') then G is equivalent
to an undirected graph.

So G is a graph (as opposed to a digraph) if and only if its incidence matrix is symmetric. (i.e. the
matrix is equal to its transpose, A = AT).

Alternatively, we can create a digraph from an undirected graph by replacing each edge {u,v} of
the undirected graph by the pair of directed edges (u,v) and (v, u).

Definition 2 A weighted graph is a graph in which each edge has an associated weight or cost.

In a weighted graph we usually denote that weight of an edge e by w(e), or if e = uv we can write
w(u,v). If no explicit weight is given we assume that each edge has weight 1 and each non edge
weight 0.

Definition 3 Given a weighted graph G, the adjacency matriz is the matric A = (a;j), where
a;; = w(v;, v;).

For most purposes the adjacency matrix and incidence matrix are equivalent.
Note that if GG is not connected then the connected components of G form blocks in the adjacency
matrix, all other entries being zero.

Theorem 4 Let G be a graph with connected components G1,...,Gy. Let n; be the number of
vertices in G;, and let A; be the adjacency matriz of G;, then the adjacency matriz of G has the
form

A O 0
0 A, 0
0 Ay

Theorem 5 Given Two graphs, G and H, with adjacency matrices A and B respectively, G = H
if and only if there is a permutation of the row and columns of A which gives B.

[somorphism is just a relabeling of the rows and columns of the adjacency matrix.
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2 Storing Graphs

We wish to be able to store graphs in computer memory. Obviously the incidence matrix or
adjacency matrix provide a useful way of holding a graph in an array. One disadvantage to using an
array is that it is wasteful, each edge information is stored twice, once as ali][j] and once as a[j][i].
Further just to specify the adjacency matrix requires O(n?) steps. There are two other (related)
standard methods for storing graph in computer memory, adjacency lists and adjacency tables.
We use a list rather than an array, for each vertex we list those vertices adjacent to it. Note that
in practice this can be done either as a matrix or a list. If it is done as a matrix then the matrix
has size n x A and is called an adjacency table.

In an adjacency list the vertices adjacent to a cvertex i are stored as a list, usually the end of the
list is indicated by a non valid value. Thus for each i L(7,0) gives the adjacent vertex number,
L(i,1), gives a pointer to the next list entry, or 0 for none.

Example 6
1 2
4 3
113
213 i | L(i,0) | L(i,1)
00 1 0 311 2 4 1 3 0
413 2 3 0
0010
1 101 3 L g
00 10 3 -1 -1 4 3 0
3 -1 —1 5 2 6
1 2 4 6 4 0
3 -1 —1
Adjacency Matrix Adjacency Table Adjacency List

The maximum number of edges in a simple graph is O(n?), a graph with relatively few edges, say
o(n?), is called a sparse graph.

2.1 Matrices and Walks

Definition 7 Given a walk viey...e_1v, in a graph G, the length of the walk is the number of
edges it contains (k —1).

Problem given a positive integer k, a (directed) graph G and two vertices v; and v; in G, find the
number of walks from v; to v; of length k.

Theorem 8 If G is a graph with adjacency matrix A, and vertices vy, ..., v,, then for each positive
integer k the ij™ entry of A* is the number of walks of length k from v; to v;.
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Proof Let GG be a graph with adjacency matrix A, and vertices vy, ..., v,.

We proceed by induction on k to obtain the result.

Base Case Let k = 1. Al = A.

a;; = the number of edges from v; to v; = the number of walks of length 1 from v; to v;.
Inductive Step Assume true for k.

Let b;; be the ij™ entry of A¥, and let a;; be the ij™ entry of A.

By the inductive hypothesis b;; is the number of walks of length k from v; to v;.

Consider the 7™ entry of A" = AAF = a;1by; + aibaj + ... + @inbay = > 0| Qimbimj-

Consider a;by;

= number of walks of length k& from v; to v; times the number of walks of length 1 from v; to vy
= the number of walks of length k£ + 1 from v; to v;, where v; is the second vertex.

This argument holds for each m, i.e. a;b;; = number of walks from v; to v; in which v, is the
second vertex.

So the sum is the number of all possible walks from v; to v;. U

There is a related method for finding the shortest path between any specified pair of points. Suppose

that the points have been ordered V' = {vy, v, ...,v,}, for each pair i, j from 1 to n let
The weight of the edge v;v; ifv;v; € E
Wo(i,j) = 0 ifi=y
00 ifviv, € B

and for each k from 0 to n — 1 define
Theorem 9 W, (i, ) is the length of the shortest path from v; to v;.

Proof: For a given value of k let Sy = {v1,...vx}. We show that Wy(i,7) is the length of the
shortest path from v; to v; using only the vertices in the subset S by induction on k.

Base Case When k = 0, Wy (4, 7) is the weight of the edge v; v;, if it exists.

Inductive Step Now assume that Wj(i, j) is the length of the shortest path from v; to v; using only
the vertices in S},.

Consider Wy41(i, ), if there is a shorter v;v;—path using the vertex vy, as well, it will have
length equal to the shortest v;v 1 —path using only vertices from Sy plus the length of the shortest
Up+1v;—path using only vertices from Sk, that is Wy (i, k + 1) + W (k + 1, 5). On the other hand, if
there is no shorter path using v 1, the value Wy (4, j) will remain unchanged.

Now, S,, =V, so the result follows. O

This suggests an algorithm for building the shortest path list.

Initialization:
Initialise W
Iteration:
fork=1ton
fori=1ton
forj=1ton
Wk<l,j) = min(Wk,l(i,j), kal(i, k— 1) + kal(k - 1,j))

This algorithm has running time O(n?).



