
Sketchy Tweets: Ten
Minute Conjectures
in Graph Theory
ANTHONY BONATO AND RICHARD J. NOWAKOWSKI

CC
omments by Richard Hamming in his address You
and Your Research [16] resonated with us. On the
one hand, Hamming says,

‘‘What are the most important problems in your field? ’’

which suggests working on hard problems. Yet on the
other, he exhorts us to

‘‘Plant the little acorns from which mighty oak trees grow.’’

Following this advice, we should look over the big
questions, then doodle and sketch out some approaches.
If you are an expert, then this is easy to do, but most people
do not want to wait to become an expert before looking at
interesting problems. Graph theory, our area of expertise,
has many hard-to-solve questions. Some hark back to the
recreational roots of the area yet still keep their mystery.
These ‘‘acorns’’ can be planted on the backs of envelopes,
on a blackboard, and over a coffee.

Our goal is to collect some of these conjectures—argu-
ably some of the most intriguing—in one place. We present
ten conjectures in graph theory, and you can read about
each one in at most ten minutes. As we live in the era of
Twitter, all the conjectures we state are 140 characters or
fewer (so ‘‘minute’’ here has a double meaning). We might
even call these sketchy tweets, as we present examples for
each conjecture that you can doodle on as you read.

Hamming also references ambiguity: good researchers can
work both on proving and disproving the same statement, so
we approach the conjectures with an open mind. He also
mentions that a good approach is to reframe the problem, and
change the point of view. One example from Vizing’s

Conjecture (which is discussed as our second-to-last conjec-
ture in the following text), is the three-page paper [2] which,
with a new way of thinking, reduced most of the published
work of twenty years to a corollary of its main result!

Given the size of modern graph theory, with its many
smaller subfields (such as structural graph theory, random
graphs, topological graph theory, graph algorithms, spectral
graph theory, graph minors, and graph homomorphisms, to
name a few), it would be impossible to list all, or even the
bulk of the conjectures in the field. We are content instead to
focus on a few family jewels, which have an intrinsic beauty
and have provided some challenges for graph-theorists for at
least two decades. There is something for everyone here,
from undergraduate students taking their first course in
graph theory, to seasoned researchers in the field. For
additional reading on problems and conjectures in graph
theory and other fields, see the Open Problem Garden
maintained by IRMACS at Simon Fraser University [24].

We consider only finite and undirected graphs, with no
multiple edges or loops (unless otherwise stated). We
assume the reader has some basic familiarity with graphs
and their terminology, including notions such as cycles,
paths, complete graphs, complete bipartite graphs, vertex
degrees, and connected graphs. We use the notation Cn for
the cycle with n vertices, Pn for the path with n vertices,
and Kn for the complete graph with n vertices. The com-
plete bipartite graph with m and n vertices of the respective
colors is denoted by Km,n.

All the background we need can be found in any text in
graph theory, such as those of Diestel [9] and West [41], or
online (see for example [42]).
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For a graph G, we write V(G) for its vertex set, and
E(G) for its edge set. If two vertices are joined by an edge,
then we say they are adjacent. The order of a graph is the
cardinality of its vertex set.

The Conjectures
Some conjectures we present (such as Meyniel’s) are less
known and deserve more exposure, whereas others (such
as Hadwiger’s) are better known. We provide no justifica-
tion for our bias toward one problem over another, so we
apologize upfront if your favorite conjecture is missing.

We present each conjecture using minimal technical
jargon. To shorten the number of references to partial
results, we cite surveys wherever possible. We always cite
the original authors of the problem. The conjectures we
present have spawned enormous amounts of work on
related problems and concepts, which in the present article
can only be hinted at. For example, a quick check of Go-
ogle Scholar or MathSciNet will reveal many thousands of
papers related to the topic of one of the ten conjectures we
present. Some of these works are discussed in the surveys.

All the conjectures here are considered difficult, having
remained unsolved for many years. We do not rank the
conjectures in order of difficulty. To show no preference
among the problems, we present the conjectures in
alphabetical order.

Double the Fun

There is an old puzzle, found in many books that feature
‘‘pencil-and-paper’’ problems, of attempting to trace a dia-
gram without lifting the pen off the paper or retracing any
part of the figure. Euler in his famous 1736 solution to the
Königsberg bridge problem, essentially found when this can
be done. The problem can be restated as covering the dia-
gram (represented by a graph) with a cycle. Such graphs are
now called Eulerian; the connected Eulerian graphs are
those in which every vertex has even degree. (We note that
Euler did not prove the characterization of Eulerian graphs;
the first proof was published by Hierholzer [18].) Our first
conjecture may be thought of as a generalization of this kind
of problem to graphs with some vertices of odd degree.

A bridge is an edge whose deletion disconnects the
graph. A graph with no bridges is bridgeless. For example,
each edge of a tree is a bridge.

Cycle Double Cover Conjecture: For every bridgeless
graph, there is a list of cycles so that every edge appears
in exactly two cycles.

A list of cycles as in the conjecture is called a CDC. See
Figure 1 for an example. Note that the list may have
repeated cycles, as is the case with Cn. The conjecture was
formulated independently by Szekeres in 1973 [34] and
Seymour in 1979 [30]. See the survey [20] and book [45] for
additional background and references on the conjecture.

The conjecture has connections to embeddings of graphs
on surfaces; that is, drawings of graphs on different sur-
faces so that no two edges cross. The simplest case is the
family of planar graphs, which have an embedding in the
plane (see Hadwiger’s Conjecture for more on planar
graphs). If each face in the embedding corresponds to
a cycle in the graph, then the faces form a CDC as in
Figure 1, as is true for all connected, bridgeless, planar
graphs. That there is an embedding in some surface where
each face corresponds to a cycle is the Strong Embedding
Conjecture, which is a stronger conjecture than the Cycle
Double Cover Conjecture.

In the other direction, much is known about the smallest
counterexample, if it exists: every vertex has degree 3, it is
not 3-edge-colorable (i.e., there is no coloring of the edges
with three colors so that no edge is incident with an edge of
the same color), it is cyclically 4-connected (i.e., every
partition of the vertices into two parts with a cycle in each
part has at least four edges that join the parts), and the
smallest cycle has length at least 10. A connected, bridge-
less, cubic graph that is not 3-edge-colorable is called a

Figure 1. A CDC in K4, with the cycles in different colors.

What would be a CDC of K5?
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snark. Another conjecture says that there are not any snarks
with the smallest cycle length at least 10. See Figure 2 for an
example of a snark.

A stronger conjecture than the Cycle Double Cover
Conjecture is the Small Cycle Double Cover Conjecture:
every bridgeless graph on n vertices has a CDC of size at
most n - 1.

Party, But Know Your Limits

Frank Ramsey, who died at the early age of 26, wrote a paper
[26] in mathematical logic that has gone on to have applica-
tions in many fields, including graph theory. To motivate
Ramsey numbers, consider a party with six people, some
pairs of whom are friends, and some of whom are strangers.
It is not hard to show that among six people we can always
find three mutual friends or three mutual strangers. Readers
should convince themselves that in smaller parties this
property is not always satisfied.

Ramsey numbers generalize this setting from three to
n mutual friends or strangers. For a positive integer n,
define the nth Ramsey number, written R(n), to be the
minimum integer r such that any coloring of the edges of Kr

with red or blue (red joins friends and blue joins strangers)
results in a complete subgraph of order n whose edges all
have the same color.

It is not immediately clear whether the Ramsey numbers
even exist. Calculating them directly is hard; whereas
R(4) = 18, the value of R(5) is unknown (although it is
between 43 and 49; see [25] for a dynamic survey of the
known small Ramsey numbers). We must be content with
lower and upper bounds. An inductive argument gives

RðnÞ� 2n� 2
n� 1

� �
. In an early application of the probabi-

listic method, Erd}os [11] proved the lower bound

ð1þ oð1ÞÞ 1

e
ffiffiffi
2
p n2n=2�RðnÞ;

which has not been substantially improved to this day

(Spencer [32] improved the constant 1ffiffi
2
p to

ffiffiffi
2
p

). The best

known upper bound for R(n), which is far apart from the
known lower bounds, was given by Thomason [36]:

RðnÞ�n�1=2þc=
ffiffiffiffiffiffiffiffi
log n
p 2n� 2

n� 1

� �
:

Erd}os in 1947 posed the following asymptotic conjecture,
and it remains one of the major topics in Ramsey numbers.

Erd}os’ Ramsey Number Conjecture: limn!1 RðnÞ1=n exists.

Solve this conjecture and you will be awarded $100.
However, this is a ridiculously difficult way to make $100!
From thebounds statedpreviously, if the limit exists, then it is
between

ffiffiffi
2
p

and 4 (finding the value of the limit is worth
$250). Hence, we can think of the conjecture as a way to
understand better which bound for R(n) stated previously is
more accurate. For more on Erd}os and his questions about
Ramsey numbers, see [8].

Saving Grace

We next consider a graph-labelling problem, where vertices
or edges are labelledbynumbers subject to some constraints.
A graph is graceful if the vertices can be assigned numbers
from among 0, 1, …, m, where m is the number of edges, so
that the differences along the edges are precisely
1, 2, …, m. Graceful graphs have received ample attention
in the literature. See Figure 3 for an example.

Graceful labellings were introduced by Rosa under the
nameofb-labellingsandwere renamed ‘‘graceful’’ byGolomb.

The following conjecture is now sometimes called the
Ringel-Kotzig Conjecture (because, if the conjecture were
true, it would imply conjectures of both authors on certain
decompositions of complete graphs).

Graceful Tree Conjecture: Every tree is graceful.

More than 200 papers have been written on proving
special cases of this conjecture, and a bewildering number
of variants on graceful labellings have been proposed and
studied. See the dynamic survey of Gallian [13] for further
background and references on graceful (and other) label-
lings. Kotzig labelled the collective work on proving the
conjecture a ‘‘disease.’’ A few of the classes of trees where
we know the conjecture holds are: caterpillars (a caterpillar
is a tree whose nonleaf vertices form a path), trees with at
most four leaves, trees with diameter at most 5, and trees
with at most 35 vertices.

Much of the research on the conjecture tries to settle it in
the affirmative. One class of trees where the conjecture
remains open are lobsters (those where the removal of the
leaves gives a caterpillar).

No Minors Allowed

Coloring has both fascinated and perplexed graph-theorists
since the early days of the field. The chromatic number of
G, written v(G), is the minimum number of colors in a
vertex labelling such that adjacent vertices receive distinct
colors; that is, the minimum k such that G is k-colorable.
The most famous theorem proved so far in graph theory is
the Four-Color theorem [1], which states that every planar
graph is 4-colorable. All known proofs of this fact are
computer-assisted.

2 01 43

Figure 3. The path P5 is graceful. Show that all the paths Pn

are graceful.

Figure 2. The flower snark J5.
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A graph is a minor of G if it results by repeatedly per-
forming one of the following operations: i) deleting a
vertex, ii) deleting an edge, or iii) contracting an edge (i.e.,
shrinking an edge to a vertex and preserving adjacencies
and nonadjacencies with vertices outside the edge). A
beautiful result of Wagner [40] states that a graph is planar if
and only if it does not have K5 or K3,3 as a minor. The
reader can show that the Petersen graph (see Figure 8) has
K5 as a minor, and hence, is not planar.

Hadwiger’s Conjecture, dating back to 1943 [15], relates
graph coloring to minors.

Hadwiger’s Conjecture: For m C 2, a graph not having
Km as a minor is (m - 1)-colorable.

Hadwiger’sConjecture isopen form C 7.The startlingcase
for small m is m = 5, which was shown by Wagner [40] to
reduce to the Four-Color theorem. Hence, Hadwiger’s Con-
jecture may be viewed as a broad generalization of that
theorem. The case m = 6 was settled by Robertson, Seymour,
and Thomas [28] by showing that a minimal counterexample
to the conjecture is planar after the removal of one vertex (so
this also reduces to the Four-Color Theorem).

The cases m = 2 and 3 are elementary (for example, a
graph without K2 as a minor has no edges, and a graph bit
having K3 as a minor is a forest). Dirac [10] and Hadwiger [15]
proved the case m = 4, by showing that graphs not having K4

as a minor have a vertex of degree at most 2 and, hence, can
be 3-colored using a greedy algorithm. Although the case
m = 7 is open, in 2005 Kawarabayashi and Toft [21] proved
that any 7-chromatic graph has K7 or K4,4 as a minor.

X Marks the Spot

As with Hadwiger’s Conjecture, our next conjecture also
deals with coloring but adds graph products to the mix. All
the references in this section can be found in three surveys
on the conjecture: [29, 35, 46].

A graph product makes new graphs from old. We con-
sider one of the best known products: the categorical
product (which is also referred to as the tensor or Kro-
necker product). For graphs G and H, define G 9 H to
have vertex set V(G) 9 V(H), with (a, b) adjacent to
(c, d) if a is joined to c in G, and b is joined to d in H. See
Figure 4, which motivates the notation for this product.

Hedetniemi’s Conjecture yields a simple formula for the
chromatic number of the categorical product; it was posed
by him in 1966 [17] while he was a graduate student.

Hedetniemi’s Conjecture: For graphs G and H,

vðG �H Þ ¼ minfvðGÞ; vðH Þg:

The conjecture was stated independently by Burr, Erd}os,
and Lovász in 1976. Most experts think the conjecture is

true. For starters, G 9 H may be visualized as replacing
each vertex v of G by a copy of the vertices of H. Label
these vertices as (v, h). Then add the edges (v, h) (w, j) just
if v is adjacent to w and h is adjacent to j. See Figure 5. Now
take a proper coloring of G. For each vertex v of G, color all
vertices (v, h) with the same color as v. Since (v, h) and
(v, h0) are not adjacent, this is also a proper coloring of
G 9 H. Hence, v(G 9 H) B v(G). The same construction,
but considering vertices of H, gives v(G 9 H) B v(H).

The conjecture has a convenient restatement that is often
used. For a positive integer n, let H(n) denote the following
statement:

If v(G 9 H) = n, then either v(G) = n or v(H) = n.

Hedetniemi’s Conjecture is equivalent to H(n) being true
for all n C 1, which permits an incremental approach.
Indeed, it is not too difficult to show that H(1) and H(2) are
true. El-Zahar and Sauer proved in 1985 that H(3) is true,
but little is known about H(n) for n [ 3.

Burr, Erd}os, and Lovász in their 1976 paper showed that
if G is a graph in which every vertex lies in a complete
subgraph of order n, and H is a connected graph with
v(G 9 H) = n, then min{v(G) , v(H)} = n. (In Figure 5, we
have that n = 2). This is not too surprising, since the
presence of Kn in G is a trivial reason why v(G) C n. Proofs
of the conjecture, or the search for a counterexample,
therefore must consider graphs that have large chromatic
number and small complete subgraphs.

The strangest result arising out of the work on the
conjecture has to do with a special case. Define the func-
tion

gðnÞ ¼ minfvðG �H Þ : vðGÞ ¼ vðHÞ ¼ ng:

It is known that g(1) = 1, g(2) = 2, g(3) = 3, and g(4) = 4.
Several authors discovered the striking fact that either g is
unbounded or g(n) B 9 for all n. Since Hedetniemi’s
Conjecture has received a lot of attention over the past
45 years, if there were a counterexample surely it would
have been found by now!

We mention in passing (and without explanation of the
jargon!) that Hedetniemi’s Conjecture is equivalent to the
meet-irreducibility of the complete graphs in the lattice of
cores. For this reason, the conjecture is of ample interest
not only to experts in graph coloring, but also to those
working on graph homomorphisms.

=

Figure 4. The graph K2 9 K2.

Figure 5. The graph P3 9 K3 is 2-colorable.
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The Long Arm of the Law

Many of us played games such as Cops and Robbers (or
other pursuit games) as children, and our next conjecture
considers such a game played on graphs. In the graph
game of Cops and Robbers there are two players, a team of
cops and a robber, who move from vertex to vertex along
edges in the graph or can pass. The game is played with
alternate moves of the players. The cops move first, by
choosing some set of vertices for their team to occupy. The
robber then chooses a vertex. The cops win if eventually
they capture or land on the vertex with the robber; the
robber wins if he can indefinitely evade capture. The game
has perfect information, in the sense that both players can
see and remember each other’s moves. Placing a cop on
each vertex provides an easy win for the cops. The mini-
mum number of cops needed to win the game is the cop
number of a graph. The reader may verify that the cop
number of the snark J5 in Figure 2 is 3.

As the cop number of a disconnected graph is the sum of
the cop numbers of its components, it is sensible to con-
sider only connected graphs. For functions f and g on
positive integers taking positive real values, we write
f = O(g) to mean that there is a constant d, such that for
large enough n, f(n) B dg(n).

Meyniel’s Conjecture: If G is a connected graph, then

cðGÞ ¼ Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV ðGÞj

p
:

Meyniel’s Conjecture states that about a constant multi-
ple of

ffiffiffi
n
p

many cops are sufficient to capture the robber in
a connected graph of order n (and there are examples of
graphs needing this many cops). Aigner and Fromme in
1984 proved that the cop number of a planar graph is at
most 3.

Meyniel’s Conjecture may be one of the lesser known
unsolved conjectures in graph theory, but it has received a
fair bit of recent attention. For further background on the
conjecture, see Chapter 3 of the book [3]. Meyniel’s Con-
jecture was communicated by Frankl [12], who could only
prove that

cðGÞ ¼ O n
log log n

log n

� �
:

To date the best available general bound is the following,
recently discovered by three independent sets of
researchers:

cðGÞ ¼ O
n

2ð1�oð1ÞÞ
ffiffiffiffiffiffiffiffiffi
log2 n
p

� �
:

Even to prove that cðGÞ ¼ Oðn1�eÞ for some positive e is
open! The conjecture was settled for bipartite graphs with
diameter 3, and Andreae proved it is true in graph classes
formed by avoiding a fixed graph as a minor (in fact, the
cop number is bounded by a constant in such graphs); see
Chapter 3 of [3].

House of Cards

The Reconstruction Conjecture has proved to be notori-
ously difficult and suggests how much more there is to
learn about graphs. The deck of a graph G is the multiset

consisting of all subgraphs of G formed by deleting a ver-
tex. Each such vertex-deleted subgraph is a card. See
Figure 6 for an example.

The conjecture was posed independently by Kelly in
1957 [22] and Ulam in 1960 [38].

Reconstruction Conjecture: If two graphs with at least
three vertices have the same deck, then they are
isomorphic.

It is easy to see that K2 and its complement have the
same deck: hence the modest requirement on the order of
the graph. Given a deck, we immediately know the order
of G, and some thought yields the number of edges and the
degrees of all the vertices. For references to results on the
conjecture, see the survey [4]. Kelly proved that discon-
nected graphs, trees, and regular graphs are reconstructible
from their deck. McKay showed that the conjecture is true
for all graphs with at most 11 vertices. The conjecture also
holds for outerplanar graphs. Bollobás proved that with
probability tending to 1 as n tends to infinity, there exist
three cards that determine the graph. Surprisingly, the
conjecture remains open for planar graphs.

Go with the Flow

We may view the edges of a graph as a series of pipes
transporting some liquid (or electric current, or information)
between nodes. Usually edges have a maximum capacity for
carrying materials, and what enters a node must equal what
must come out. Further, these flows, as they are called,
usually move in one direction, so some orientation must be
assigned to the edges of the network. Flows have deep
connections to the Four-Color Theorem, and Tutte’s con-
jecture on flows extends these connections beyond the
context of planar graphs.

To be more precise, an integer flow on a graph is a pair
consisting of an orientation of the graph and an assignment
of integer weights to the edges such that for each vertex,
the total weight on exiting edges equals the total weight on
entering edges. It is a k-flow if all weights have absolute
value less than k, and it is nowhere-zero if weight 0 is never
used. See Figure 7. Note that every k-flow is a (k + 1)-flow.

Nowhere-zero k-flows were introduced by Tutte [37] as a
generalization of face-coloring problems in planar graphs
(where we color the faces so that no adjacent faces receive

, , ,

Figure 6. Which graph has this deck?

, ,

...

Figure 7. Find nowhere-zero 4-flows for the graphs in this

sequence. Do CDCs help?
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the same color). The famous Four-Color Theorem is equiv-
alent to saying that every planar bridgeless graph has a
nowhere-zero 4-flow. Unfortunately, this result cannot be
extended to arbitrary bridgeless graphs, since the Petersen
graph has no nowhere-zero 4-flow. See Figure 8.

Tutte in 1954 therefore considered 5-flows instead and
conjectured the following in [37].

Tutte’s 5-Flow Conjecture: Every bridgeless graph has a
nowhere-zero 5-flow.

The conjecture holds for planar graphs, using the duality
between flows and coloring and the Five-Color Theorem
(every planar graph is 5-colorable). We may therefore view
the 5-flow conjecture as a generalization of the Five-Color
Theorem to graphs that are not planar.

Jaeger [19] proved that every bridgeless graph has a
nowhere-zero 8-flow. Seymour [31] improved upon this
result by showing that bridgeless graphs have nowhere-zero
6-flows. Celmins [6] proved that a smallest counterexample
to the conjecture must be a cyclically 5-edge-connected
snark with girth at least 7 (see also the Cycle Double Cover
Conjecture). The conjecture can be reduced to the 3-regular
case, and Steinberg [33] proved the conjecture for graphs
that embed on the projective plane.

You Are So Square

We state another conjecture about products, this time
related to domination. (No, not the other kind!) For graphs
G and H, define the Cartesian product of G and H, written
G(H , to have vertex set V(G) 9 V(H), with (a, b) adjacent
to (c, d) if a = c and b is joined to d in H, or if b = d and
a is joined to c in G. See Figure 9, which motivates the
notation for this product.

In a graph G, a set S of vertices is a dominating set if
every vertex not in S has a neighbour in S. The domination
number of G, written c(G), is the minimum size of a
dominating set. For example, see Figure 10, where we note
that cðC4(C4Þ ¼ cðC4ÞcðC4Þ ¼ 4:

The following was proposed by Vizing in 1968 [39].

Vizing’s Conjecture: For graphs G and H,

cðG(H Þ� cðGÞcðHÞ:

This is a conjecture everyone thinks is true. All the ref-
erences that follow appear in [5].

An important theorem from 1979 was not appreciated (or
was completely overlooked) for the next 16 years. During
some collaboration of Rall and the second author of this
article, they noticed Math Review MR0544028 of a paper by
Barcalkin and German [2]. From that brief description, in a
couple of days Hartnell and Rall were able to reconstruct the
mathematical arguments of the paper (rather than translate
the paper, which was in Russian). The results in [2] reduced
much of the work from 1968 through 1996 to a corollary of
their main theorem!

As with several of the conjectures considered so far, many
experts think that if the conjecture were false then a minimal
counterexample would have been found. But since a proof
has not been found, where would one look for a coun-
terexample? For example, a minimal counterexample to
Vizing’s conjecture must have domination number larger
than 3; adding an edge between two nonadjacent vertices
decreases the domination number; and every vertex belongs
to a minimum dominating set.

Don’t Get Cross

Our final conjecture has its origins in a 1940s labor camp in
Budapest. The famousmathematician Turán was imprisoned
there, watching trucks move bricks along rails from kilns to
storage areas. Every once in a while, two trucks would cross
each other’s paths and the bricks would come crashing
down. No doubt as a kind of liberation from the monotony,
Turán began thinking about minimizing the crossings of the
trucks, assuming the general situation that there were m kilns
and n trucks. For more on the history of the problem see [47].

We may formalize Turán’s problem in the following way.
The crossing number of G, written cr(G), is the minimum
number of pairwise crossings of edges in a drawing of G in the
plane. Some readers may recall the Three Utilities Problem,
which reduces to showing that K3,3 has crossing number 1.

Crossing numbers tend to be hard to calculate exactly,
because of the exponentially many drawings any given
graph may possess. The following conjecture is named
after Zarankiewicz who published a flawed proof of it [44],
but it is also called Turán’s Brick Factory Conjecture (see
[14] for a survey of the history of the conjecture).

Figure 8. The Petersen graph.

=

Figure 9. The graph K2(K2:

Figure 10. Find a dominating set of size 4 in C4(C4:
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Zarankiewicz’s Conjecture:

crðKm;nÞ ¼
m

2

j k m� 1

2

� �
n

2

j k n� 1

2

� �
:

The best exact result on the conjecture was published by
Kleitman in 1970 [23] who confirmed it for n B 6. Kleitman
also proved that the smallest counterexample, if it exists,
must occur for m and n odd. Woodall [43] computed the
crossing numbers cr(K7,7) = 81 and cr(K7,9) = 144. Hence,
the smallest unsolved cases are for K7,11 and K9,9. As
b42cb32cb52cb42c ¼ 8, the drawing in Figure 11 achieves the
conjectured bound.

A recent result in [7] states that if for a fixed m, the con-
jecture holds for all values n smaller than some constant
depending on m, then the conjecture holds for all n. Hence,
for each m there is an algorithm that verifies the conjecture
for all n or gives a counterexample.

Epilogue
Now it is your turn to finish this survey and solve (or partially
solve) one or more of these conjectures in graph theory. And
when you are done with those, we have a few others that
might keep you busy, such as Barnette’s Conjecture, the
Berge-Fulkerson Conjecture, the Erd}os-Sós Conjecture, the
Middle Levels Conjecture, or Sheehan’s Conjecture.

Our version of another Hamming quote [16] provides
our parting words:

‘‘Go forth, then, and doodle great work!’’
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