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Abstract. We introduce a new graph parameter called the burning number,
inspired by contact processes on graphs such as graph bootstrap percolation,
and graph searching paradigms such as Firefighter. The burning number mea-
sures the speed of the spread of contagion in a graph; the lower the burning
number, the faster the contagion spreads. We provide a number of properties
of the burning number, including characterizations and bounds. The burning
number is computed for several graph classes, and is derived for the graphs
generated by the Iterated Local Transitivity model for social networks.

1. Introduction

The spread of social influence is an active topic in social network analysis; see,
for example, [4, 9, 14, 15, 19, 21]. A recent study on the spread of emotional
contagion in Facebook [17] has highlighted the fact that the underlying network
is an essential factor; in particular, in-person interaction and nonverbal cues are
not necessary for the spread of the contagion. Hence, agents in the network spread
the contagion to their friends or followers, and the contagion propagates over time.
If the goal was to minimize the time it took for the contagion to reach the entire
network, then which agents would you target with the contagion, and in which
order?
As a simplified, deterministic approach to these questions, we consider a new

approach involving a graph process which we call burning. Burning is inspired by
graph theoretic processes like Firefighting [5, 8, 11], graph cleaning [1], and graph
bootstrap percolation [3]. There are discrete time-steps or rounds. Each node
is either burned or unburned ; if a node is burned, then it remains in that state
until the end of the process. In every round, we choose one additional unburned
node to burn (if such a node is available). Once a node is burned in round t, in
round t + 1, each of its unburned neighbours becomes burned. The process ends
when all nodes are burned. The burning number of a graph G, written by b(G),
is the minimum number of rounds needed for the process to end. For example,
it is straightforward to see that b(Kn) = 2. However, even for a relatively simple
graph such as the path Pn on n nodes, computing the burning number is more
complex; in fact, b(Pn) = ⌈n1/2⌉ as stated below in Theorem 9.
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Burning may be viewed as a simplified model for the spread of social contagion
in a social network such as Facebook or Twitter. The lower the value of b(G), the
faster it is to spread such contagion in the graph G. Suppose that in the process
of burning a graph G, we eventually burned the whole graph G in k steps, and
for each i, 1 ≤ i ≤ k, we denote the node that we burn in the i-th step by xi.
We call such a node simply a source of fire. The sequence (x1, x2, . . . , xk) is called
a burning sequence for G. With this notation, the burning number of G is the
length of a shortest burning sequence for G; such a burning sequence is referred
to as optimal. For example, for the path P4 with node set {v1, v2, v3, v4}, the
sequence (v2, v4) is an optimal burning sequence; see Figure 1. Note that for a
graph G with at least two nodes, we have that b(G) ≥ 2.

Figure 1. Burning the path P4 (the open circles represent burned nodes).

The goal of the current paper is to introduce the burning number and explore
its core properties. A characterization of burning number via a decomposition into
trees is given in Theorem 4. As proven in [7], computing the burning number of a
graph is NP-complete, even for trees. As such, we provide bounds on the burning
number in terms of spanning trees, which are useful in many cases when computing
the burning number. See Lemma 11 for bounds on the burning number. We
compute the burning number on the Iterated Local Transitivity model for social
networks (introduced in [6]); see Theorem 22. In the final section, we summarize
our results and present open problems for future work.

2. Properties of the burning number

In this section, we collect a number of results on the burning number, ranging
from characterizations, bounds, to computing the burning number on certain kinds
of graphs. We first need some terminology. If G is a graph and v is a node of G,
then the eccentricity of v is defined as max{d(v, u) : u ∈ V (G)}. The radius of
G is the minimum eccentricity over the set of all nodes in G. The center of G
consists of the nodes in G with minimum eccentricity. Given a positive integer k,
the k-th closed neighborhood of v is defined to be the set {u ∈ V (G) : d(u, v) ≤ k}
and is denoted by Nk[v]; we denote N1[v] simply by N [v]. We sometimes use the
notation NG

k [v] to emphasize that we consider the k-th closed neighbourhood of
node v in a specified graph G.
Suppose that (x1, x2 . . . , xk) is a burning sequence for a given graph G. For

1 ≤ i ≤ k, the fire started at xi will burn only all the nodes within distance k − i

from xi by the end of the k-th step. On the other hand, every node v ∈ V (G)
must be either a source of fire, or burned from at least one of the sources of fire
by the end of the k-th step. In other words, any node of G must be an element of
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Nk−i[xi], for some 1 ≤ i ≤ k. Moreover, for each pair i and j, with 1 ≤ i < j ≤ k,
we must have d(xi, xj) ≥ j − i. Since, otherwise, if d(xi, xj) = l < j − i, then xj

will be burned at stage l+ i (< j), which is a contradiction. Therefore, we can see
that (x1, x2, . . . , xk) forms a burning sequence for G if and only if, for each pair i
and j, with 1 ≤ i < j ≤ k, d(xi, xj) ≥ j − i, and the following set equation holds:

Nk−1[x1] ∪Nk−2[x2] ∪ . . . ∪N0[xk] = V (G). (1)

A covering of G is a set of subsets of the nodes of G whose union is V (G). The
above observation, shows that the burning problem is basically a covering problem
using closed neighbourhoods with a restriction on their radius. Hence, it seems
that by finding a covering for a graph G using a limited number of connected
subgraphs with restricted radius, we may find a bound on the burning number of
G, as the following theorem shows.

Theorem 1. If in a graph G there exists a collection of connected subgraphs
{C1, C2, . . . , Ct}, each of radius at most k, which cover all the nodes of G, then
b(G) ≤ t+ k.

Proof. We define a burning sequence (x1, x2, . . . , xt′+k′), with t′ ≤ t and k′ ≤ k,
for G as follows. Let x1 be a center of the induced subgraph G[C1]. Then for
i ≥ 2, we let xi be a central node in Cj, with j ≥ i, if none of the central nodes
of Cj are burned before the i-th step, where j is the smallest index that satisfies
this condition. We continue to choose xi’s by the above rule until at some step
t′ ≤ t, by burning x1, x2, . . . , xt′ , each Ci, 1 ≤ i ≤ t contains a burned center.
Now, for j ≥ 1, we choose xt′+j to be a node in G that is not burned before the

(t′+j)-th step. Since the radius of each Ci is at most k, then for some k′ ≤ k, after
k′ more steps every node in G must be burned. Thus, b(G) ≤ t′ + k′ ≤ t+ k. �

We present another bound for the burning number of a graph using coverings.
The proof is analogous to the one of Theorem 1, and so is omitted.

Theorem 2. If {C1, C2, . . . , Ct} is a covering of the nodes of a graph G, where
each Ci is a connected subgraph of radius at most k− i, and t ≤ k, then b(G) ≤ k.

We have the following immediate corollary.

Corollary 3. If (x1, x2, . . . , xk) is a sequence of nodes in a graph G, such that
Nk−1[x1] ∪Nk−2[x2] ∪ . . . ∪N0[xk] = V (G), then b(G) ≤ k.

Proof. Set Ci = Nk−i[xi], for 1 ≤ i ≤ k, and apply Theorem 2. �

We consider the burning problem for connected graphs. Note that, as is the case
for many graph parameters, the burning number of a disconnected graph G with
components G1, G2, . . . , Gt, where t ≥ 2, does not necessarily satisfy the equality
b(G) = b(G1) + b(G2) + · · ·+ b(Gt). For example, the disjoint union of t paths of
order 2 has burning number t+ 1.
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The following theorem provides an alternative characterization of the burning
number. The depth of a node in a rooted tree is the number of edges in a shortest
path from the node to the tree’s root. The height of a rooted tree T is the greatest
depth in T . A rooted tree partition of G is a collection of rooted trees which are
subgraphs of G, with the property that the node sets of the trees partition V (G).

Theorem 4. Burning a graph G in k steps is equivalent to finding a rooted tree
partition into k trees T1, T2, . . . , Tk, with heights at most (k − 1), (k − 2), . . . , 0,
respectively such that for every 1 ≤ i, j ≤ k the distance between the roots of Ti

and Tj is at least |i− j|.

Proof. Assume that (x1, x2, . . . , xk) is a burning sequence for G. For all 1 ≤ i ≤ k,
after xi is burned, in each round t > i those unburned nodes of G in the (t− i)-
neighborhood of xi will burn. Hence, any node v is burned by receiving fire via
a shortest path of burned nodes from a fire source like xi (this path can be of
length zero in the case that v = xi). Hence, we may define a surjective function
f : V (G) → {x1, x2, . . . , xk}, with f(v) = xi if v receives fire from xi, where i

is chosen with the smallest index. Now {f−1(x1), f
−1(x2), . . . , f

−1(xk)} forms a
partition of V (G) such that G[f−1(xi)] (that is, the subgraph induced by f−1(xi))
forms a connected subgraph of G. Since every node v in f−1(xi) receives the fire
spread from xi through a shortest path between xi and v, by deleting extra edges
in G[f−1(xi)] we can make a rooted subtree of G, called Ti with root xi. Since
every node is burned after k steps, the distance between each node on Ti and xi

is at most k − i. Therefore, the height of Ti is at most k − i.

Figure 2. A rooted tree partition.

Conversely, suppose that we have a decomposition of the nodes of G into k

rooted subtrees T1, T2, . . . , Tk, such that for each 1 ≤ i ≤ k, Ti is of height at most
k − i. Assume that x1, x2, . . . , xk are the roots of T1, T2, . . . , Tk, respectively, and
for each pair i and j, with 1 ≤ i < j ≤ k, d(xi, xj) ≥ j − i. Then (x1, x2, . . . , xk)
is a burning sequence for G, since the distance between any node in Ti and xi is
at most k − i. Thus, after k steps the graph G will be burned. �

Figure 2 illustrates Theorem 4. The burning sequence is (x1, x2, x3). We have
shown the decomposition of G into subgraphs T1, T2, and T3 based on this burning
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sequence by drawing dashed curves around the corresponding subgraphs. Each
node has been indexed by a number corresponding to the step that it is burned.
The following corollary is useful for determining the burning number of a graph,

as it reduces the problem of burning a graph to burning its spanning trees. Note
that for a spanning subgraph H of G, it is evident that b(G) ≤ b(H). This
follows since, by equation (1), every optimal burning sequence for H induces a
node covering for V (G) = V (H), and therefore, by Corollary 3, induces a burning
sequence of at most the same length for G.

Corollary 5. For a graph G we have that

b(G) = min{b(T ) : T is a spanning subtree of G}.

Proof. By Theorem 4, we assume that T1, T2, . . . , Tk is a rooted tree partition of
G, where k = b(G), derived from an optimal burning sequence for G. If we take
T to be a spanning subtree of G obtained by adding edges between the Ti’s which
do not induce a cycle in G, then b(T ) ≤ k = b(G) ≤ b(T ), where the second
inequality holds since T is a spanning subgraph of G. �

A subgraph H of a graph G is called an isometric subgraph if for every pair of
nodes u and v in H , we have that dH(u, v) = dG(u, v). For example, a subtree of a
tree is an isometric subgraph. As another example, if G is a connected graph and
P is a shortest path connecting two nodes of G, then P is an isometric subgraph
of G. Let W5 be the wheel graph formed by adding a universal node to a 5-cycle.
Then, the 5-cycle C5 is an isometric subgraph ofW5, while b(C5) = 3 > 2 = b(W5).
Thus, we conclude that the burning number is not monotonic even on the isometric
subgraphs of a graph. However, the following theorem shows that the burning
number is monotonic on the isometric subgraphs in certain cases.

Theorem 6. Let H be an isometric subgraph of a graph G such that, for any node
x ∈ V (G) \ V (H), and any positive integer r, there exists a node fr(x) ∈ V (H)
for which Nr[x] ∩ V (H) ⊆ NH

r [fr(x)]. Then we have that b(H) ≤ b(G).

Proof. It suffices to show that for any optimal burning sequence of G such as
(x1, x2, . . . , xk) we can assign a burning sequence of length at most k to H . With-
out loss of generality, we may assume that |V (H)| > k (otherwise, H can be
burned in at most |V (H)| ≤ k steps).
We define the function f : {x1, x2, . . . , xk} → V (H) as follows. For 1 ≤ i ≤ k, if

xi ∈ V (H), then we define f(xi) = xi; otherwise, by assumption, there is a node
fk−i(xi) ∈ V (H) for which Nk−i[xi] ∩ V (H) ⊆ NH

k−i[fk−i(xi)]. In this case, we
define f(xi) = fk−i(xi). Since H is an isometric subgraph of G, then for each xi ∈
H , and for every node v ∈ Nk−i[xi] ∩ V (H), we have that dH(xi, v) = dG(xi, v) ≤
k− i. Thus, if f(xi) = xi, then Nk−i[xi]∩ V (H) = NH

k−i[xi] = NH
k−i[f(xi)]. Hence,
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we derive that

V (H) = V (G) ∩ V (H)

= (Nk−1[x1] ∪ . . . ∪N0[xk]) ∩ V (H)

= (Nk−1[x1] ∩ V (H)) ∪ . . . ∪ (N0[xk] ∩ V (H))

⊆ NH
k−1[f(x1)] ∪ . . . ∪NH

0 [f(xk)].

Therefore, {Nk−i[f(xi)]}
k
i=1 forms a covering for the node set of H , with k closed

neighbourhoods. Thus, by Corollary 3, we conclude that b(H) ≤ b(G). �

The following theorem shows that the isometric subtrees of a graph satisfy the
conditions in Theorem 6.

Theorem 7. If H is an isometric subtree of a graph G, then b(H) ≤ b(G).

Proof. By Theorem 6, it suffices to show that for any node x ∈ V (G) \V (H), and
any positive integer r, there exists a node fr(x) ∈ V (H) for which Nr[x]∩V (H) ⊆
NH

r [fr(x)].
Assume that Xr = Nr[x]∩V (H). If Xr is empty, then we can choose fr(x) to be

any node in H . If Xr = {v}, then we take fr(x) = v, and clearly Nr[x]∩ V (H) =
{v} ⊆ NH

r [v]. Hence, we assume that |Xr| ≥ 2. Since H is a tree, then there is
a unique path (consisting of the nodes in H only) between every pair of distinct
nodes in Xr ⊆ V (H). Let yr and zr be two nodes in Xr with the maximum
distance over all possible pairs of nodes in Xr, and let wr be a node in H that is
of almost equal distance with respect to yr and zr. That is, d(wr, yr) = d(wr, zr),
if d(yr, zr) is even, and d(wr, zr) = d(wr, yr) + 1 (without of loss of generality) in
the case that d(yr, zr) is odd. We claim that for each v ∈ Xr, d(v, wr) ≤ r.
Since, by assumption, H is an isometric subtree of G, then the length of the

path between yr and zr in H is equal to d(yr, zr) in G. Thus, we have that
d(yr, zr) = d(wr, yr) + d(wr, zr) ≤ d(x, yr) + d(x, zr). On the other hand, we have
that d(v, wr) ≤ d(zr, wr). To show this, we have to consider two possibilities;
either v is on the path in H that connects zr to wr, or it is not. If the former
holds, then obviously, d(v, wr) ≤ d(zr, wr). If the latter holds, then suppose u is
the first node that appears in both paths that connect v and zr to wr. If u = wr,
then we have that

d(v, wr) + d(wr, zr) = d(v, zr) ≤ d(yr, zr) = d(yr, wr) + d(wr, zr).

It implies that d(v, wr) ≤ d(yr, wr) ≤ d(zr, wr). If u 6= wr, then we have that

d(v, wr) + d(wr, yr) = d(v, yr) ≤ d(zr, yr) = d(zr, wr) + d(wr, yr).
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Hence, we again conclude that d(v, wr) ≤ d(zr, wr). Consequently, we have that

d(v, wr) ≤ d(zr, wr)

≤
d(yr, zr) + 1

2

≤
d(yr, x) + d(zr, x) + 1

2

≤
r + r + 1

2

= r +
1

2
.

Since d(v, wr) is an integer, it implies that d(v, wr) ≤ r. Therefore, if we define
fr(x) = wr, then Xr ⊆ NH

r [fr(x)]. Thus, the proof follows. �

However, the above inequality may fail for non-isometric subtrees. For example,
let H be a path of order 5, and form G by adding a universal node (that is, one
joined to all others) to H. Then b(H) = 3, but b(G) = 2.
The following corollary is an immediate consequence of Theorem 7.

Corollary 8. If T is a tree and H is a subtree of T , then we have that b(H) ≤
b(T ).

The burning number of paths is derived in the following result.

Theorem 9. For a path Pn on n nodes, we have that b(Pn) = ⌈n1/2⌉.

Proof. Suppose that (x1, x2, . . . , xk) is an optimal burning sequence for Pn. By
equation (1), and the fact that for a node v in a path, |Ni[v]| ≤ 2i+ 1 we derive
that

k
∑

i=1

(2(k − i) + 1) = (2(k − 1) + 2(k − 2) + . . .+ 2(1)) + k

= 2

(

k(k − 1)

2

)

+ k

= k2 ≥ n.

Since k is the minimum number satisfying this inequality, we conclude that
b(Pn) ≥ ⌈n1/2⌉.
Now, assume that k = ⌈n1/2⌉, and let Pn : v1, v2, . . . , vn. Then for 0 ≤ i ≤ k−2,

we choose xk−i = vn−i2−i. Also, if n ≥ (k − 1)2 + k, we take x1 = vn−(k−1)2−(k−1);
otherwise we take x1 = v1. Therefore, we can burn Pn in exactly k steps by the
burning sequence (x1, x2, . . . , xk). Hence, b(Pn) ≤ k. Thus, b(Pn) = ⌈n1/2⌉. �

We have the following immediate corollaries.

Corollary 10. (1) For a cycle Cn, we have that b(Cn) = ⌈n1/2⌉.
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(2) For a graph G of order n with a Hamiltonian (that is, a spanning) path,
we have that b(G) ≤ ⌈n1/2⌉.

The following theorem gives sharp bounds on the burning number.

Lemma 11. For any graph G with radius r and diameter d, we have that

⌈(d+ 1)1/2⌉ ≤ b(G) ≤ r + 1.

Proof. Assume that c is a central node of G with eccentricity r. Since every node
in G is within distance r from c, then the fire will spread to all nodes after r + 1
steps. Hence, r + 1 is an upper bound for b(G).
Now, let P be a path connecting two nodes u and v in G with d(u, v) = d. Since

P is an isometric subtree of G, and |P | = d + 1, by Theorem 7 and Theorem 9,
we conclude that b(G) ≥ b(P ) = ⌈(d+ 1)1/2⌉. �

The lower bound is achieved by paths. A graphG that is obtained by connecting
a disjoint union of paths {Pi}

t
i=1, with t ≥ 3, to a single node v is called a spider

graph. The subgraph of G that is induced by each Pi ∪ {v} is called an arm of
G. The maximum degree of G is the degree of the node v that is at least three.
If all the arms of a spider graph with maximum degree s are of the same length
r, then we denote such a spider graph by SP (s, r). The spider graph SP (s, 1)
is called a star graph and is denoted by K1,s mostly in graph theory. The upper
bound in Lemma 11 is achieved by spider graphs SP (s, r), where s ≥ r, and also
by perfect binary trees (as proven in [7]).

We finish this section by providing some bounds on the burning number in
terms of certain domination numbers. A k-distance dominating set for G is a
subset Dk ⊆ V (G) such that for every node u ∈ V (G) \Dk, there exists a node
v ∈ Dk for which d(u, v) ≤ k. The number of the nodes in a minimum k-distance
dominating set of G is denoted by γk(G) and we call it the k-distance domination
number of G. We have the following results on connections between burning and
distance domination.

Theorem 12. If G is a graph of order at least two and with burning number k,
then we have that k ≥ γk−1(G).

Proof. Assume that b(G) = k, for some positive integer k, and (x1, x2, . . . , xk) is
an optimal burning sequence for G. Then by equation (1), we know that every
node v in G must be within the distance k− i ≤ k−1 from one of the xi’s. Hence,
D = {x1, x2, . . . , xk} forms a (k − 1)-distance dominating set for G. �

We have the following lemma.

Lemma 13. For any graph G of order at least two, if m = mink≥1{γk(G) + k},
then m+1

2
≤ b(G) ≤ m.
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Proof. For simplicity, we denote γk(G) by γk. Assume that m = mink≥1{γk + k},
and b(G) = k0. Then by Theorem 12, b(G) = k0 ≥ γk0−1. Hence,

k0 + (k0 − 1) ≥ γk0−1 + k0 − 1 ≥ min
k≥1

{γk + k} = m.

Therefore, k0 ≥
m+1
2

.
On the other hand, assume thatDk = {x1, x2, . . . , xγk} is a minimum k-distance

dominating set for G. Then {S1, S2, . . . , Sγk}, with Si = {v ∈ V (G) : d(v, xi) ≤
k}, where 1 ≤ i ≤ γk, is a covering for the nodes of G which consists of γk subsets
each of radius at most k. Thus, by Corollary 1, we have that b(G) ≤ γk + k. The
result follows since this is true for any k ≥ 1. Therefore, we have that

m+ 1

2
≤ b(G) ≤ m.

�

We have the following fact about the k-distance domination number of graphs.

Theorem 14. [18] If G is a connected graph of order n, with n ≥ k + 1, then we
have that

γk(G) ≤
n

k + 1
.

We now provide the following general bound for the burning number of graphs.

Corollary 15. If G is a connected graph of order n, with n ≥ k+1, then we have
that

b(G) ≤ 2⌈n1/2⌉ − 1.

Proof. By Lemma 13 and Theorem 14, we derive that for any positive integer
k ≤ n− 1,

b(G) ≤ min
k≥1

{

n

k + 1
+ k

}

.

Now, the function n
k+1

+ k is minimized for k = ⌈n1/2⌉ − 1, and we note that
k ≤ n− 1. Therefore, we have that

b(G) ≤ min
k≥1

{

n

k + 1
+ k

}

≤
n

(⌈n1/2⌉ − 1) + 1
+ ⌈n1/2⌉ − 1

≤ 2⌈n1/2⌉ − 1.

�

We conjecture that for any connected graph G of order n, b(G) ≤ ⌈n1/2⌉.
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3. Nordhaus-Gaddum Type Results

Nordhaus and Gaddum [20] gave bounds on the sum and product of the chro-
matic number of a graph and its complement, in terms of the order of the graph.
Analogous relations have been discovered for many other graph parameters; see
[2] for a survey. In this section, we present Nordhaus-Gaddum type results for the
burning number.
We need first the following simple observation. Let G be a graph of order n ≥ 2

with maximum degree ∆. If G does not have a universal node, then we have that
b(G) ≤ n −∆; otherwise, b(G) = 2. It follows since we can take a node such as
v of degree ∆, and then, by burning v and V (G) \N [v], respectively, we burn all
nodes of G in at most 1 + |V (G) \N [v]| = n−∆ steps. If G contains a universal
node v, then by burning v and one of its neighbours respectively, we can burn G

in two steps (note that since G has an edge, we need at least two steps for burning
G). Thus, b(G) = 2. Also, we need the following theorem from [7].

Theorem 16 ([7]). A graph G satisfies b(G) = 2 if and only if G has order at
least 2, and has maximum degree n− 1 or n− 2.

We first present some bounds on the sum of the burning numbers of a graph
and its complement.

Theorem 17. If G is a graph of order n ≥ 2, then

4 ≤ b(G) + b(G) ≤ n + 2.

Proof. Since the burning number of any graph of order n ≥ 2 is at least two, then
by assumption, we conclude that b(G) + b(G) ≥ 2 + 2 = 4. Now, suppose that
b(G) = k, and (x1, x2, . . . , xk) is a burning sequence for G. Clearly, xk cannot be
adjacent to xi, for 1 ≤ i ≤ k − 2. Therefore, ∆(G) ≥ dG(xk) ≥ k − 2. There are
two possibilities: either G has an isolated node, or it does not.
If G does not have an isolated node, then G does not have a universal node.

Thus, by the above observation, b(G) ≤ n−∆(G) ≤ n−(k−2), and consequently,
we have that b(G) + b(G) ≤ n + 2.
If G contains an isolated node, then G must have a universal node. Therefore,

b(G) = 2, and clearly, b(G) ≤ n. Thus, b(G) + b(G) ≤ n+ 2.
�

The upper bound in Theorem 17 is the best possible, since for the complete
graph Kn we have that b(Kn) + b(Kn) = n + 2. However, there are cases where
the upper bound is strict; for example, b(Cn) + b(Cn) = ⌈n1/2⌉+ 3 < n+ 2. Also,
the lower bound in Theorem 17 is achieved for the complete graph K2, and star
graphs K(1, s).
We cite here two useful Nordhaus-Gaddum type results for distance domination.

Theorem 18. [2] For any graph G of order n ≥ k + 1 with k ≥ 2, we have that

γk(G) + γk(G) ≤ n+ 1
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and

γk(G)γk(G) ≤ n.

Theorem 19. [2] If G and G are both connected with n ≥ k+1 nodes for integer
k ≥ 2, then γk(G) + γk(G) ≤ n

k+1
+ 1 and γk(G)γk(G) ≤ n

k+1
.

We now have the following result for the product of the burning numbers of a
graph and its complement.

Theorem 20. For any graph G of order n, we have b(G)b(G) ≤ 2n, and the
equality is achieved by complete graphs.

Proof. First, by direct checking we can see that b(G)b(G) ≤ 2n, for any graph G

of order n ≤ 5. Now, assume that G is a graph of order n ≥ 6. By Lemma 13, we
know that b(G) ≤ γk(G) + k, for k ≥ 1. Thus, we have that

b(G)b(G) ≤ (γk(G) + k)(γk(G) + k)

≤ γk(G)γk(G) + kγk(G) + kγk(G) + k2.

If G and G are both connected and n ≥ k+1 where k ≥ 2, then using Theorem 19,
we have that

b(G)b(G) ≤ γk(G)γk(G) + kγk(G) + kγk(G) + k2

≤
n

k + 1
+ k

(

n

k + 1
+ 1

)

+ k2

= n+ k + k2.

By taking k = 2, the above inequality implies that b(G)b(G) ≤ n + 6.
If G is connected while G is disconnected, then, either G has a component with

at most two nodes, or every component of G has at least three nodes. If G has
an isolated node, then G must have a universal node. If G has a component with
exactly two nodes, then G must contain two nodes such as u and v (corresponding
to the component of G with exactly two nodes), such that G = N [u]∪{v}. Thus,
if G has a component with at most two nodes, then by Theorem 16, b(G) = 2,
and obviously b(G) ≤ n. Hence, in this case, b(G)b(G) ≤ 2n.
Now, suppose that G1, G2, . . . , Gt are the components of G with n1, n2, . . . , nt

nodes, respectively, where each ni ≥ 3. By Theorem 14, and taking k = 2, we
know that

γ2(G) = γ2(G1) + γ2(G2) + · · ·+ γ2(Gt)

≤
n1

3
+

n2

3
+ · · ·+

nt

3

=
n

3
.
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Also, note that b(G) ≤ 3, since we can easily see that in such a case the radius
of G is at most 2. Therefore, by Lemma 13 and Theorem 14, for k = 2, we have
that

b(G)b(G) ≤ 3(γ2(G) + 2)

≤ 3
(n

3
+ 2

)

= n+ 6,

and the proof follows. �

Corollary 21. If graphs G and G are connected graphs of order n ≥ 6, then
b(G) + b(G) ≤ 3⌈n1/2⌉ − 1, and b(G)b(G) ≤ n+ 6.

Proof. First, by Lemma 12, we have that

b(G) + b(G) ≤ (γk(G) + k) + (γk(G) + k)

= γk(G) + γk(G) + 2k.

By applying Theorem 19 with k = ⌈n1/2⌉ − 1, we conclude that

b(G) + b(G) ≤
n

k + 1
+ 1 + 2k

≤ 3⌈n1/2⌉ − 1.

Finally, b(G)b(G) ≤ n+ 6 was shown in the proof of Theorem 20. �

We conjecture that if G and G are both connected graphs of order n, then we
have that b(G)b(G) ≤ n + 4. It is straightforward to see that the bound in the
conjecture is tight for the cycle C5.

4. Burning in the ILT Model

The Iterated Local Transitivity (ILT) model was introduced in [6], and simulates
on-line social networks (or OSNs). The central idea behind the ILT model is what
sociologists call transitivity : if u is a friend of v, and v is a friend of w, then u is
a friend of w. In its simplest form, transitivity gives rise to the notion of cloning,
where u is joined to all of the neighbours of v. In the ILT model, given some initial
graph as a starting point, nodes are repeatedly added over time which clone each
node, so that the new nodes form an independent set. The only parameter of the
model is the initial graph G0, which is any fixed finite connected graph. Assume
that for a fixed t ≥ 0, the graph Gt has been constructed. To form Gt+1, for
each node x ∈ V (Gt), add its clone x′, such that x′ is joined to x and all of
its neighbours at time t. Note that the set of new nodes at time t + 1 form an
independent set of cardinality |V (Gt)|.
The ILT model shares many properties with OSNs such as low average distance,

high clustering coefficient densification, and bad spectral expansion; see [6]. The
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ILT model has also been studied from the viewpoint of competitive diffusion which
is one model of the spread of influence; see [22].
We have the following theorem about the burning number of graphs obtained

based on ILT model. Even though the graphs generated by the ILT model grow
exponentially in order with t, we see that the burning number of such networks
remains constant.

Theorem 22. Let Gt be the graph generated at time t ≥ 1 based on the ILT model
with initial graph G0. If G0 has an optimal burning sequence (x1, x2, . . . , xk) in
which xk has a neighbor that is burned in the (k− 1)-th step, then b(Gt) = b(G0).
Otherwise, b(Gt) = b(G0) + 1.

Proof. First, assume that (x1, x2, . . . , xk) is an optimal burning sequence for G0.
Since every node x′ ∈ V (Gt) \ V (G0), with t ≥ 1, is adjacent to a node in G0,
we have that (x1, x2, . . . , xk) is also a burning sequence for the subgraph of Gt

induced by V (Gt) \ (N
Gt [xk] \N

G0 [xk]). Thus, b(Gt) ≤ b(G0) + 1. With a similar
argument, we conclude that b(Gt) ≤ b(Gt−1) + 1.
On the other hand, we can easily see that Gt−1 is an isometric subgraph of

Gt, for any t ≥ 1. Also, for any x ∈ V (Gt−1) and its clone x′ ∈ V (Gt), we
have that NGt [x] = NGt [x′]. Thus, for any r ≥ 1, Nr[x

′] ∩ V (Gt−1) = NGt−1

r [x].
Therefore, by Theorem 6, b(Gt) ≥ b(Gt−1). Hence, by induction we conclude that
b(Gt) ≥ b(G0), for any t ≥ 1, and therefore, we have that either b(Gt) = b(G0),
or b(Gt) = b(G0) + 1. We now characterize where b(Gt) equals b(G0) or b(Gt) =
b(G0) + 1 as follows.
Let (x1, x2, . . . , xk) be an optimal burning sequence for Gt. By the following

algorithm, we find a burning sequence (y1, y2, . . . , yk) for Gt where at least all
the first k − 1 fire sources are in Gt−1. Note that, by above argument, either
b(Gt−1) = k or b(Gt−1) = k − 1.

Step 1. If x1 ∈ V (Gt−1), then we take y1 = x1. Otherwise, we set y1 = x,
where x is a node in V (Gt−1).
Go to Step 2.

Step 2. For each 2 ≤ i ≤ k − 1, we do the following steps.

Step 2.1. If xi ∈ V (Gt−1) and xi is not burned in step i − 1 by burning
y1, y2, . . . , yi−1, then we take yi = xi.

Step 2.2. If xi ∈ V (Gt−1) and xi is burned in step i−1 by burning y1, y2, . . . , yi−1,
then we set yi = x, where x is a node in V (Gt−1) that is not burned in step i− 1.
We are sure that such a node x exists, since b(Gt−1) ≥ k − 1.

Step 2.3. If xi is the clone of x′
i ∈ V (Gt−1), and x′

i is not burned in step i− 1
by burning y1, y2, . . . , yi−1, then we take yi = x′

i.

Step 2.4. If xi is the clone of x′
i ∈ V (Gt−1), and x′

i is burned in step i − 1
by burning y1, y2, . . . , yi−1, then we set yi = x, where x is a node in V (Gt−1)



14 ANTHONY BONATO, JEANNETTE JANSSEN, AND ELHAM ROSHANBIN

that is not burned in step i − 1. We are sure that such a node x exists, since
b(Gt−1) ≥ k − 1.
Go to Step 3.

Step 3. We perform the following steps, and we return the sequence (y1, y2, . . . , yk)
as a burning sequence for Gt.

Step 3.1. If xk ∈ V (Gt−1), and xk is not burned in step k − 1 by burning
y1, y2, . . . , yk−1, then we take yk = xk.

Step 3.2. If xk ∈ V (Gt−1), and xk is burned in step k − 1 by burning
y1, y2, . . . , yk−1, then we take yk = x, where x is a node in V (Gt−1) that is not
burned in step k − 1, if such a node x is available; Otherwise, we choose x to be
a node in V (Gt) that is not burned in step t− 1.

Step 3.3. If xk is the clone of x′
k ∈ V (Gt−1), and x′

k is not burned in step k−1
by burning y1, y2, . . . , yk−1, then we take yk = x′

k.

Step 3.4. If xk is the clone of x′
k ∈ V (Gt−1), and x′

k is burned in step k− 1 by
burning y1, y2, . . . , yk−1, then we set yk = x, where x is a node in V (Gt−1) that is
not burned in step k − 1, if such a node x is available; Otherwise, we choose x to
be a node in V (Gt) that is not burned in step t− 1.

The sequence (y1, y2, . . . , yk) obtained by the above algorithm is a burning se-
quence for Gt. Namely, by burning the nodes in the sequence (y1, y2, . . . , yk),
each node xi or its clone x′

i is burning at stage i, for 1 ≤ i ≤ k. Therefore, for
1 ≤ i ≤ k, NGt

k−i[xi] or NGt

k−i[x
′
i] is burned by the end of the k-th step. Since for

1 ≤ i ≤ k, NGt [xi] = NGt [x′
i], then we have NGt

k−i[xi] = NGt

k−i[x
′
i]. Hence, it implies

that

V (Gt) ⊇ NGt

k−1[y1] ∪NGt

k−2[y2] ∪ . . . ∪NGt

0 [yk]

⊇ NGt

k−1[x1] ∪NGt

k−2[x2] ∪ . . . ∪NGt

0 [xk]

= V (Gt).

Thus, by equation (1), we conclude that (y1, y2, . . . , yk) is a burning sequence for
Gt.
Suppose that for every optimal burning sequence (x1, x2, . . . , xk) of G0 all the

neighbours of xk are burned in the k-th step. We claim that b(G1) = b(G0) + 1.
Assume not; that is, b(G1) = b(G0). Let (y1, y2, . . . , yk) be an optimal burning
sequence for G1 that is obtained from an optimal burning sequence (z1, z2, . . . , zk)
for G1 by the algorithm above. Hence, {y1, . . . , yk} ⊆ G0. Otherwise, it implies
that b(G0) = k − 1, which is a contradiction. But, then to burn y′k ∈ V (G1) (the
clone of yk) by the end of the k-th step, one of the nodes in the neighbourhood of yk
must be burned in an earlier stage, which is a contradiction with the assumption.
Therefore, in this case b(G1) = b(G0) is impossible, and hence, b(G1) = b(G0)+1.
Conversely, suppose that b(G1) = b(G0) + 1, and (x1, x2, . . . , xk) is an optimal

burning sequence for G0. If xk has a neighbour that is burned at stage k − 1,
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then x′
k is also burned at stage k. Therefore, (x1, x2, . . . , xk) is also a burning

sequence for G1, and we have that b(G1) = b(G0), which is a contradiction. Thus,
b(G1) = b(G0) + 1, if and only if for every optimal burning sequence of G0, say
(x1, x2, . . . , xk), all the neighbours of xk are burned in stage k. By induction,
we can conclude that b(Gt) = b(G0) + 1 if and only if for every optimal burning
sequence of G0, say (x1, x2, . . . , xk), all the neighbours of xk are burned in stage
k. Since starting from any graph G0, for any t ≥ 1, either b(Gt) = b(G0), or
b(Gt) = b(G0)+1, we conclude that b(Gt) = b(G0) if and only if for every optimal
burning sequence of G0, say (x1, x2, . . . , xk) one of the neighbours of xk is burned
at stage k − 1. �

We finish this section with an example that illustrates Theorem 22. Let Pn be
a path on n nodes such that ⌈n1/2⌉ = k, for some positive integer k. Then by
Theorem 9, we know that b(Pn) = k. Moreover, if (x1, x2, . . . , xk) is an optimal
burning sequence for Pn, then burning Pn is equivalent to decomposing Pn into
paths of orders at most 1, 3, . . . , 2k − 1, in which each path is a rooted path of
radius at most k − i and with root xi, for some 1 ≤ i ≤ k. Thus, we can easily
see that xk is the path of order 1 in such a decomposition for Pn in terms of
neighbourhoods of xi’s. There are two possibilities for n; either n = k2, or n 6= k2.
If n = k2, then it implies that the order of each path in decomposing Pn is

exactly equal to 2(k − i) + 1, for some 1 ≤ i ≤ k. Therefore, the end points
of such paths are burned in the k-th steps. Hence, both neighbours or the only
neighbour of xk must burn in the k-th step, depending on the position of xk in
Pn. Thus, by Theorem 22, if G0 = Pn in the ILT model, then we have that
b(Gt) = b(Pn) + 1 = k + 1, for t ≥ 1.
On the other hand, if n 6= k2, then, there is at least one i for which the rooted

path with root xi is of order less than 2(k− i) + 1. That is, one of the end points
of this path called x is not burned at the k-th step. If in decomposing Pn, we
choose xk to be the neighbour of x, then we have a burning sequence for Pn such
that at least one of the neighbours of xk is not burned at step k. Therefore, by
Theorem 22, if G0 = Pn in the ILT model, then we have that b(Gt) = b(Pn) = k.

5. Conclusions and future work

We introduced a new graph parameter, the burning number of a graph, written
b(G). The burning number measures how rapidly social contagion spreads in a
given graph. We gave a characterization of the burning number in terms of de-
compositions into trees, and gave bounds on the burning number which allow us to
compute it for a variety of graphs. We showed the strong connection between the
burning number and the distance domination, that we use it for finding bounds
on the burning number, as well as proving Nordhaus-Gaddum type-results on
the burning number of a graph and its complement. We determined the burning
number in the Iterated Local Transitive model for social networks.
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Several problems remain on the burning number. We conjecture that for a
connected graph G of order n, b(G) ≤ ⌈n1/2⌉. Determining the burning number
remains open for many classes of graphs, including trees and disconnected graphs.
It remains open to consider the burning number in real-world social networks such
as Facebook or LinkedIn. As Theorem 22 suggests, the burning number of on-
line social networks is likely of constant order as the network grows over time.
We remark that burning number generalizes naturally to directed graphs; one
interesting direction is to determine the burning number on Kleinberg’s small
world model [16], which adds random directed edges to the Cartesian grid.
A simple variation which leads to complex dynamics is to change the rules for

nodes to burn. As in graph bootstrap percolation [3], the rules could be varied so
nodes burn only if they are adjacent to at least r burned neighbors, where r > 1.
We plan on studying this variation in future work.
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