Matrices and Graphs P. Danziger

1 Matrices and Graphs

Definition 1 Given a digraph G we can represent $G = (\{v_1, v_2, \ldots, v_n\}, E)$ by a matrix $A = (a_{ij})$ where $a_{ij} =$ the number of edges joining v_i to v_j . A is called the <u>inidence matrix</u> of G. If the edges of G.

Clearly if a digraph, G = (V, E), satisfies $(v_i, v_j) \in E \Rightarrow (v_j, v_i) \in E$ $(A = A^t)$ then G is equivalent to an undirected graph.

So G is a graph (as opposed to a digraph) if and only if its incidence matrix is symmetric. (i.e. the matrix is equal to its transpose, $A = A^{T}$).

Alternatively, we can create a digraph from an undirected graph by replacing each edge $\{u, v\}$ of the undirected graph by the pair of directed edges (u, v) and (v, u).

Definition 2 A weighted graph is a graph in which each edge has an associated weight or cost.

In a weighted graph we usually denote that weight of an edge e by w(e), or if e = uv we can write w(u, v). If no explicit weight is given we assume that each edge has weight 1 and each non edge weight 0.

Definition 3 Given a weighted graph G, the <u>adjacency matrix</u> is the matrix $A = (a_{ij})$, where $a_{ij} = w(v_i, v_j)$.

For most purposes the adjacency matrix and incidence matrix are equivalent. Note that if G is not connected then the connected components of G form blocks in the adjacency matrix, all other entries being zero.

Theorem 4 Let G be a graph with connected components G_1, \ldots, G_k . Let n_i be the number of vertices in G_i , and let A_i be the adjacency matrix of G_i , then the adjacency matrix of G has the form

Theorem 5 Given Two graphs, G and H, with adjacency matrices A and B respectively, $G \cong H$ if and only if there is a permutation of the row and columns of A which gives B.

Isomorphism is just a relabeling of the rows and columns of the adjacency matrix.

2 Storing Graphs

We wish to be able to store graphs in computer memory. Obviously the incidence matrix or adjacency matrix provide a useful way of holding a graph in an array. One disadvantage to using an array is that it is wasteful, each edge information is stored twice, once as a[i][j] and once as a[j][i]. Further just to specify the adjacency matrix requires $O(n^2)$ steps. There are two other (related) standard methods for storing graph in computer memory, adjacency lists and adjacency tables. We use a list rather than an array, for each vertex we list those vertices adjacent to it. Note that in practice this can be done either as a matrix or a list. If it is done as a matrix then the matrix has size $n \times \Delta$ and is called an adjacency table.

In an adjacency list the vertices adjacent to a cvertex i are stored as a list, usually the end of the list is indicated by a non valid value. Thus for each i L(i, 0) gives the adjacent vertex number, L(i, 1), gives a pointer to the next list entry, or 0 for none.

Example 6

The maximum number of edges in a simple graph is $O(n^2)$, a graph with relatively few edges, say $o(n^2)$, is called a sparse graph.

2.1 Matrices and Walks

Definition 7 Given a walk $v_1e_1 \ldots e_{k-1}v_k$ in a graph G, the <u>length</u> of the walk is the number of edges it contains (k-1).

Problem given a positive integer k, a (directed) graph G and two vertices v_i and v_j in G, find the number of walks from v_i to v_j of length k.

Theorem 8 If G is a graph with adjacency matrix A, and vertices v_1, \ldots, v_n , then for each positive integer k the ijth entry of A^k is the number of walks of length k from v_i to v_j .

Proof Let G be a graph with adjacency matrix A, and vertices v_1, \ldots, v_n .

We proceed by induction on k to obtain the result.

Base Case Let k = 1. $A^1 = A$.

 a_{ij} = the number of edges from v_i to v_j = the number of walks of length 1 from v_i to v_j .

Inductive Step Assume true for k.

Let b_{ij} be the ij^{th} entry of A^k , and let a_{ij} be the ij^{th} entry of A.

By the inductive hypothesis b_{ij} is the number of walks of length k from v_i to v_j . Consider the ij^{th} entry of $A^{k+1} = AA^k = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{2n} = \sum_{m=1}^n a_{im}b_{mj}$. Consider $a_{i1}b_{1i}$

= number of walks of length k from v_1 to v_j times the number of walks of length 1 from v_i to v_1 = the number of walks of length k + 1 from v_i to v_j , where v_1 is the second vertex.

This argument holds for each m, i.e. $a_{it}b_{tj}$ = number of walks from v_i to v_j in which v_m is the second vertex.

So the sum is the number of all possible walks from v_i to v_j .

There is a related method for finding the shortest path between any specified pair of points. Suppose that the points have been ordered $V = \{v_1, v_2, \ldots, v_n\}$, for each pair *i*, *j* from 1 to *n* let

$$W_0(i,j) = \begin{cases} \text{The weight of the edge } v_i v_j & \text{if } v_i v_j \in E \\ 0 & \text{if } i = j \\ \infty & \text{if } v_i v_j \notin E \end{cases}$$

and for each k from 0 to n-1 define

$$W_{k+1}(i,j) = \min(W_k(i,j), W_k(i,k) + W_k(k,j))$$

Theorem 9 $W_n(i,j)$ is the length of the shortest path from v_i to v_j .

Proof: For a given value of k let $S_k = \{v_1, \ldots, v_k\}$. We show that $W_k(i, j)$ is the length of the shortest path from v_i to v_j using only the vertices in the subset S_k by induction on k.

<u>Base Case</u> When k = 0, $W_0(i, j)$ is the weight of the edge $v_i v_j$, if it exists.

Inductive Step Now assume that $W_k(i, j)$ is the length of the shortest path from v_i to v_j using only the vertices in S_k .

Consider $W_{k+1}(i,j)$, if there is a shorter $v_i v_j$ -path using the vertex v_{k+1} as well, it will have length equal to the shortest $v_i v_{k+1}$ -path using only vertices from S_k plus the length of the shortest $v_{k+1}v_j$ -path using only vertices from S_k , that is $W_k(i, k+1) + W_k(k+1, j)$. On the other hand, if there is no shorter path using v_{k+1} , the value $W_k(i, j)$ will remain unchanged.

Now, $S_n = V$, so the result follows.

This suggests an algorithm for building the shortest path list.

Initialization:

Initialise WIteration:

for k = 1 to n
for i = 1 to n
for j = 1 to n
$$W_k(i, j) = \min(W_{k-1}(i, j), W_{k-1}(i, k-1) + W_{k-1}(k-1, j))$$

This algorithm has running time $O(n^3)$.