
3.4 Linear Dependence and Span P. Danziger

Linear Combination

Definition 1 Given a set of vectors {v1,v2, . . . ,vk}
in a vector space V , any vector of the form

v = a1v1 + a2v2 + . . .+ akvk

for some scalars a1, a2, . . . , ak, is called a linear

combination of v1,v2, . . . ,vk.
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Example 2

1. Let v1 = (1,2,3),v2 = (1,0,2).

(a) Express u = (−1,2,−1) as a linear combi-

nation of v1 and v2,

We must find scalars a1 and a2 such that

u = a1v1 + a2v2.

Thus

a1 + a2 = −1
2a1 + 0a2 = 2
3a1 + 2a2 = −1

This is 3 equations in the 2 unknowns a1,

a2. Solving for a1, a2: 1 1 −1
2 0 2
3 2 −1

 R2 → R2 − 2R1
R3 → R3 − 3R1 1 1 −1

0 −2 4
0 −1 2


So a2 = −2 and a1 = 1.
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Note that the components of v1 are the

coefficients of a1 and the components of

v2 are the coefficients of a2, so the initial

coefficient matrix looks like

 v1 v2 u


(b) Express u = (−1,2,0) as a linear combina-

tion of v1 and v2.

We proceed as above, augmenting with the

new vector. 1 1 −1
2 0 2
3 2 0

 R2 → R2 − 2R1
R3 → R3 − 3R1 1 1 −1

0 −2 4
0 −1 3


This system has no solution, so u cannot be

expressed as a linear combination of v1 and v2.

i.e. u does not lie in the plane generated by v1

and v2.
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2. Let v1 = (1,2), v2 = (0,1), v3 = (1,1).

Express (1,0) as a linear combination of v1,

v2 and v3.

(
1 0 1 1
2 1 1 0

)
R2 → R2 − 2R1(

1 0 1 1
0 1 −1 −1

)
Let a3 = t, a2 = −1 + t, a3 = 1− t.

This system has multiple solutions. In this case

there are multiple possibilities for the ai. Note

that v3 = v1 − v2, which means that a3v3 can be

replaced by a3(v1 − v2), so v3 is redundant.
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Span

Definition 3 Given a set of vectors {v1,v2, . . . ,vk}
in a vector space V , the set of all vectors which

are a linear combination of v1,v2, . . . ,vk is called

the span of {v1,v2, . . . ,vk}. i.e.

span{v1,v2, . . . ,vk} =
{v ∈ V | v = a1v1 + a2v2 + . . .+ akvk}

Definition 4 Given a set of vectors S = {v1,v2, . . . ,vk}
in a vector space V , S is said to span V if span(S) =

V

In the first case the word span is being used as a

noun, span{v1,v2, . . . ,vk} is an object.

In the second case the word span is being used

as a verb, we ask whether {v1,v2, . . . ,vk} san the

space V .

5



3.4 Linear Dependence and Span P. Danziger

Example 5

1. Find span{v1,v2}, where v1 = (1,2,3) and

v2 = (1,0,2).

span{v1,v2} is the set of all vectors (x, y, z) ∈
R

3 such that (x, y, z) = a1(1,2,3) + a2(1,0,2).

We wish to know for what values of (x, y, z)

does this system of equations have solutions

for a1 and a2. 1 1 x
2 0 y
3 2 z

 R2 → R2 − 2R1
R3 → R3 − 3R1 1 1 x

0 −2 y − 2x
0 −1 z − 3x

 R2 → −1
2 R2 1 1 x

0 1 x− 1
2y

0 −1 z − 3x

 R3 → R3 +R2
1 1 x

0 1 x− 1
2y

0 0 z − 2x− 1
2y


So solutions when 4x + y − 2z = 0. Thus

span{v1,v2} is the plane 4x+ y − 2z = 0.
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2. Show that i = e1 = (1,0) and j = e2 = (0,1)

span R2.

We are being asked to show that any vector in

R
2 can be written as a linear combination of i

and j.

(x, y) = a(1,0) + b(0,1) has solution

a = x, b = y for every (x, y) ∈ R2.
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3. Show that v1 = (1,1) and v2 = (2,1) span R2.

We are being asked to show that any vector in

R
2 can be written as a linear combination of

v1 and v2.

Consider (a, b) ∈ R2 and (a, b) = s(1,1)+t(2,1).(
1 2 a
1 1 b

)
R2 → R2 −R1(

1 2 a
0 −1 b− a

)
R2 → −R2(

1 2 a
0 1 a− b

)
R1 → R1 − 2R2(

1 0 −a+ 2b
0 1 a− b

)
Which has the solution s = 2b−a and t = a− b
for every (a, b) ∈ R2.

Note that these two vectors span R
2, that is

every vector in R2 can be expressed as a linear

combination of them, but they are not orthog-

onal.
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4. Show that v1 = (1,1), v2 = (2,1) and v3 =

(3,2) span R2.

Since v1 and v2 span R
2, any set containing

them will as well. We will get infinite solutions

for any (a, b) ∈ R2.

In general

1. Any set of vectors in R
2 which contains two

non colinear vectors will span R2.

2. Any set of vectors in R3 which contains three

non coplanar vectors will span R3.

3. Two non-colinear vectors in R
3 will span a

plane in R3.

Want to get the smallest spanning set possible.
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Linear Independence

Definition 6 Given a set of vectors {v1,v2, . . . ,vk},
in a vector space V , they are said to be linearly in-

dependent if the equation

c1v1 + c2v2 + . . .+ ckvk = 0

has only the trivial solution

If {v1,v2, . . . ,vk} are not linearly independent they

are called linearly dependent.

Note {v1,v2, . . . ,vk} is linearly dependent if and

only if some vi can be expressed as a linear com-

bination of the rest.
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Example 7

1. Determine whether v1 = (1,2,3) and v2 =

(1,0,2) are linearly dependent or independent.

Consider the Homogeneous system

c1(1,2,3) + c2(1,0,2) = (0,0,0) 1 1 0
2 0 0
3 2 0

 −→

 1 1 0
0 1 0
0 0 0


Only solution is the trivial solution

a1 = a2 = 0, so linearly independent.
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2. Determine whether v1 = (1,1,0) and v2 =

(1,0,1) and v3 = (3,1,2) are linearly depen-

dent.

Want to find solutions to the system of equa-

tions

c1(1,1,0) + c2(1,0,1) + c3(3,1,2) = (0,0,0)

Which is equivalent to solving 1 1 3
1 0 1
0 1 2


 c1
c2
c3

 =

 0
0
0


 1 1 3

1 0 1
0 1 2

 
 1 1 3

0 1 2
0 0 0
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Example 8

Determine whether v1 = (1,1,1), v2 = (2,2,2)

and v3 = (1,0,1) are linearly dependent or inde-

pendent.

2(1,1,1)− (2,2,2) = (0,0,0)

So linearly dependent.

Theorem 9 Given two vectors in a vector space

V , they are linearly dependent if and only if they

are multiples of one another, i.e. v1 = cv2 for some

scalar c.

Proof:

av1 + bv2 = 0⇔ v2 =
(−a
b

)
v1
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Example 10

Determine whether v1 = (1,1,3) and v2 = (1,3,1),

v3 = (3,1,1) and v4 = (3,3,3) are linearly depen-

dent.

Must solve Ax = 0, where A =

 v1 v2 v3 v4


 1 1 3 3 0

1 3 1 3 0
3 1 1 3 0


Since the number of columns is greater then the

number of rows, we can see immediately that this

system will have infinite solutions.

Theorem 11 Given m vectors in Rn, if m > n they

are linearly dependent.

Theorem 12 A linearly independent set in Rn has

at most n vectors.
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