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Cop Number?
Anthony Bonato

The cop number is a simple notion originating

from a game played on a graph. Despite this

simplicity, consideration of the cop number leads

to many questions in structural, probabilistic, and

algorithmic graph theory. In the game of Cops and

Robbers, there are two players, a set of cops and a

single robber. We are given an undirected graph G

with loops on each vertex. Players occupy vertices

ofG, and move along edges to neighboring vertices

or remain on their current vertex. The cops move

first by occupying a set of vertices; one cop can

occupy only a single vertex, although more than

one can occupy the same vertex. The robber then

chooses a vertex to occupy, and the players move

at alternate ticks of the clock. The game is played

with perfect information, so the players see each

others’ moves. The cops win if they can capture the

robber by moving to a vertex the robber occupies;

otherwise, the robber wins. While many variations

are possible (such as players moving at different

speeds or playing with imperfect information), we

focus on the game as described here. We consider

only finite graphs, although the cop number is also

studied in the infinite case. Cops and Robbers has

found application to multiple-agent moving-target

search in artificial intelligence, and variants of the

game have been recently considered in fields such

as robotics and mathematical counter-terrorism.

The cop number of a graph G, written c(G), is

the minimum number of cops needed to win in G.

Placing a cop on each vertex clearly guarantees a

win for the cops, so the cop number is well defined.
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If G is disconnected, then c(G) is the sum of the

cop numbers of the connected components; hence

we consider only connected graphs. References for

the results discussed here may be found in [1].

Cop-win graphs are those where only one cop

is needed to win, and they form the first and

simplest case to analyze. If one vertex is adjacent

to all others as in cliques or wheels, then of course

the graph is cop-win. Trees are graphs with no

cycles. Trees are cop-win, since the cop chases

the robber along the unique path connecting them

until the robber reaches a vertex with degree one.

A degree-one vertex u is a corner with a special

property: there is vertex v such that v is adjacent

to all the vertices adjacent to u (including u itself).

By considering the second-to-last move of the cop

before the cop captures the robber, it is evident

that a cop-win graph must have at least one corner.

Deleting this corner gives rise to another cop-win

graph: whenever the robber moves to the corner

u, the cop plays as if the cop were on v . This

observation along with an induction proves that a

graph is cop-win if and only if we may iteratively

delete corners and end up with a single vertex.

A planar graph is one that can be drawn in the

plane without edge crossings. The famous Four

Color Theorem states that, for any planar graph,

we need at most four colors to assign colors to

the vertices in such a way that adjacent vertices

receive different colors. Aigner and Fromme [2]

introduced the cop number in 1984, and proved

that a planar graph has cop number at most 3. For

example, the dodecahedron is a planar graph with

cop number 3. One of the main tools used in their

proof was isometric paths: A path is isometric if

distances between vertices in the path are the
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same as in the graph. They showed that one cop

can guard an isometric path, meaning that we can

move a cop along vertices of the path in such a way

that, if the robber moved onto the path, the robber

would be captured. To guard an isometric path, the

cop exploits a retraction (a graph homomorphism

which is the identity on its image) onto the path:

the cop simply captures the image of the robber on

the path. Despite the characterization described

earlier for cop-win graphs, there is no known

characterization of cop-win planar graphs.

An equally enticing and challenging aspect is

that existing graph parameters appear in only a few

bounds for cop numbers. A dominating set S has

the property that all vertices not in S are adjacent

to some vertex of S. The domination number of

G is the minimum order of a dominating set in

G. The cop number is bounded above by the

domination number, as the cops simply occupy

a minimum order dominating set on their first

move and catch the robber in the next round.

Unfortunately, this bound is far from tight as

the reader can check in the case of paths. The

minimum order of a cycle in G is called its girth.

If G has girth at least 5, then the cop number is

bounded below by the minimum degree of G. The

genus g of a graph G is the smallest k such that G

can be drawn on a sphere with k handles so that

distinct edges do not intersect except at common

vertices. Schroeder proved that c(G) ≤
⌊

3
2
g
⌋

+ 3,

and conjectured that c(G) ≤ g + 3.

How large can the cop number be as a function

of the order of the graph? Graphs arising from

finite geometry provide some insight into this

question. Consider a projective plane P of order

q, and its incidence graph G(P). The graph G(P)

has vertices the points and lines of P , and so

has 2q2 + 2q + 2 vertices. No two points (or lines)

are adjacent, and a point is adjacent to a line if

it is on that line. For example, the Fano plane

has incidence graph isomorphic to the Heawood

graph, which has cop number 3. See Figure 1. As

the girth of G(P) is 6 and each vertex has degree

q+1, it is not hard to see that the cop number is at

least q+ 1. Hence the cop number of a graph with

n vertices can be as large as a constant multiple

of
√
n.

Let c(n) be the maximum value of c(G), where

G is a connected graph of order n. Meyniel’s

conjecture states that c(n) = O(
√
n). In other

words, for n sufficiently large, the cop number

is at most a constant multiple of
√
n (as is the

case for incidence graphs of projective planes).

Frankl communicated the conjecture in his 1987

paper, where he used a greedy argument with

isometric paths and the Moore bound to prove

that c(n) = O
(

n
log logn

logn

)

. Meyniel’s conjecture was
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Figure 1. The Fano plane and its incidence graph.

Points and lines of the plane are labelled on the

graph.

largely forgotten until recently, and is now gath-

ering much research attention. The best known

upper bound is

(1) c(n) = O

(

n

2(1+o(1))
√

log2 n

)

,

which was proven independently by three groups

of researchers using the probabilistic method. The

n1−o(1) bound in (1) is far from the conjecture,

and even proving that c(n) = O(n1−ε) for some

ε > 0 remains open. At the present time, the jury

is still out on whether Meyniel’s conjecture holds.

Partial evidence in favor of the conjecture comes

from its having been proved for binomial random

graphs G(n,p) for a wide range of p = p(n).
We finish by highlighting some algorithmic as-

pects of the cop number. If k is a fixed integer

and G is given as input, then one can determine

whether c(G) ≤ k by doing a polynomial-time

computation with running time O(n2k+2). Unfor-

tunately, because this bound is exponential in k,

it is therefore impractical for large k. If k is not

fixed (and so may be a function of n), then deter-

mining if c(G) ≤ k is NP-hard. We do not know,

however, if this problem is in NP. It is conjectured

that computing the cop number when k is not

fixed is EXPTIME-complete, which would imply

that it is among the hardest problems solvable in

exponential time.
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