Linear Dependence and Span

P. Danziger

1 Linear Combination

Definition 1 Given a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ in a vector space V, any vector of the form

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_k \mathbf{v}_k$$

for some scalars a_1, a_2, \ldots, a_k , is called a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$.

Example 2

- 1. Let $\mathbf{v}_1 = (1, 2, 3), \mathbf{v}_2 = (1, 0, 2).$
 - (a) Express $\mathbf{u} = (-1, 2, -1)$ as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 , We must find scalars a_1 and a_2 such that $\mathbf{u} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2$. Thus

$$a_1 + a_2 = -1$$

 $2a_1 + 0a_2 = 2$
 $3a_1 + 2a_2 = -1$

This is 3 equations in the 2 unknowns a_1 , a_2 . Solving for a_1 , a_2 :

$$\begin{pmatrix} 1 & 1 & | & -1 \\ 2 & 0 & | & 2 \\ 3 & 2 & | & -1 \end{pmatrix} \qquad \begin{array}{c} R_2 & \to & R_2 - 2R_1 \\ R_3 & \to & R_3 - 3R_1 \\ \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & | & -1 \\ 0 & -2 & | & 4 \\ 0 & -1 & | & 2 \end{pmatrix}$$

So $a_2 = -2$ and $a_1 = 1$.

Note that the components of \mathbf{v}_1 are the coefficients of a_1 and the components of \mathbf{v}_2 are the coefficients of a_2 , so the initial coefficient matrix looks like $\begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{u} \end{pmatrix}$

(b) Express $\mathbf{u} = (-1, 2, 0)$ as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . We proceed as above, augmenting with the new vector.

$$\begin{pmatrix} 1 & 1 & | & -1 \\ 2 & 0 & | & 2 \\ 3 & 2 & | & 0 \end{pmatrix} \qquad \begin{array}{c} R_2 & \to & R_2 - 2R_1 \\ R_3 & \to & R_3 - 3R_1 \\ \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & | & -1 \\ 0 & -2 & | & 4 \\ 0 & -1 & | & 3 \end{pmatrix}$$

This system has no solution, so \mathbf{u} cannot be expressed as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . i.e. \mathbf{u} does not lie in the plane generated by \mathbf{v}_1 and \mathbf{v}_2 .

2. Let $\mathbf{v}_1 = (1, 2), \mathbf{v}_2 = (0, 1), \mathbf{v}_3 = (1, 1).$

Express (1,0) as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 .

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{pmatrix} \quad R_2 \to R_2 - 2R_1$$

Let
$$a_3 = t$$
, $a_2 = -1 + t$, $a_3 = 1 - t$

This system has multiple solutions. In this case there are multiple possibilities for the a_i . Note that $\mathbf{v}_3 = \mathbf{v}_1 - \mathbf{v}_2$, which means that $a_3\mathbf{v}_3$ can be replaced by $a_3(\mathbf{v}_1 - \mathbf{v}_2)$, so \mathbf{v}_3 is redundant.

2 Span

Definition 3 Given a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ in a vector space V, the set of all vectors which are a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is called the span of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$. i.e.

$$span\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} = \{\mathbf{v} \in V \mid \mathbf{v} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_k\mathbf{v}_k\}$$

Definition 4 Given a set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ in a vector space V, S is said to span V if span(S) = V

In the first case the word span is being used as a noun, $span\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an object. In the second case the word span is being used as a verb, we ask whether $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ san the space V.

Example 5

1. Find span $\{\mathbf{v}_1, \mathbf{v}_2\}$, where $\mathbf{v}_1 = (1, 2, 3)$ and $\mathbf{v}_2 = (1, 0, 2)$. span $\{\mathbf{v}_1, \mathbf{v}_2\}$ is the set of all vectors $(x, y, z) \in \mathbb{R}^3$ such that $(x, y, z) = a_1(1, 2, 3) + a_2(1, 0, 2)$. We wish to know for what values of (x, y, z) does this system of equations have solutions for a_1 and a_2 .

$$\begin{pmatrix} 1 & 1 & x \\ 2 & 0 & y \\ 3 & 2 & z \end{pmatrix} \qquad R_2 \rightarrow R_2 - 2R_1 \\ R_3 \rightarrow R_3 - 3R_1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & x \\ 0 & -2 & y - 2x \\ 0 & -1 & z - 3x \end{pmatrix} \qquad R_2 \rightarrow \frac{-1}{2}R_2$$

$$\begin{pmatrix} 1 & 1 & x \\ 0 & 1 & x - \frac{1}{2}y \\ 0 & -1 & z - 3x \end{pmatrix} \qquad R_3 \rightarrow R_3 + R_2$$

$$\begin{pmatrix} 1 & 1 & x \\ 0 & 1 & x - \frac{1}{2}y \\ 0 & 0 & z - 2x - \frac{1}{2}y \end{pmatrix}$$

So solutions when 4x + y - 2z = 0. Thus span $\{\mathbf{v}_1, \mathbf{v}_2\}$ is the plane 4x + y - 2z = 0.

2. Show that $\mathbf{i} = \mathbf{e}_1 = (1,0)$ and $\mathbf{j} = \mathbf{e}_2 = (0,1)$ span \mathbb{R}^2 .

We are being asked to show that any vector in \mathbb{R}^2 can be written as a linear combination of **i** and **j**.

(x,y) = a(1,0) + b(0,1) has solution a = x, b = y for every $(x,y) \in \mathbb{R}^2$.

3. Show that $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (2,1)$ span \mathbb{R}^2 .

We are being asked to show that any vector in \mathbb{R}^2 can be written as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . Consider $(a,b) \in \mathbb{R}^2$ and (a,b) = s(1,1) + t(2,1).

$$\begin{pmatrix} 1 & 2 & a \\ 1 & 1 & b \end{pmatrix} \qquad R_2 \to R_2 - R_1$$

$$\begin{pmatrix} 1 & 2 & a \\ 0 & -1 & b - a \end{pmatrix} \qquad R_2 \to -R_2$$

$$\begin{pmatrix} 1 & 2 & a \\ 0 & 1 & a - b \end{pmatrix} \qquad R_1 \to R_1 - 2R_2$$

$$\begin{pmatrix} 1 & 0 & -a + 2b \\ 0 & 1 & a - b \end{pmatrix}$$

Which has the solution s = 2b - a and t = a - b for every $(a, b) \in \mathbb{R}^2$.

Note that these two vectors span \mathbb{R}^2 , that is every vector in \mathbb{R}^2 can be expressed as a linear combination of them, but they are not orthogonal.

4. Show that $\mathbf{v}_1 = (1, 1)$, $\mathbf{v}_2 = (2, 1)$ and $\mathbf{v}_3 = (3, 2)$ span \mathbb{R}^2 .

Since \mathbf{v}_1 and \mathbf{v}_2 span \mathbb{R}^2 , any set containing them will as well. We will get infinite solutions for any $(a,b) \in \mathbb{R}^2$.

In general

- 1. Any set of vectors in \mathbb{R}^2 which contains two non colinear vectors will span \mathbb{R}^2 .
- 2. Any set of vectors in \mathbb{R}^3 which contains three non coplanar vectors will span \mathbb{R}^3 .
- 3. Two non-colinear vectors in \mathbb{R}^3 will span a plane in \mathbb{R}^3 .

Want to get the smallest spanning set possible.

3 Linear Independence

Definition 6 Given a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, in a vector space V, they are said to be linearly independent if the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_k\mathbf{v}_k = \mathbf{0}$$

has only the trivial solution

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ are **not** linearly independent they are called linearly dependent.

Note $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent if and only if some \mathbf{v}_i can be expressed as a linear combination of the rest.

Example 7

1. Determine whether $\mathbf{v}_1 = (1, 2, 3)$ and $\mathbf{v}_2 = (1, 0, 2)$ are linearly dependent or independent. Consider the Homogeneous system

$$c_1(1,2,3) + c_2(1,0,2) = (0,0,0)$$

$$\left(\begin{array}{ccc|c}
1 & 1 & 0 \\
2 & 0 & 0 \\
3 & 2 & 0
\end{array}\right) \longrightarrow \left(\begin{array}{ccc|c}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)$$

Only solution is the trivial solution $a_1 = a_2 = 0$, so linearly independent.

2. Determine whether $\mathbf{v}_1 = (1, 1, 0)$ and $\mathbf{v}_2 = (1, 0, 1)$ and $\mathbf{v}_3 = (3, 1, 2)$ are linearly dependent. Want to find solutions to the system of equations

$$c_1(1,1,0) + c_2(1,0,1) + c_3(3,1,2) = (0,0,0)$$

Which is equivalent to solving

$$\begin{pmatrix} 1 & 1 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right) \leadsto \left(\begin{array}{cccc}
1 & 1 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)$$

Example 8

Determine whether $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (2, 2, 2)$ and $\mathbf{v}_3 = (1, 0, 1)$ are linearly dependent or independent.

$$2(1,1,1) - (2,2,2) = (0,0,0)$$

So linearly dependent.

Theorem 9 Given two vectors in a vector space V, they are linearly dependent if and only if they are multiples of one another, i.e. $\mathbf{v}_1 = c\mathbf{v}_2$ for some scalar c.

Proof:

$$a\mathbf{v}_1 + b\mathbf{v}_2 = \mathbf{0} \Leftrightarrow \mathbf{v}_2 = \left(\frac{-a}{b}\right)\mathbf{v}_1$$

Example 10

Determine whether $\mathbf{v}_1 = (1, 1, 3)$ and $\mathbf{v}_2 = (1, 3, 1)$, $\mathbf{v}_3 = (3, 1, 1)$ and $\mathbf{v}_4 = (3, 3, 3)$ are linearly dependent.

Must solve
$$A\mathbf{x} = \mathbf{0}$$
, where $A = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{pmatrix}$

$$\begin{pmatrix} 1 & 1 & 3 & 3 & 0 \\ 1 & 3 & 1 & 3 & 0 \\ 3 & 1 & 1 & 3 & 0 \end{pmatrix}$$

Since the number of columns is greater then the number of rows, we can see immediately that this system will have infinite solutions.

Theorem 11 Given m vectors in \mathbb{R}^n , if m > n they are linearly dependent.

Theorem 12 A linearly independent set in \mathbb{R}^n has at most n vectors.