
Matrices and Graphs
P. Danziger

1 Matrices and Graphs

Definition 1 Given a digraph G we can represent G = ({v1, v2, . . . , vn}, E) by a matrix A = (aij)
where aij = the number of edges joining vi to vj. A is called the inidence matrix of G. If the edges
of G.

Clearly if a digraph, G = (V, E), satisfies (vi, vj) ∈ E ⇒ (vj, vi) ∈ E (A = At) then G is equivalent
to an undirected graph.

So G is a graph (as opposed to a digraph) if and only if its incidence matrix is symmetric. (i.e. the
matrix is equal to its transpose, A = AT ).

Alternatively, we can create a digraph from an undirected graph by replacing each edge {u, v} of
the undirected graph by the pair of directed edges (u, v) and (v, u).

Definition 2 A weighted graph is a graph in which each edge has an associated weight or cost.

In a weighted graph we usually denote that weight of an edge e by w(e), or if e = u v we can write
w(u, v). If no explicit weight is given we assume that each edge has weight 1 and each non edge
weight 0.

Definition 3 Given a weighted graph G, the adjacency matrix is the matrix A = (aij), where
aij = w(vi, vj).

For most purposes the adjacency matrix and incidence matrix are equivalent.
Note that if G is not connected then the connected components of G form blocks in the adjacency
matrix, all other entries being zero.

Theorem 4 Let G be a graph with connected components G1, . . . , Gk. Let ni be the number of
vertices in Gi, and let Ai be the adjacency matrix of Gi, then the adjacency matrix of G has the
form

A1 0 . . . 0
0 A2 0

. . .
...

0 Ak

Theorem 5 Given Two graphs, G and H, with adjacency matrices A and B respectively, G ∼= H
if and only if there is a permutation of the row and columns of A which gives B.

Isomorphism is just a relabeling of the rows and columns of the adjacency matrix.

1



Matrices and Graphs P. Danziger

2 Storing Graphs

We wish to be able to store graphs in computer memory. Obviously the incidence matrix or
adjacency matrix provide a useful way of holding a graph in an array. One disadvantage to using an
array is that it is wasteful, each edge information is stored twice, once as a[i][j] and once as a[j][i].
Further just to specify the adjacency matrix requires O(n2) steps. There are two other (related)
standard methods for storing graph in computer memory, adjacency lists and adjacency tables.
We use a list rather than an array, for each vertex we list those vertices adjacent to it. Note that
in practice this can be done either as a matrix or a list. If it is done as a matrix then the matrix
has size n×∆ and is called an adjacency table.
In an adjacency list the vertices adjacent to a cvertex i are stored as a list, usually the end of the
list is indicated by a non valid value. Thus for each i L(i, 0) gives the adjacent vertex number,
L(i, 1), gives a pointer to the next list entry, or 0 for none.

Example 6

t4

t1

t 3

t 2
@

@
@

@


0 0 1 0
0 0 1 0
1 1 0 1
0 0 1 0



1 3
2 3
3 1 2 4
4 3
3 −1 −1
3 −1 −1
1 2 4
3 −1 −1



i L(i, 0) L(i, 1)
1 3 0
2 3 0
3 1 5
4 3 0
5 2 6
6 4 0

Adjacency Matrix Adjacency Table Adjacency List

The maximum number of edges in a simple graph is O(n2), a graph with relatively few edges, say
o(n2), is called a sparse graph.

2.1 Matrices and Walks

Definition 7 Given a walk v1e1 . . . ek−1vk in a graph G, the length of the walk is the number of
edges it contains (k − 1).

Problem given a positive integer k, a (directed) graph G and two vertices vi and vj in G, find the
number of walks from vi to vj of length k.

Theorem 8 If G is a graph with adjacency matrix A, and vertices v1, . . . , vn, then for each positive
integer k the ijth entry of Ak is the number of walks of length k from vi to vj.

2



Matrices and Graphs P. Danziger

Proof Let G be a graph with adjacency matrix A, and vertices v1, . . . , vn.
We proceed by induction on k to obtain the result.
Base Case Let k = 1. A1 = A.
aij = the number of edges from vi to vj = the number of walks of length 1 from vi to vj.
Inductive Step Assume true for k.

Let bij be the ijth entry of Ak, and let aij be the ijth entry of A.
By the inductive hypothesis bij is the number of walks of length k from vi to vj.
Consider the ijth entry of Ak+1 = AAk = ai1b1j + ai2b2j + . . . + ainb2n =

∑n
m=1 aimbmj.

Consider ai1b1j

= number of walks of length k from v1 to vj times the number of walks of length 1 from vi to v1

= the number of walks of length k + 1 from vi to vj, where v1 is the second vertex.
This argument holds for each m, i.e. aitbtj = number of walks from vi to vj in which vm is the
second vertex.
So the sum is the number of all possible walks from vi to vj. �

There is a related method for finding the shortest path between any specified pair of points. Suppose
that the points have been ordered V = {v1, v2, . . . , vn}, for each pair i, j from 1 to n let

W0(i, j) =


The weight of the edge vi vj if vi vj ∈ E
0 if i = j
∞ if vi vj 6∈ E

and for each k from 0 to n− 1 define

Wk+1(i, j) = min(Wk(i, j), Wk(i, k) + Wk(k, j))

Theorem 9 Wn(i, j) is the length of the shortest path from vi to vj.

Proof: For a given value of k let Sk = {v1, . . . vk}. We show that Wk(i, j) is the length of the
shortest path from vi to vj using only the vertices in the subset Sk by induction on k.
Base Case When k = 0, W0(i, j) is the weight of the edge vi vj, if it exists.
Inductive Step Now assume that Wk(i, j) is the length of the shortest path from vi to vj using only
the vertices in Sk.
Consider Wk+1(i, j), if there is a shorter vivj−path using the vertex vk+1 as well, it will have
length equal to the shortest vivk+1−path using only vertices from Sk plus the length of the shortest
vk+1vj−path using only vertices from Sk, that is Wk(i, k + 1) + Wk(k + 1, j). On the other hand, if
there is no shorter path using vk+1, the value Wk(i, j) will remain unchanged.
Now, Sn = V , so the result follows. �
This suggests an algorithm for building the shortest path list.

Initialization:
Initialise W

Iteration:
for k = 1 to n

for i = 1 to n
for j = 1 to n

Wk(i, j) = min(Wk−1(i, j), Wk−1(i, k − 1) + Wk−1(k − 1, j))

This algorithm has running time O(n3).

3


