
3.2, 3.3 Inverting Matrices P. Danziger

Properties of Transpose

Transpose has higher precedence than multiplica-

tion and addition, so

ABT = A
(
BT

)
and A+BT = A+

(
BT

)
As opposed to the bracketed expressions

(AB)T and (A+B)T

Example 1

Let A =

(
1 2 1
2 5 2

)
and B =

(
1 0 1
1 1 0

)
.

Find ABT , and (AB)T .

ABT =

(
1 2 1
2 5 2

)(
1 0 1
1 1 0

)T
=

(
1 2 1
2 5 2

) 1 1
0 1
1 0



=

(
2 3
4 7

)

Whereas (AB)T is undefined.
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3.2, 3.3 Inverting Matrices P. Danziger

Theorem 2 (Properties of Transpose) Given ma-

trices A and B so that the operations can be pre-

formed

1. (AT )T = A

2. (A+B)T = AT +BT and (A−B)T = AT −BT

3. (kA)T = kAT

4. (AB)T = BTAT

2



3.2, 3.3 Inverting Matrices P. Danziger

Matrix Algebra
Theorem 3 (Algebraic Properties of Matrix Multiplication)

1. (k + `)A = kA + `A (Distributivity of scalar

multiplication I)

2. k(A + B) = kA + kB (Distributivity of scalar

multiplication II)

3. A(B+C) = AB+AC (Distributivity of matrix

multiplication)

4. A(BC) = (AB)C (Associativity of matrix mul-

tiplication)

5. A + B = B + A (Commutativity of matrix ad-

dition)

6. (A + B) + C = A + (B + C) (Associativity of

matrix addition)

7. k(AB) = A(kB) (Commutativity of Scalar Mul-

tiplication)
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The matrix 0 is the identity of matrix addition.

That is, given a matrix A,

A+ 0 = 0 +A = A.

Further 0A = A0 = 0, where 0 is the appropriately

sized 0 matrix.

Note that it is possible to have two non-zero ma-

trices which multiply to 0.

Example 4(
1 −1
−1 1

)(
1 1
1 1

)
=

(
1− 1 1− 1
−1 + 1 −1 + 1

)
=

(
0 0
0 0

)

The matrix I is the identity of matrix multiplica-

tion. That is, given an m× n matrix A,

AIn = ImA = A

Theorem 5 If R is in reduced row echelon form

then either R = I, or R has a row of zeros.
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Theorem 6 (Power Laws) For any square ma-
trix A,

ArAs = Ar+s and (Ar)s = Ars

Example 7

1.
 0 0 1

1 0 1
2 2 0


4

=


 0 0 1

1 0 1
2 2 0


2


2

2. Find A6, where

A =

(
1 0
1 1

)

A6 = A2A4 = A2
(
A2
)2

.

Now A2 =

(
1 0
2 1

)
, so

A2
(
A2
)2

=

(
1 0
2 1

)(
1 0
2 1

)2

=

(
1 0
2 1

)(
1 0
3 1

)

=

(
1 0
5 1

)
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Inverse of a matrix

Given a square matrix A, the inverse of A, denoted

A−1, is defined to be the matrix such that

AA−1 = A−1A = I

Note that inverses are only defined for square ma-

trices

Note Not all matrices have inverses.

If A has an inverse, it is called invertible.

If A is not invertible it is called singular.
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Example 8

1. A =

(
1 2
2 5

)
A−1 =

(
5 −2
−2 1

)

Check:

(
1 2
2 5

)(
5 −2
−2 1

)
=

(
1 0
0 1

)

2. A =

(
1 2
2 4

)
Has no inverse

3. A =

 1 1 1
1 2 1
1 1 2

 A−1 =

 3 −1 −1
−1 1 0
−1 0 1



Check:

 1 1 1
1 2 1
1 1 2


 3 −1 −1
−1 1 0
−1 0 1

 =

 1 0 0
0 1 0
0 0 1



4. A =

 1 2 1
2 1 3
3 3 4

 Has no inverse
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Inverses of 2× 2 Matrices

Given a 2× 2 matrix

A =

(
a b
c d

)
A is invertible if and only if ad− bc 6= 0 and

A−1 =
1

ad− bc

(
d −b
−c a

)

The quantity ad − bc is called the determinant of

the matrix and is written det(A), or |A|.

Example 9

A =

(
1 2
3 3

)
A−1 = 1

−3

(
3 −2
−3 1

)
=

(
−1 2

3
1 −1

3

)

Check: 1
−3

(
3 −2
−3 1

)(
1 2
3 3

)
= −1

3

(
−3 0
0 −3

)
= I
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Algebra of Invertibility

Theorem 10 Given an invertible matrix A:

1. (A−1)−1 = A,

2. (An)−1 = (A−1)n
(
= A−n

)
,

3. (kA)−1 = 1
kA
−1,

4. (AT )−1 = (A−1)T ,
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Theorem 11 Given two invertible matrices A and

B

(AB)−1 = B−1A−1.

Proof: Let A and B be invertible matricies and

let C = AB, so C−1 = (AB)−1.

Consider C = AB.

Multiply both sides on the left by A−1:

A−1C = A−1AB = B.

Multiply both sides on the left by B−1.

B−1A−1C = B−1B = I.

So, B−1A−1 is the matrix you need to multiply C

by to get the identity.

Thus, by the definition of inverse

B−1A−1 = C−1 = (AB)−1.
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A Method for Inverses

Given a square matrix A and a vector b ∈ R
n,

consider the equation

Ax = b

This represents a system of equations with coeffi-

cient matrix A.

Multiply both sides by A−1 on the left, to get

A−1Ax = A−1b.

But A−1A = In and Ix = x, so we have

x = A−1b.

Note that we have a unique solution. The as-

sumption that A is invertible is equaivalent to the

assumption that Ax = b has unique solution.
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During the course of Gauss-Jordan elimination on

the augmented matrix (A|b) we reduce A→ I and

b→ A−1b, so (A|b)→
(
I|A−1b

)
.

If we instead augment A with I, row reducing will

produce (hopefully) I on the left and A−1 on the

right, so (A|I)→
(
I|A−1

)
.

The Method:

1. Augment A with I

2. Use Gauss-Jordan to obtain (I|A−1) .

3. If I does not appear on the left, A is not in-

vertable.

Otherwise, A−1 is given on the right.
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Example 12

1. Find A−1, where

A =

 1 2 3
2 5 5
3 5 8


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Augment with I and row reduce: 1 2 3 1 0 0
2 5 5 0 1 0
3 5 8 0 0 1

 R2 → R2 − 2R1
R3 → R3 − 3R1

 1 2 3 1 0 0
0 1 −1 −2 1 0
0 −1 −1 −3 0 1

 R3 → R3 +R2

 1 2 3 1 0 0
0 1 −1 −2 1 0
0 0 −2 −5 1 1

 R3 → −1
2R3

 1 2 3 1 0 0
0 1 −1 −2 1 0
0 0 1 5/2 −1/2 −1/2

 R1 → R1 − 3R3
R2 → R2 +R3

 1 2 0 −13/2 3/2 3/2
0 1 0 1/2 1/2 −1/2
0 0 1 5/2 −1/2 −1/2

 R1 → R1 − 2R2

 1 0 0 −15/2 1/2 5/2
0 1 0 1/2 1/2 −1/2
0 0 1 5/2 −1/2 −1/2


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So

A−1 =
1

2

 −15 1 5
1 1 −1
5 −1 −1


To check inverse multiply together:

AA−1 =

 1 2 3
2 5 5
3 5 8

 1
2

 −15 1 5
1 1 −1
5 −1 −1


= 1

2

 2 0 0
0 2 0
0 0 2

 = I

2. Solve Ax = b in the case where b = (2,2,4)T .

x = A−1b = 1
2

 −15 1 5
1 1 −1
5 −1 −1


 2

2
4


= 1

2

 −18
0
4

 =

 −9
0
2


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3. Solve Ax = b in the case where b = (2,0,2)T .

x = A−1b = 1
2

 −15 1 5
1 1 −1
5 −1 −1


 2

0
2


= 1

2

 −20
0
8

 =

 −9
0
4



4. Give a solution to Ax = b in the general case

where b = (b1, b2, b3)

x = 1
2

 −15 1 5
1 1 −1
5 −1 −1


 b1
b2
b3


= 1

2

 −15b1 + b2 + 5b3
b1 + b2 − b3
5b1 − b2 − b3


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Elementary Matrices

Definition 13 An Elementary matrix is a matrix

obtained by preforming a single row operation on

the identity matrix.

Example 14

1.  2 0 0
0 1 0
0 0 1

 (R1 → 2R1)

2.  1 0 0
3 1 0
0 0 1

 (R2 → R2 + 3R1)

3.  1 0 0
0 0 1
0 1 0

 (R1 ↔ R2)
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Theorem 15 If E is an elementary matrix ob-

tained from Im by preforming the row operation R

and A is any m× n matrix, then EA is the matrix

obtained by preforming the same row operation R

on A.

Example 16

A =

 1 1 1
2 1 0
3 2 1



1.
 2 0 0

0 1 0
0 0 1


 1 1 1

2 1 0
3 2 1

 =

 2 2 2
2 1 0
3 2 1

 ∼ 2R2 on A

2. 1 0 0
3 1 0
0 0 1


 1 1 1

2 1 0
3 2 1

 =

 1 1 1
5 4 3
3 2 1

 ∼ R2 → R2 + 3R1
on A

3.

18



3.2, 3.3 Inverting Matrices P. Danziger 1 0 0
0 0 1
0 1 0


 1 1 1

2 1 0
3 2 1

 =

 1 1 1
3 2 1
2 1 0

 ∼ R2 ↔ R3
on A

Inverses of Elementary Matrices

If E is an elementary matrix then E is invertible and

E−1 is an elementary matrix corresponding to the

row operation that undoes the one that generated

E. Specifically:

• If E was generated by an operation of the form

Ri → cRi then E−1 is generated by Ri → 1
cRi.

• If E was generated by an operation of the form

Ri → Ri + cRj then E−1 is generated by

Ri → Ri − cRj.

• If E was generated by an operation of the form

Ri ↔ Rj then E−1 is generated by Ri ↔ Rj.
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Example 17

1. E =

 2 0 0
0 1 0
0 0 1

 E−1 =


1
2 0 0
0 1 0
0 0 1


2. E =

 1 0 0
3 1 0
0 0 1

 E−1 =

 1 0 0
−3 1 0
0 0 1


3. E =

 1 0 0
0 0 1
0 1 0

 E−1 = E
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Elementary Matricies and Solv-
ing Equations
Consider the steps of Gauss Jordan elimination to

find the solution to a system of equations Ax = b.

This consists of a series of row operations, each

of which is equivalent to multiplying on the left by

an elementary matrix Ei.

A
Ele. row ops.
−−− −→ B,

Where B is the RREF of A.

So EkEk−1 . . . E2E1A = B for some appopriately

defined elementary matrices E1 . . . Ek.

Thus A = E−1
1 E−1

2 . . . E−1
k−1E

−1
k B

Now if B = I (so the RREF of A is I), then
A = E−1

1 E−1
2 . . . E−1

k−1E
−1
k

and A−1 = EkEk−1 . . . E2E1

Theorem 18 A is invertable if and only if it is the

product of elementary matrices.
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Summing Up Theorem

Theorem 19 (Summing up Theorem Version 1)

For any square n × n matrix A, the following are

equivalent statements:

1. A is invertible.

2. The RREF of A is the identity, In.

3. The equation Ax = b has unique solution

(namely x = A−1b).

4. The homogeneous system Ax = 0 has only the

trivial solution (x = 0)

5. The REF of A has exactly n pivots.

6. A is the product of elementary matrices.
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