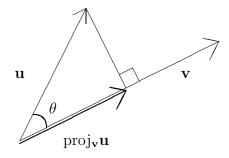
Projections

P. Danziger

1 Components and Projections



Given two vectors \mathbf{u} and \mathbf{v} , we can ask how far we will go in the direction of \mathbf{v} when we travel along \mathbf{u} . The distance we travel in the direction of \mathbf{v} , while traversing \mathbf{u} is called the *component of* u with respect to \mathbf{v} and is denoted comp_v \mathbf{u} . The vector parallel to \mathbf{v} , with magnitude comp_v \mathbf{u} , in the direction of \mathbf{v} is called the *projection of* \mathbf{u} onto \mathbf{v} and is denoted proj_v \mathbf{u} .

So,
$$comp_{\mathbf{v}}\mathbf{u} = ||proj_{\mathbf{v}}\mathbf{u}||$$

Note $\operatorname{proj}_{\mathbf{v}}\mathbf{u}$ is a vector and $\operatorname{comp}_{\mathbf{v}}\mathbf{u}$ is a scalar. From the picture $\operatorname{comp}_{\mathbf{v}}\mathbf{u} = ||\mathbf{u}|| \cos \theta$ We wish to find a formula for the projection of \mathbf{u} onto \mathbf{v} .

Consider
$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$

Thus $||\mathbf{u}|| \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{v}||}$
So $\boxed{\operatorname{comp}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{v}||}}$

The unit vector in the same direction as \mathbf{v} is given by $\frac{\mathbf{v}}{||\mathbf{v}||}$. So

$$\boxed{\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{v}||^2}\right) \mathbf{v}}$$

Example 1

1. Find the projection of $\mathbf{u} = \mathbf{i} + 2\mathbf{j}$ onto $\mathbf{v} = \mathbf{i} + \mathbf{j}$.

$$\mathbf{u} \cdot \mathbf{v} = 1 + 2 = 3, \quad ||\mathbf{v}||^2 = \left(\sqrt{2}\right)^2 = 2$$

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{v}||^2}\right) \mathbf{v} = \frac{3}{2} (\mathbf{i} + \mathbf{j}) = \frac{3}{2} \mathbf{i} + \frac{3}{2} \mathbf{j}$$

2. Find $\operatorname{proj}_{\mathbf{v}}\mathbf{u}$, where $\mathbf{u} = (1, 2, 1)$ and $\mathbf{v} = (1, 1, 2)$

$$\mathbf{u} \cdot \mathbf{v} = 1 + 2 + 2 = 5, \ ||\mathbf{v}||^2 = \left(\sqrt{1^2 + 1^2 + 2^2}\right)^2 = 6$$

So, $\text{proj}_{\mathbf{v}}\mathbf{u} = \frac{5}{6}(1, 1, 2)$

3. Find the component of $\mathbf{u} = \mathbf{i} + \mathbf{j}$ in the direction of $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$.

$$\mathbf{u} \cdot \mathbf{v} = 3 + 4 = 7, \quad ||\mathbf{v}|| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$

$$\operatorname{comp}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{v}||} = \frac{7}{5}$$

4. Find the components of $\mathbf{u} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$ in the directions \mathbf{i} , \mathbf{j} and \mathbf{k} .

$$\mathbf{u} \cdot \mathbf{i} = 1, \ \mathbf{u} \cdot \mathbf{j} = 3, \ \mathbf{u} \cdot \mathbf{k} = -2,$$

$$||\mathbf{i}|| = ||\mathbf{j}|| = ||\mathbf{k}|| = 1$$

So

$$comp_i \mathbf{u} = 1$$
, $comp_j \mathbf{u} = 3$, $comp_k \mathbf{u} = -2$.

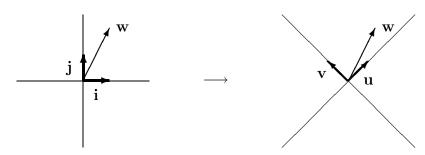
So the use of the term *component* is justified in this context.

Indeed, coordinate axes are arbitrarily chosen and are subject to change.

If \mathbf{u} is a new coordinate vector given in terms of the old set then $comp_{\mathbf{u}}\mathbf{w}$ gives the component of the vector \mathbf{w} in the new coordinate system.

Example 2

If coordinates in the plane are rotated by 45^o , the vector \mathbf{i} is mapped to $\mathbf{u} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$, and the vector \mathbf{j} is mapped to $\mathbf{v} = -\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$. Find the components of $\mathbf{w} = 2\mathbf{i} - 5\mathbf{j}$ with respect to the new coordinate vectors \mathbf{u} and \mathbf{v} . i.e. Express \mathbf{w} in terms of \mathbf{u} and \mathbf{v} .



$$\mathbf{w} \cdot \mathbf{u} = \frac{-3}{\sqrt{2}}, \ \mathbf{w} \cdot \mathbf{v} = \frac{-7}{\sqrt{2}}. \ ||\mathbf{u}|| = ||\mathbf{v}|| = 1$$

So

$$\operatorname{comp}_{\mathbf{u}}\mathbf{w} = \frac{-3}{\sqrt{2}}, \ \operatorname{comp}_{\mathbf{v}}\mathbf{w} = \frac{-7}{\sqrt{2}}.$$

and

$$\mathbf{w} = \frac{-3}{\sqrt{2}}\mathbf{u} + \frac{-7}{\sqrt{2}}\mathbf{v}$$

2 Orthogonal Projections

Given a non-zero vector \mathbf{v} , we may represent any vector \mathbf{u} as a sum of a vector, $\mathbf{u}_{||}$ parallel to \mathbf{v} and a vector \mathbf{u}_{\perp} perpendicular to \mathbf{v} .

So,
$$\mathbf{u} = \mathbf{u}_{||} + \mathbf{u}_{\perp}$$
.

Now, $\mathbf{u}_{||} = \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

and so $\mathbf{u}_{\perp} = \mathbf{u} - \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

Example 3

Express $\mathbf{u} = 2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ as a sum of vectors parallel and perpendicular to $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

$$\mathbf{u} \cdot \mathbf{v} = 2 + 8 - 2 = 8, \quad ||\mathbf{v}||^2 = \left(\sqrt{1^2 + 2^2 + 1^2}\right)^2 = 6$$

$$\mathbf{u}_{||} = \operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{v}||^2}\right) \mathbf{v} = \frac{4}{3} (\mathbf{i} + 2\mathbf{j} - \mathbf{k})$$

$$\mathbf{u}_{\perp} = \mathbf{u} - \operatorname{proj}_{\mathbf{v}} \mathbf{u}$$

$$= (2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) - \frac{4}{3} (\mathbf{i} + 2\mathbf{j} - \mathbf{k})$$

$$= (2 - \frac{4}{3}) \mathbf{i} + (4 - \frac{8}{3}) \mathbf{j} + (2 + \frac{4}{3}) \mathbf{k}$$

$$= \frac{6 - 4}{3} \mathbf{i} + \frac{12 - 8}{3} \mathbf{j} + \frac{6 + 4}{3} \mathbf{k}$$

$$= \frac{2}{3} \mathbf{i} + \frac{4}{3} \mathbf{j} + \frac{10}{3} \mathbf{k}$$

$$= \frac{2}{3} (\mathbf{i} + 2\mathbf{j} + 5\mathbf{k})$$

Check

$$\mathbf{u}_{\parallel} \cdot \mathbf{u}_{\perp} = \left(\frac{2}{3}(\mathbf{i} + 2\mathbf{j} + 5\mathbf{k})\right) \cdot \left(\frac{4}{3}(\mathbf{i} + 2\mathbf{j} - \mathbf{k})\right)$$

$$= \frac{8}{9}\left((\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) \cdot (\mathbf{i} + 2\mathbf{j} - \mathbf{k})\right)$$

$$= \frac{8}{9}(1 + 4 - 5)$$

$$= 0$$

So $\mathbf{u}_{||}$ and \mathbf{u}_{\perp} are orthogonal.