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Abstract

We prove that if a rayless tree T is mutually embeddable and non-isomorphic with another rayless tree,
then T is mutually embeddable and non-isomorphic with infinitely many rayless trees. The proof relies on
a fixed element theorem of Halin, which states that every rayless tree has either a vertex or an edge that is
fixed by every self-embedding. We state a conjecture that proposes an extension of our result to all trees.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A graph G embeds in a graph H if G is isomorphic to an induced subgraph of H . If G and
H are graphs, then we write G � H if G embeds in H . We write G ∼ H if G � H and H � G,
and we say that G and H are mutually embeddable.

Mutually embeddable finite graphs are necessarily isomorphic, but this is no longer the case
for infinite graphs. For example, if the graph G is a disjoint union of cliques, one of each fi-
nite cardinality, then G is mutually embeddable with the graph consisting of a disjoint union of
cliques with every even cardinality. In [1], we give many examples of mutually embeddable non-
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Fig. 1. Examples of countably infinite trees T with m(T ) = 1, ℵ0, and 2ℵ0 , respectively.

isomorphic graphs satisfying strong structural properties. On the other hand, the infinite two-way
path is not mutually embeddable with any graph not isomorphic to it.

Define ME(G) to be the set of isomorphism types of graphs H so that G ∼ H . Define the car-
dinal m(G) = |ME(G)|. Note that |ME(G)| � 2|V (G)|, so that m(G) is well-defined. For instance,
with |V (G)| = ℵ0 (that is, the cardinality of the set of natural numbers), there are examples of
graphs where m(G) is one of 1, ℵ0, or 2ℵ0 . See Fig. 1. As first stated in [1], we do not know of
any example with m(G) finite but larger than 1. The structure of such graphs may prove to be
intriguing if they exist.

If G and H are mutually embeddable, then composing an embedding of G into H with an
embedding of H into G gives a self-embedding of G. Thus, the structure of the monoid of self-
embeddings of G may help us to determine the value of m(G). A tree is rayless if it does not
embed an infinite path. For example, each tree in Fig. 1 is rayless. Self-embeddings, automor-
phisms, and various fixed element properties of rayless trees have been well-studied; for example,
see [2–4,6]. Using such properties we are able to prove the following result for rayless trees, and
we in fact conjecture an extension to all trees.

Theorem 1. If T is a rayless tree, then m(T ) is 1 or infinite.

Tree Alternative Conjecture. If T is a tree, then m(T ) is 1 or infinite.

The rest of the paper is organized as follows. In Section 2, we prove a version of the Tree
Alternative Conjecture for rooted rayless trees; see Theorem 2. In the final section we use a fixed
element theorem of Halin’s to derive Theorem 1 from Theorem 2. This suggests that if for all
graphs G we have that m(G) = 1 or m(G) � ℵ0, then a proof may use interesting fixed element
properties of graphs.

All the graphs we consider are undirected and simple. If graphs G and H are isomorphic, then
we write G ∼= H . We use the notation of [5] for graph theory. We work within ZFC; no additional
set-theoretic axioms will be assumed. The set of natural numbers, considered as an ordinal, will
be written as ω.

2. Mutually embeddability of rooted rayless trees

The class of rooted rayless trees consists of all pairs (T , r), where T is a rayless tree and r is
some fixed vertex of T called the root of T . An embedding of rooted trees f : (T , r) → (T ′, r ′)
is an embedding of T into T ′ so that f (r) = r ′; we write (T , r) � (T ′, r ′). An isomorphism of
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rooted trees is a bijective embedding of rooted trees. If there is an isomorphism of rooted trees
(T , r) and (T ′, r ′), then we write (T , r) ∼= (T ′, r ′). The cardinal m(T , r) is defined in the obvious
way. The main goal of this section is to prove the following theorem.

Theorem 2. If (T , r) is a rayless rooted tree, then m(T , r) is either 1 or is infinite.

Before we give a proof of Theorem 2, we first introduce the following notation that will
simplify matters. Let {(Ti, ri): i ∈ I } be a family of rayless rooted trees, and let r be a vertex not
in V (Ti), for all i ∈ I . Define∑

i∈I

(Ti, ri)

to be the rooted tree (T , r) which has as its root the vertex r, so that r is joined to each root ri
of Ti , for all i ∈ I . We say that (T , r) is the sum of the (Ti, ri), and each (Ti, ri) is a summand
of (T , r).

Note that if (T , r) is a rooted tree, then

(T , r) =
∑
i∈I

(Ti, ri),

where the summands Ti are the connected components of T − r, and ri is the unique vertex of Ti

joined to r. Further, this representation of (T , r) is unique, up to a permutation of the summands.
Clearly, (T , r) is rayless if and only if each summand of (T , r) is rayless.

If

f :
∑
i∈I

(Ti, ri) →
∑
j∈J

(Tj , rj )

is an embedding, then f induces an injection from I into J , written f̂ , defined so that if i ∈ I ,
f̂ (i) is the unique j ∈ J such that f (Ti, ri) is contained in (Tj , rj ) (hence, we assume that
f (ri) = rj ). If f is an isomorphism, then f̂ is a bijection.

We next prove two lemmas about rooted trees that will be used in the proof of Theorem 2.

Lemma 1. Let

(T , r) =
∑
i∈I

(Ti, ri)

be a rooted tree such that for some k ∈ I, m(Tk, rk) = α � ℵ0. Then m(T , r) � α.

Proof. Let

ME(Tk, rk) = {
(Tk,n, rk,n): n ∈ α

}
.

Define the rayless rooted tree

(Tn, r) =
∑
i∈I

(Xi, xi),

where

(Xi, xi) =
{

(Ti, ri) if (Ti, ri) � (Tk, rk);
(T , r ) if (T , r ) ∼ (T , r ).
k,n k,n i i k k
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Note that for all n ∈ α, we have (Tn, r) ∼ (T , r) since (Xi, xi) ∼ (Ti, ri) for all i ∈ I . For m �= n,
(Tm, r) � (Tn, r), since (Tn, r) contains summands of the form (Tk,n, rk,n) and (Tm, r) does not.
Hence, the family {(Tn, r): n ∈ α} is a witness to m(T , r) � α. �
Lemma 2. Let

(T , r) =
∑
i∈I

(Ti, ri)

be a rooted tree such that m(Ti, ri) = 1, for every i ∈ I . Then m(T , r) = 1 or m(T , r) � ℵ0.

Proof. Suppose for a contradiction that 1 < m(T , r) < ℵ0, and let

(T ′, r ′) =
∑
j∈J

(T ′
j , r

′
j )

be a rooted tree not isomorphic to (T , r) such that (T ′, r ′) ∼ (T , r). Fix embeddings f : (T , r) →
(T ′, r ′), g : (T ′, r ′) → (T , r), and consider the injections f̂ : I → J , ĝ :J → I . We first prove the
following claim.

Claim. If for some j∗ ∈ J , the summand (T ′
j∗ , r ′

j∗) of (T ′, r ′) is not isomorphic as a rooted tree
to any summand of (T , r), then m(T , r) � ℵ0.

Proof. Without loss of generality, we may assume that I ∩ ω = ∅. For an integer n � 1, define
Ln = {1, . . . , n}, and let L0 = ∅. Define for n ∈ ω

(Sn, r) =
∑

i∈(I∪Ln)

(Xi, xi),

where (Xi, xi) = (Ti, ri) if i ∈ I , and (Xi, xi) = (T ′
j∗ , r ′

j∗) if i ∈ Ln. Then (S0, r) = (T , r) and
(Sn, r) � (Sn+1, r) for all n � 0. We show that (Sn+1, r) � (Sn, r).

Let I ′ = {ik: k ∈ ω} be the subset of I defined by i0 = ĝ(j∗), and im = ĝf̂ (im−1) for m � 1. If
for some m > 0 we have that im = i0, then g and f (gf )m−1 induce mutual embeddings between
the non-isomorphic rooted trees (T ′

j∗ , r ′
j∗) and (Tĝ(j∗), rĝ(j∗)), contradicting the hypothesis that

m(Tĝ(j∗), rĝ(j∗)) = 1. Thus, im �= i0 for all m > 0, and since ĝf̂ : I → I is injective, we have that
im �= im′ for all m �= m′. Therefore, we can combine the restriction of gf to∑

i∈I ′
(Ti, ri)

with the restriction of g to (Xn+1, xn+1) = (T ′
j∗ , r ′

j∗), and the identity on the remainder of
(Sn+1, r) to obtain an embedding of (Sn+1, r) in (Sn, r). Thus, we have that (Sn, r) ∼ (S0, r) =
(T , r) for all n � 0. Since (Sn, r) contains exactly n summands isomorphic to (T ′

j∗ , r ′
j∗), the

rooted trees (Sn, r), n ∈ ω, are pairwise non-isomorphic. The claim follows. �
Consider the set {(Xk, xk): k ∈ K} of isomorphism types of the rooted trees (Ti, ri), and let

p : I → K be the surjection defined by (Ti, ri) ∼= (Xp(i), xp(i)). By the claim, there is a map
q :J → K such that (T ′

j , r
′
j )

∼= (Xq(j), xq(j)), for all j ∈ J . Therefore, m(T ′
j , r

′
j ) = 1, for all

j ∈ J . If q were not surjective, then reversing the role of (T , r) and (T ′, r ′), the claim would
give that

m(T , r) = m(T ′, r ′) � ℵ0.
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Thus, q is surjective since 1 < m(T , r) < ℵ0 by assumption.
We have that

(T , r) =
∑
i∈I

(Xp(i), xp(i))

and

(T ′, r ′) =
∑
j∈J

(Xq(j), xq(j)).

Since these two rooted trees are not isomorphic, there exists some k ∈ K such that |p−1(k)| �=
|q−1(k)|. Without loss of generality, we may assume that |p−1(k)| < |q−1(k)|. Define

(T ′′, r) =
∑

i∈(I\p−1(k))

(Ti, ri).

We will show that (T ′′, r) ∼ (T , r).
Define

J0 = {
j ∈ J : q(j) = k and p

(
ĝ(j)

) �= k
}
.

Since |p−1(k)| < |q−1(k)|, we have that J0 �= ∅. We define the sets I0 = ĝ(J0) ⊆ I and Im =
ĝf̂ (Im−1) ⊆ I for m � 1. Let

I ′ =
⋃
i∈ω

Im.

By reasoning similar to that given in the proof of the claim, we have that Im ∩ Im′ = ∅, whenever
m �= m′. Sequences of composition of the maps f and g demonstrate that (Xk, xk) � (Ti, ri)

whenever i ∈ I ′. Moreover for some m, we have that∣∣∣∣
⋃

0�j�m−1

Ij

∣∣∣∣ �
∣∣p−1(k)

∣∣.

Indeed if |p−1(k)| < ℵ0 we can put m = |p−1(k)|, and if |p−1(k)| � ℵ0, then since |q−1(k) \
J0| � |p−1(k)|, we have |J0| = |q−1(k)| whence

|I0| = |J0| =
∣∣q−1(k)

∣∣ >
∣∣p−1(k)

∣∣.
For this integer m, define

I ′′ =
⋃

0�j�m−1

Ij

and fix an injection φ :p−1(k) → I ′′. We may then combine embeddings hi : (Ti, ri) →
(Tφ(i), rφ(i)), where i ∈ p−1(k), with the restriction of (gf )m to∑

i∈I ′
(Ti, ri)

and the identity on the remainder of (T , r) to define an embedding of (T , r) in (T ′′, r).
Since (T ′′, r) � (T , r), we then have (T ′′, r) ∼ (T , r). However, since (T , r) has sum-
mands isomorphic to (Xk, xk) and (T ′′, r) does not, the claim applied to (T ′′, r) gives that
m(T , r) = m(T ′′, r) � ℵ0, which contradicts our assumption that m(T , r) < ℵ0. �
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With Lemmas 1 and 2 in hand, we now turn to the proof of Theorem 2.

Proof of Theorem 2. Suppose for a contradiction that there exists a rooted rayless tree (T , r)

such that 1 < m(T , r) < ℵ0. By Lemmas 1 and 2, there is some summand (T1, r1) of (T , r)

satisfying m(T1, r1) ∈ (1,ℵ0). By repeated application of Lemmas 1 and 2, we may recursively
choose a sequence ((Ti, ri): i ∈ ω), with (T0, r0) = (T , r), and where (Ti+1, ri+1) is a summand
of (Ti, ri) such that m(Ti+1, ri+1) ∈ (1,ℵ0). But then the path in T beginning with r0 and whose
remaining vertices are the ri constitutes a ray in T , which is a contradiction. �
3. Mutual embeddability of rayless trees

Define a fixed vertex u of a graph G to be one with the property that for all self-embeddings
f of G, f (u) = u. Define a fixed edge uv of G to be one with the property that for all self-
embeddings of G, {f (u), f (v)} = {u,v}. The following “fixed element” theorem was first proved
by Halin [2], and will be used in the proof of Theorem 1.

Theorem 3. If T is a rayless tree, then there is either a vertex or an edge fixed by every self-
embedding of T .

Note that the maps that we refer to as self-embeddings are referred to as endomorphisms in [2].

Proof of Theorem 1. Suppose that m(T ) � 2. By Theorem 3, there exists a fixed vertex u or a
fixed edge e = uv of T . Consider the rooted tree (T ,u). We will use Theorems 2 and 3 to prove
that in both cases we have that:

(a) m(T ,u) � ℵ0.
(b) If {(Ti, ui): i ∈ ω} is a family of pairwise non-isomorphic rooted trees mutually embeddable

with (T ,u), then {Ti : i ∈ ω} is a family of rayless trees mutually embeddable with T , with
the additional property that for all i ∈ ω, there is at most one j ∈ ω such that i �= j and
Ti

∼= Tj .

Once items (a) and (b) are proven, it will follow that m(T ) is infinite, and our proof of Theo-
rem 1 will be concluded.

To prove item (a), we argue as follows. As m(T ) � 2, let T ′ be a rayless tree that is non-
isomorphic and mutually embeddable with T . Then there exist embeddings f :T → T ′ and
g :T ′ → T . If gf (u) = u, then f and g act as mutual embeddings between the non-isomorphic
rooted trees (T ,u) and (T ′, f (u)). Hence, m(T ,u) � ℵ0 by Theorem 2.

Otherwise, since gf is a self-embedding of T and gf (u) �= u, we are dealing with the case
where uv is an edge fixed by all self-embeddings of T , where gf (u) = v and gf (v) = u. There-
fore, f and gfg act as mutual embeddings between the two rooted trees (T ,u) and (T ′, f (u)),

which again implies that m(T ) � ℵ0.
We prove item (b) by contradiction, assuming that there are distinct i, j, k ∈ ω such that there

exist isomorphisms hij :Ti → Tj and hik :Ti → Tk . Since (Ti, ui), (Tj , uj ), and (Tk, uk) are mu-
tually embeddable with (T ,u), there exist embeddings fi :T → Ti , gj :Tj → T , and gk :Tk → T

such that

fi(u) = ui, gj (uj ) = u, gk(uk) = u. (1)
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Fig. 2. Maps in the proof of Theorem 1.

See Fig. 2.
Since (Ti, ui), (Tj , uj ), and (Tk, uk) are pairwise non-isomorphic as rooted trees, we have that

hij (ui) �= uj and hik(ui) �= uk . This implies by (1) that gjhij fi(u) �= u, and that gkhikfi(u) �= u.
Therefore, we are in the case when uv is a fixed edge of T , and both self-embeddings gjhij fi

and gkhikfi interchange u and v. Hence,

gjhij fi(v) = u, gkhikfi(v) = u. (2)

Equations (1) and (2) imply that

hij

(
fi(v)

) = gj
−1(u) = uj , hik

(
fi(v)

) = gk
−1(u) = uk. (3)

Equations (1)–(3) together imply that

hikhij
−1(uj ) = uk.

Therefore, hikhij
−1 is an isomorphism from Tj to Tk which maps uj to uk , contradicting the fact

that (Tj , uj ) and (Tk, uk) are non-isomorphic as rooted trees. �
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