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Abstract. Graph burning is a model for the spread of social contagion. The burning number is
a graph parameter associated with graph burning that measures the speed of the spread of conta-
gion in a graph; the lower the burning number, the faster the contagion spreads. We prove that
the corresponding graph decision problem is NP-complete when restricted to acyclic graphs with
maximum degree three, spider graphs and path-forests. We provide polynomial time algorithms
for finding the burning number of spider graphs and path-forests if the number of arms and com-
ponents, respectively, are fixed. Finally, we describe a polynomial time approximation algorithm
with approximation factor 3 for general graphs.

1. Introduction

Suppose you were attempting to spread gossip, a meme, or some other social contagion in an
online social network such as Facebook or Twitter. Our assumptions, similar to those in the recent
study on the spread of emotional contagion in Facebook [16], are that in-person interaction and
nonverbal cues are not necessary for the spread of the contagion. Hence, agents in the network
spread the contagion to their friends or followers, and the contagion propagates over time. If the
goal was to minimize the time it took for the contagion to reach the entire network, then which
users would you target with the contagion, and in which order? Related questions emerge in
study of the spread of social influence, which is an active topic in social network analysis; see,
for example, [7, 14, 15, 18, 19]. Graph burning is a simplified deterministic model for the spread of
social contagion in a social network that considers an answer to these questions, and was introduced
in [5].

Graph burning is a newly discovered deterministic graph process in which we attempt to burn
all the nodes as quickly as possible, and is inspired by contact processes on graphs such as graph
bootstrap percolation [1], and graph searching paradigms such as Firefighter [6, 9]. Throughout,
we work with simple, undirected, and finite graphs. There are discrete time-steps or rounds. At
time t = 0 all the nodes are unburned. Then at each time t ≥ 1, we burn one new unburned node
if such a node is available. Once a node is burned in round t, each of its unburned neighbours
becomes burned in round t + 1. If a node is burned, then it remains in that state until the end of
the process. The process ends when all nodes are burned.

We denote the node that we burn in the i-th step by xi, and we call it a source of fire. If we
burn a graph G in k steps, then the sequence (x1, x2, . . . , xk) is called a burning sequence for G.
The burning number of G, written by b(G), is the length of a shortest burning sequence for G;
such a burning sequence is referred to as optimum. In other words, the burning number of G is
the minimum number of steps needed for the burning process to end.

Probabilistic results and random variations on the burning process were presented in [17, 20].
New bounds on the burning number of trees and algorithmic aspects of the burning problem were
given in [3]. For further background on graph burning, we refer the reader to [20]. The following
graph decision problem is our main focus in this paper.
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Problem: Graph Burning
Instance: A simple graph G of order n and an integer k ≥ 2.
Question: Is b(G) ≤ k? In other words, does G contain a burning sequence (x1, x2, . . . , xk)?

As we show in Lemma 14 from [5], the burning number of a graph is tightly bounded in terms
of its distance domination numbers. We also proved in Corollary 5 from [5] that the burning
number of a connected graph G is the minimum burning number over the set of spanning subtrees
of G. On the other hand, the burning problem has some similarities to some other known graph
processes such as Firefighter. It is known that the distance domination problems are polynomially
solvable for trees (see [11]), however, the Firefighter problem is NP-complete even for trees of
maximum degree three (see [8]). These are our motivation to investigate the complexity of the
burning problem for graphs; in particular for trees.

This paper is organized as follows. We first provide a short review on the basic results that we
have found on the burning number in [5,20]. These results are needed in this paper. In Section 1,
we prove that the Graph Burning problem is NP-complete when restricted to trees of maximum
degree three. As a corollary, this shows the NP-completeness of the burning problem for chordal
graphs, bipartite graphs, planar graphs, and disconnected graphs. In Section 2, we show that
the burning problem remains NP-complete even for trees with a structure as simple as spider
graphs, and also for disconnected graphs such as path-forests. In Section 3, we provide polynomial
algorithms for finding the burning number of path-forests and spider graphs, when the number of
arms and components is fixed. In the final section, we describe a polynomial time approximation
algorithm with approximation factor 3 for general graphs.

1.1. Preliminaries. In this subsection, we give some background and notation from graph theory.
For further background, see [21]. Then we review some facts about the burning problem from [5,20]
that will be useful in the present study.

If v is a node of a graph G, then the eccentricity of v is defined as max{d(v, u) ∶ u ∈ V (G)}.
The center of G consists of the nodes in G with minimum eccentricity. Every node in the center
of G is called a central node of G. The radius of G is the minimum eccentricity over the set of all
nodes in G. The diameter of G is the maximum eccentricity over the set of all nodes in G. Given a
positive integer k, the k-th closed neighborhood of v is defined to be the set {u ∈ V (G) ∶ d(u, v) ≤ k}
and is denoted by Nk[v]; we denote N1[v] simply by N[v]. We call a graph a path-forest if it is
the disjoint union of a collection of paths. For s ≥ 3, let K1,s denote a star ; that is, a complete
bipartite graph with parts of order 1 and s.

We call a tree that has only one node c of degree at least three a spider graph, and the node c
is called the spider head. In a spider graph every leaf is connected to the spider head by a path
which is called an arm. If all the arms of a spider graph with maximum degree s are of the same
length r, then we denote such a spider graph by SP (s, r). We denote the disjoint union of two
graphs G and H by G ⊍H.

The following facts about graph burning can be found in [5, 20]. In a graph G the sequence
(x1, x2, . . . , xk) forms a burning sequence if and only if, for each pair i and j with 1 ≤ i < j ≤ k, we
have that d(xi, xj) ≥ j − i, and the following set equation holds:

Nk−1[x1] ∪Nk−2[x2] ∪ . . . ∪N0[xk] = V (G). (1)

By the following corollary from [5], we can get rid of the condition d(xi, xj) ≥ j − i for a burning
sequence.

Corollary 1 ( [5]). If (x1, x2, . . . , xk) is a sequence of nodes in a graph G, such that Nk−1[x1] ∪
Nk−2[x2] ∪ . . . ∪N0[xk] = V (G), then b(G) ≤ k.
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We next provide a lemma used for the approximation algorithms in Section 4. It follows from
(1) and Corollary 1; however, we include a full proof below as it is used in our discussion of
approximation algorithms.

Lemma 2. The burning number of a graph G is the minimum length of a sequence (x1, . . . , xk) of
nodes in G that satisfies (1).

Proof. Suppose that k is the minimum length of a sequence in G satisfying (1). Since a burning
sequence satisfies (1), we have that b(G) ≥ k. We want to show that the equality holds. By
contradiction, suppose b(G) > k. Suppose that S is the set of sequences that satisfy (1). Let
s = (x1, . . . , xk) be a sequence in S for which j(s) = min{j ∈ [k] ∶ for some i ∈ [j−1] ∶ d(xi, xj) < j−i}
is the maximum among all of the sequences in S. Note that since b(G) > k, the index j(s) is well
defined. Let i(s) ∈ [j(s) − 1] be such that d(xi(s), xj(s)) < j(s) − i(s). Note that in such a case,

Nk−j(s)[xj(s)] ⊆ Nk−i(s)[xi(s)].
Since k > j(s) − 1, there is a node y in V (G) ∖ (N(j(s)−1)−1[x1] ∪N(j(s)−1)−2[x2] ∪⋯ ∪N0[xj(s)−1]).
Therefore, the sequence s′ = (x1, . . . , xj(s)−1, y, xj(s)+1, . . . , xk) satisfies (1) and j(s′) > j(s), which
is a contradiction. �

We proved in Lemma 11 of [5] that the burning number of a graph G of radius r is at most r+1.
Namely, by burning a central node of G at the first step, every other node will be burned after at
most r more steps.

Theorem 3 ( [5]). For a path Pn we have that b(Pn) = ⌈n1/2⌉. More precisely, if n = k2 for some
integer k, then burning Pn in k steps is equivalent to decomposing Pn into k subpaths of orders
1,3, . . . ,2k − 1. If ⌈n1/2⌉ = k, and n is not a square number, then every optimum burning sequence
for Pn corresponds to a decomposition of Pn into k smaller subpaths Q1,Q2, . . . ,Qk, in which the
order of each Qi is a number between one and 2i − 1.

Theorem 4 ( [20]). If G is a path-forest of order n with t ≥ 1 components, then

b(G) ≤ ⌈n1/2⌉ + t − 1.

A subgraph H of graph G is called an isometric subgraph of G if the distance between any pair
of nodes u and v in H equals the distance between u and v in G. For example, any subtree of
a tree T is an isometric subgraph of T . The following corollary is a generalization of Theorem 7
in [5] for disconnected graphs.

Corollary 5 ( [20]). If G is a graph and H is an isometric subforest of G, then we have that
b(H) ≤ b(T ).

Note that the only graph with burning number one is K1. Moreover, the following theorem
characterizes the graphs with burning number 2.

Theorem 6 ( [20]). If G is a graph of order n, then b(G) = 2 if and only if n ≥ 2, and G has
maximum degree n − 1 or n − 2.

Since finding the maximum degree of a graph is solvable in polynomial time, by Theorem 6, we
can recognize graphs with burning number 2 in polynomial time. Thus, in the rest of the paper
we restrict our attention to the case k ≥ 3.

2. Burning Trees and Forests with Maximum Degree Three

We now consider Graph Burning in acyclic graphs with maximum degree three. In particular,
we show in Theorem 7 that the burning problem is NP-complete for trees of maximum degree
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three. We show the NP-completeness of the burning problem by a reduction from a variant of the
3-Partition problem [10]. Here is the statement of this problem.

Problem: Distinct 3-Partition
Instance: A finite set X = {a1, a2, . . . , a3n} of positive distinct integers, and a positive integer B
where ∑3n

i=1 ai = nB, and B/4 < ai < B/2, for 1 ≤ i ≤ 3n.
Question: Is there any partition of X into n triples such that the elements in each triple add up
to B?

In [13], it is shown that the Distinct 3-Partition problem is NP-complete in the strong sense
(see [10]); that is, this problem is NP-complete, even when restricted to the cases where B is
bounded above by a polynomial in n. In the rest of the paper, by Om, we mean the set of the m
first positive odd integers; that is, Om = {1,3, . . . ,2m − 1}.

Theorem 7. The burning problem is NP-complete for trees of maximum degree three.

Proof. Given a graph G of order n and a sequence (x1, x2, . . . , xk) of the nodes in G, we can
easily find Nk−i[xi] in polynomial time, for 1 ≤ i ≤ k. Thus, we can check in polynomial time if
V (G) = ⋃k

i=1Nk−i[xi]. Hence, the burning problem is in NP.
Now, we show the NP-completeness of the burning problem for trees of maximum degree three

by a reduction from the Distinct 3-Partition problem.
Suppose that we have an instance of the Distinct 3-Partition problem; that is, we are given a

non-empty finite set X = {a1, a2, . . . , a3n} of distinct positive integers, and a positive integer B
such that ∑3n

i=1 ai = nB, and B/4 < ai < B/2, for 1 ≤ i ≤ 3n. Since the Distinct 3-Partition problem
is NP-complete in the strong sense, without loss of generality we can assume that B is bounded
above by a polynomial in the length of the input. Assume that the maximum of the set X is m
which is by assumption bounded above by B/2. We now construct a tree of maximum degree 3 as
follows.

Let Y = {2ai − 1 ∶ ai ∈ X}. Hence, Y ⊆ Om, and 2nB − 3n = ∑3n
i=1(2ai − 1) is the sum of the

numbers in Y . Let Z = Om ∖ Y . Note that 1 ≤ ∣Y ∣ ≤m, and consequently, ∣Z ∣ ≤m − 1. Let ∣Z ∣ = k,
for some k ≤ m − 1. For 1 ≤ i ≤ k, let Q′

i be a path of order li, where li is the i-th largest number
in Z. For 1 ≤ i ≤m + 1, we define Ti to be a spider SP (3,2m + 1 − i) with centre ri. We also take
Qi to be a path of order 2B − 3, for 1 ≤ i ≤ n. Then we combine the graphs that we created above
from left to right in the following order:

Q1, T1,Q2, T2, . . . ,Qn, Tn,Q
′

1, Tn+1,Q
′

2, Tn+2, . . . ,Q
′

k, Tn+k, Tn+k+1, . . . , Tm+1

such that each graph in this order is joined by an edge from one of its leaves to a leaf of the
next graph in the presented order. The resulting graph is named T (X); note that it is a tree of
maximum degree three.

For example, let X = {10,11,12,14,15,16}, and B = 39. Then n = 2, and m = max{ai ∶ ai ∈X} =
16. Therefore, Y = {19,21,23,27,29,31}, and Z = O16 ∖ Y = {1,3,5,7,9,11,13,15,17,25}. Thus,
k = ∣Z ∣ = ∣O16 ∖ Y ∣ = 10. The graph T (X) is depicted in Figure 1. For simplicity, we do not draw
the nodes in the paths Qi and Q′

j, and the spiders Ti in the figure.
For 1 ≤ i ≤m + 1, let vi be a leaf of T (X) that is also a leaf of Ti, as a subgraph of T (X). Note

that for 1 ≤ i ≤m + 1 the two arms of Ti that do not contain vi, together with its centre ri, form a
path. We call this path T ′

i . The order of T ′

i is 2(2m + 1 − i) + 1 ∈ O2m+1. Hence, the subgraph of
T (X) induced by

(
m+1

⋃
i=1

T ′

i)⋃(
n

⋃
i=1

Qi)⋃(
k

⋃
i=1

Q′

i)
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forms a path of order
2m+1

∑
i=1

(2i − 1) = (2m + 1)2,

that we denote it by P . Therefore,

T (X) − P =
m+1

⋃
i=1

(Ti ∖ P ),

which is a disjoint union of paths of orders {2m+ 1− i}m+1
i=1 . Note that Ti ∖P is the arm of Ti that

contains vi. Thus, we have that

∣V (T (X))∣ = (2m + 1)2 +
m+1

∑
i=1

(2m + 1 − i) = (2m + 1)2 + 3(m2 +m)
2

.

Since m is bounded by B and by assumption, B is bounded above by a polynomial in terms of n,
then T (X) is obtained in polynomial time in terms of the length of the input.

Figure 1. A sketch of the tree T (X).

We can easily see that, there is a partition of X into triples such that the elements in each triple
add up to B if and only if we can decompose the paths Q1,Q2, . . . ,Qn into subpaths of orders
2ai − 1 ∈ Y . First, assume that there is a partition of X into triples such that the elements in
each triple add up to B. Equivalently, we have a partition for the paths Q1,Q2, . . . ,Qn in terms
of subpaths {Pl ∶ l ∈ Y }. Since Om = Y ∪Z, we conclude that there is a partition for the subgraph
(⋃n

i=1Qi)⋃(⋃k
i=1Q

′

i) in terms of the subpaths {Pl ∶ l ∈ Om}. Now, for m + 2 ≤ i ≤ 2m + 1, let xi be
the centre of a path Pl in such a partition, where l = 2(2m+2−i)−1 ∈ Om = Y ∪Z. For 1 ≤ i ≤m+1,
let xi = ri (the centre of Ti). Thus, we have that

V (T (X)) =
2m+1

⋃
i=1

N2m+1−i[xi].

Consequently, by equation (1), we conclude that (x1, x2, . . . , x2m+1) forms a burning sequence of
length 2m + 1 for T (X). Therefore, b(T (X)) ≤ 2m + 1.



6 S. BESSY, A. BONATO, J. JANSSEN, D. RAUTENBACH, AND E. ROSHANBIN

Conversely, suppose that b(T (X)) ≤ 2m+1. Note that the path P of order (2m+1)2 is a subtree
of T (X). Therefore, by Theorem 3 and Corollary 5, we have that

b(T (X)) ≥ b(P ) = 2m + 1.

Thus, we conclude that b(T (X)) = 2m+1. Assume that (x1, x2, . . . , x2m+1) is an optimum burning
sequence for T (X).

We first claim that each xi must be in P . Since T (X) = P ⋃(⋃m+1
j=1 (Tj ∖ P )), every xi is either

in P or in Tj ∖ P , for some 1 ≤ j ≤ m + 1. On the other hand, every node in P must receive the
fire from one of the xi’s. Note that the only connection of P to T (X) ∖ P is through the nodes
ri. Hence, for 1 ≤ i ≤ 2m + 1, N2m+1−i[xi] ∩ P must be a path of order at most 2(2m + 1 − i) + 1.
If for some 1 ≤ i ≤ 2m + 1, a node xi is out of P , then N2m+1−i[xi] ∩ P is a path of order less than
2(2m+ 1− i)+ 1. Therefore, the total sum of the orders of the subpaths {N2m+1−i[xi]∩P}2m+1

i=1 will
be less than (2m+1)2 = ∣V (P )∣, which is a contradiction. Thus, every xi must be selected from P .

Now, we claim that for 1 ≤ i ≤ m + 1, we must have xi = ri. We prove this by strong induction
on i. Note that each vi, 1 ≤ i ≤ m + 1, receives the fire from a fire source xj ∈ P (by the above
argument) where 1 ≤ j ≤ 2m+1. Therefore, d(xj, vi) ≤ 2m+1− j, for some 1 ≤ j ≤ 2m+1. For i = 1,
since the only node in P that is within distance 2m + 1 − i = 2m from v1 is r1, then we must have
x1 = r1. Suppose that for 1 ≤ i ≤m and for every 1 ≤ j ≤ i, xj = rj. Since the only node in P within
distance 2m + 1 − (i + 1) from vi+1 is the node ri+1, and by induction hypothesis, we conclude that
xi+1 = ri+1. Therefore, the claim is proved by induction.

Note that N2m+1−i[ri] = V (Ti). Therefore, the fire started at xi = ri will burn all the nodes in Ti.
The above argument implies that the nodes in T (X) ∖⋃m+1

i=1 Ti must be burned by receiving the
fire started at xm+2, xm+3, . . . , x2m+1 (the last m sources of fire). Since T (X)∖⋃m+1

i=1 Ti is a disjoint
union of paths, then we derive that for m+2 ≤ i ≤ 2m+1, N2m+1−i[xi]⋂(T (X)∖⋃m+1

i=1 Ti) is a path
of order at most 2(2m + 1 − i) + 1 (≤ 2m − 1). On the other hand, the path-forest T (X) ∖⋃m+1

i=1 Ti

is of order
m

∑
i=1

(2i − 1) =m2.

Thus, we conclude that for m + 2 ≤ i ≤ 2m + 1, N2m+1−i[xi]⋂(T (X) ∖⋃m+1
i=1 Ti) is a path of order

equal to 2(2m + 1 − i) + 1; since otherwise, we can not burn all the nodes in T (X) ∖⋃m+1
i=1 Ti in m

steps, which is a contradiction. Therefore, there must be a partition of T (X) ∖⋃m+1
i=1 Ti (induced

by the burning sequence (xm+2, xm+3, . . . , x2m+1)) for T (X) ∖⋃m+1
i=1 Ti) into subpaths {Pl ∶ l ∈ Om}.

Now, considering the partition described in the previous paragraph, we claim that there is a
partition of T (X) ∖⋃m+1

i=1 Ti into subpaths of orders in Om in which the paths Q1,Q2, . . . ,Qn are
decomposed into paths of orders in Y , and each path Q′

i is covered by itself. Note that by definition,
for 1 ≤ i ≤ k, each path Q′

i is a component of T (X) ∖ ⋃m+1
i=1 Ti. Hence, it suffices to prove that

there is a partition of T (X) ∖⋃m+1
i=1 Ti into subpaths of orders in Om such that each Q′

i is covered
by itself. Assume that in a partition of T (X) ∖⋃m+1

i=1 Ti into subpaths of orders in Om, there is a
path Q′

i of order l ∈ Om ∖ Y = Z that is partitioned by a union of paths of orders in Om rather
than by Pl itself. We know that Pl must have covered some part of a path Q′

j with j ≠ i, or must
be used in partitioning Q1,Q2, . . . ,Qn. Hence, we can easily modify the partition by switching
the place of Pl and those paths that have covered Pl (as they have equal lengths). Therefore, we
have decreased the number of such displaced paths in our partition for T (X) ∖⋃m+1

i=1 Ti. Since the
number of Q′

i’s, where 1 ≤ i ≤ k, is finite, we will end up after finite number of switching in a
partition for T (X) ∖⋃m+1

i=1 Ti in which every Q′

i, 1 ≤ i ≤ k, is covered by itself.
Since each Qi is of order 2B−3, there must be a partition of Y into triples such that the elements

in each triple add up to 2B −3. Equivalently, there must be a partition of X into triples such that
the elements in each triple add up to B. Since T (X) is a tree of maximum degree 3, then, we have
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a polynomial time reduction from the Distinct 3-Partition problem to the Graph Burning problem
for trees with maximum degree 3. �

Since any tree is a chordal graph, and also planar and bipartite, then we conclude the following
corollary.

Corollary 8. The burning problem is NP-complete for chordal graphs, planar graphs, and bipartite
graphs.

If in the proof of Theorem 7, we keep the graphs Qi’s, Q′

i’s, and Ti’s disjoint, then we will have
exactly the same argument to show a polynomial time reduction from the Distinct 3-Partition
problem to the Graph Burning problem. Thus, we have the following immediate corollary as well.

Corollary 9. The burning problem is NP-complete for forests of maximum degree three.

3. Burning Spider Graphs and Path-Forests

In this section, we prove that the Graph Burning problem is NP-complete even for spider graphs
and path-forests. We first provide some background on the burning number of trees.

A terminal path in a tree T is a path P in T such that one of the end points of P is a leaf of T .
The other end point of P , that is not necessary a leaf, is called the non-terminal end point of P
(if P is of order one, then the non-terminal end point of P and the leaf in P coincide). Assume
that {Qi}ti=1 is a set of disjoint terminal paths in T , and let vi denote the non-terminal point of
the path Qi, for 1 ≤ i ≤ t. We call {Qi}ti=1 a decomposed spider in T if the path between every pair
vi and vj does not contain any node of Qi and Qj except vi and vj.

Theorem 10. Suppose that {Qi}ti=1, where t ≥ 3, forms a decomposed spider in a tree T , and let
vi be the non-terminal end point of Qi, for 1 ≤ i ≤ t. If d(vi, vj) ≥ 2k for all 1 ≤ i, j ≤ t, and t ≥ k,
then b(T ) ≥ k + 1.

Proof. Let T ′ be the smallest connected subgraph of T that contains ⋃t
i=1Qi. Since T ′ is an

isometric subtree of T , to prove that b(T ) ≥ k + 1 it suffices to show that b(T ′) ≥ k + 1, as follows.
First, we show that the burning number of T ′ is at least k. Let wi denote the leaf of T ′ in Qi.

Note that we may have wi = vi (in the case that Qi is of order one). We claim that there is no
fire source xj that spreads the fire to two distinct leaves. By contradiction, suppose that there are
two distinct leaves wi and wr, and a fire source xj for which we have that d(xj,wi) ≤ k − j and
d(xj,wr) ≤ k − j (that is, wi and wr both receive the fire started at xj). By triangle inequality, we
conclude that

2k ≤ d(vi, vr) ≤ d(wi,wr) ≤ d(wi, xj) + d(xj,wr) ≤ 2k − 2j < 2k,

which is a contradiction. Therefore, it implies that corresponding to every leaf wi there is a unique
fire source xj such that the fire spread from xj only burns one leaf of T , that is wi. Thus, the
number of fire sources must be at least as large as the number of the leaves in T ′ that is t ≥ k.
Hence, we must have b(T ′) ≥ k.

Now, we claim that b(T ′) ≠ k. By contradiction, suppose that b(T ′) = k, and (x1, x2, . . . , xk)
is an optimum burning sequence for T ′. If t > k, then the above argument leads to the same
contradiction, as the number of the fire sources has to be as large as the number of the leaves. If
t = k, then let wi be the leaf that receives the fire from xk. Since b(T ′) = k, then it implies that
xk = wi. We claim that there is no fire source xj ≠ xk with d(vi, xj) ≤ k. By contradiction, suppose
that there is a fire source xj ≠ xk with d(vi, xj) ≤ k, and let wr be the leaf of T ′ that receives the
fire spread from xj. Thus, we have that

2k ≤ d(vr, vi) ≤ d(wr, vi) ≤ d(wr, xj) + d(xj, vi) ≤ k − j + k < 2k,

which is a contradiction.
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Let s be a neighbour of vi that is not in the path between vi and wi = xk. Since t ≥ 3, we are
sure that such a node s does exist. By assumption, we know that xk = wi, and therefore s can
not receive the fire spread from xk. On the other hand, the distance between s and any other
fire source must be at least k. Thus, s can not be burned by the end of the k-th step, which is a
contradiction. Hence, we have that b(T ′) ≥ k + 1. �

Assume that we want to find the burning number and an optimum burning sequence for a given
tree T . If there is an optimum burning sequence (x1, x2, . . . , xk) for T such that V (T ) ⊆ Nk−1[x1],
then we can see that b(T ) = radius(T ) + 1 = k. If T ∖Nk−1[x1] is non-empty, then it implies that

T ∖Nk−1[x1] ⊆ Nk−2[x2] ∪Nk−3[x3] ∪ . . . ∪N0[xk].
This observation suggests the following conjecture.

Conjecture 11. Suppose that {Qi}ti=1, where t ≥ 3, forms a decomposed spider in a tree T , and
let vi be the non-terminal end point of Qi, for 1 ≤ i ≤ t. If b(∪t

i=1Qi) ≥ k, and d(vi, vj) ≥ 2k for all
1 ≤ i, j ≤ t, then b(T ) ≥ k + 1.

Conjecture 11 may be helpful in finding a lower bound on the burning number of a tree T (as
we can see the truth of it for paths by Theorem 3 [5], and also we will see the truth of it later on
for some specific spider graphs). In particular, if the burning number of a tree T is strictly less
than radius(T ) + 1, and the conjecture was true, then by starting from the leaves of T we could
find a good lower bound on b(T ). Note that by Theorem 10, when t ≥ k, the above conjecture is
true. Also, we can prove the following lemma, since the leaves in any spider graph SP (s, r), with
s ≥ r, form a decomposed spider that satisfies the conditions in Theorem 10.

Lemma 12. For a spider graph SP (s, r), with s ≥ r, we have that b(SP (s, r)) = r + 1. Moreover,
for s ≥ r + 2, every optimal burning sequence of SP (s, r) must start by burning the central node.

Proof. We know that b(SP (s, r)) ≤ r + 1, as SP (s, r) has radius r. Since SP (r, r) is an isometric
subgraph of SP (s, r) where s ≥ r, then it suffices to show that b(SP (r, r)) = r + 1.

First, we prove that b(SP (r, r)) ≥ r+1. We index the leaves of SP (r, r) with w1,w2, . . . ,wr. For
1 ≤ i ≤ r, let Qi be the graph induced by wi; that is, Qi is a path of order one. Hence, every Qi is a
terminal path in SP (r, r) with the non-terminal end wi, and for every distinct pair 1 ≤ i, j ≤ r, we
have that d(wi,wj) = 2r. Therefore, by Theorem 10, we conclude that b(SP (r, r)) ≥ r + 1. Hence,
the proof follows.

Now, suppose that s ≥ r + 2 and there exists an optimal burning sequence (x1, x2, . . . , xr+1) for
SP (s, r) in which x1 is not the central node. Since s ≥ r + 2 and b(SP (s, r)) = r + 1, then by
Pigeonhole Principle, one of the arms does not include any source of fire, unless we choose the
central node as a fire source. Note that by assumption, x1 is not the central node. Since the only
connection between the nodes in that arm to the rest of the nodes in SP (s, r) goes through the
central node, then in both cases, we need at least 1+(r+1) steps for burning the leaf on that arm,
which is a contradiction. Thus, every optimal burning sequence of SP (s, r) starts by burning the
central node where s ≥ r + 2. �

Using the above lemma, we now prove that the burning problem is NP-complete even for spider
graphs. We note that Theorem 13 and Corollary 14 were proven independently in [3], and in a
preprint of this paper on arXiv [4].

Theorem 13. The burning problem is NP-complete for spider graphs.

Proof. Clearly, by Theorem 7, the burning problem is in NP. As in the proof of Theorem 7, we
give a reduction from the Distinct 3-Partition problem into the burning problem, in which the
gadget graph that we construct is a spider graph.
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Figure 2. A sketch of the tree G.

Given an instance of the Distinct 3-Partition problem, that is, a set X = {a1, a2, . . . , a3n} of
positive distinct integers and a positive integer B such that each B/4 < ai < B/2, we construct
a graph G as follows. Since the Distinct 3-Partition problem is strongly NP-complete (as in the
proof of Theorem 7), without loss of generality we assume that B is bounded above by a polynomial
in the length of the input.

Suppose that maxX = m + 1, and let Y = {2ai − 1 ∶ ai ∈ X}. Clearly, Y ⊆ Om+1. Then we make
a copy of the spider graph SP (2m + 5,m + 1) with centre s, called Gs. Now, for any positive
odd integer l ∈ Om+1 ∖ Y , we connect by an edge a leaf of a copy of Pl (a path on l nodes) to a
distinct leaf of SP (2m+5,m+1). We connect (by an edge) n copies of P2B−3, called Q1,Q2, . . . ,Qn

to distinct leaves of SP (2m + 5,m + 1) that we have not used for attaching any other Pl, with
l ∈ Om+1 ∖ Y . We call the resulting graph G. Clearly, G is a spider tree with spider head s. Since
V (G) is the disjoint union of the spider graph SP (2m + 5,m + 1) and the paths Q1,Q2, . . . ,Qn,
and the paths Pl, with l ∈ Om+1 ∖ Y , we have that

∣V (G)∣ =
m+1

∑
i=1

(2i − 1) + (2m + 5)(m + 1) + 1 = (m + 1)2 + (2m + 5)(m + 1) + 1,

which is of order O(B2) in terms of B. Since B is bounded above by a polynomial in terms of n,
it implies that we construct graph G in polynomial time in terms of n. We want to show that,
there is a partition of X into n triples such that the numbers in each triple add up to B if and
only if b(G) ≤m + 2.

First, assume that there is a partition of X into n triples such that the numbers in each triple
add up to B. Consequently, paths Q1,Q2, . . . ,Qn can be partitioned into smaller paths of orders
{2ai − 1 ∶ ai ∈ X}. For l ∈ Y , we set xm+2−( l−1

2
)

to be the middle node of the paths Pl, applied

in such a partition of Q1,Q2, . . . ,Qn. Then we take x1 = s, and for any l ∈ Om+1 ∖ Y , we set the
middle node of Pl as xm+2−( l−1

2
)
. The sequence (x1, x2, . . . , xm+2) is a burning sequence for G. Thus,

b(G) ≤m + 2.
For example, let X = {10,11,12,14,15,16}, and B = 39. Then the graph G is shown in Figure 2.

Here, we have that n = 2, and m = max{ai ∶ ai ∈ X} − 1 = 15. Therefore, Y = {19,21,23,27,29,31},
and O16 ∖ Y = {1,3,5,7,9,11,13,15,17,25}. The red nodes in Figure 2 denote a burning sequence
of length 17 for tree G.
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Conversely, suppose that b(G) ≤m + 2. Since Gs is an isometric subtree of G, then, Theorem 5
and Lemma 12 imply that b(G) = m + 2. Thus, G has a burning sequence (x1, x2, . . . , xm+2). We
have to show that there is a partition of X into n triples such that the numbers in each triple
add up to B. First, note that we use at most m + 1 leaves of Gs for attaching the paths Pl, with
l ∈ Om+1, and the paths Q1,Q2, . . . ,Qn. Thus, there is a copy of SP (m + 4,m + 1) that is an
isometric subtree of G and the only connection of its leaves to the rest of G is through node s.
Therefore, by Lemma 12, we conclude that x1 = s. On the other hand, by burning node s at the
first step, all the nodes in Gs will be burned by the end of the (m+ 2)-th step. Thus, without loss
of generality we can assume that for 2 ≤ i ≤m + 2, all xi’s are selected from G ∖Gs.

Now, by equation (1), we know that G ∖Gs = ⋃m+2
i=2 Nm+2−i[xi]. Since G ∖Gs is a path-forest,

then Nm+2−i[xi] must be a path of order at most l = 2(m + 2 − i) + 1, for 2 ≤ i ≤m + 2. Besides, we
have that

∣V (G ∖Gs)∣ = 2nB − 3n + ∑
l∈Om+1∖Y

l

=
m+2

∑
i=2

(2(m + 2 − i) + 1) .

Therefore, it implies that Nm+2−i[xi] must be a path of order exactly equal to l = 2(m + 2 − i) + 1,
for 2 ≤ i ≤m+ 2. Hence, there must be a partition of G∖Gs by the set of paths of orders in Om+1,
in which the center of each path in the partition is a fire source.

We claim that there is a burning sequence for G in which the central node of each Pl, l ∈ Om+1∖Y
(that we attached to a leaf of Gs), is selected as a fire source. We can easily prove this claim by
switching the paths that are possibly displaced in the current partition for G∖Gs. Thus, the closed
neighbourhoods of the rest of the fire sources form a partition for Q1,Q2, . . . ,Qn in terms of paths
of orders 2ai − 1 ∈ Y . Since each Qi is of order 2B − 3, then it implies that there is partition for X
into triples such that the elements in each triple add up to B. �

If we delete the spider graph SP (2m + 5,m + 1) in the proof of Theorem 13, and keep the rest
of the parts of the gadget graph G the same, then we will have the analogous argument for the
disjoint union of the paths Q1,Q2, . . . ,Qn, and the paths Pl with l ∈ Om+1 ∖ Y . Thus, we can have
a reduction from the Distinct 3-Partition problem to the burning problem for the path-forests.
Therefore, we conclude the following corollary.

Corollary 14. The Burning problem is NP-complete for path-forests.

Note that in Theorem 13 and the above corollary, we do not have any restriction on the number
of the arms in SP (2m+5,m+1) and on the length of the paths in constructing the gadget graphs.
In other words, the parameter m is unbounded.

4. Algorithms for Burning Path-Forests and Spider Graphs

In this section, we present a polynomial time algorithm that finds the burning number of path-
forests when the number of components and their orders are restricted, and then we find another
polynomial time algorithm that finds the burning number of spider trees with fixed number of
arms and with restrictions on the length of the arms. We first provide some terminology.

Let G be a path-forest with components Q1,Q2, . . . ,Qk, where k ≥ 1, and the order of each
path Qi is li such that l1 ≥ l2 ≥ ⋯ ≥ lk. In other words, we assume that the paths are indexed
according to the decreasing order of their lengths. We say that G is a maximal path-forest if it can
be decomposed into paths of orders 1,3, . . . ,2t − 1 for some positive integer t. It is clear that such
a graph G is of order t2. Let MPFt denote the set of all maximal path-forests of order t2. If G is a
path-forest with burning number t, then G corresponds to a sequence of positive integers such as
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(l1, l2, . . . , ls), where s ≤ t, and l1 ≥ l2 ≥ ⋯ ≥ ls, in which li denotes the order of the i-th component
of G. From now on, we represent a path-forest with burning number t by a sequence of integers
as defined above.

We denote the set of maximal path-forests with t components and with burning number k
by MPFt

k. For example, MPF1
1 = {P1} = {(1)}. In general, we can see that for any k ≥ 1,

MPFk
k = {(2k − 1,2k − 3, . . . ,1)}. Also, note that for any k ≥ 1, MPF1

k = {Pk2}.

Algorithm 15. Suppose that G = (s1, s2, . . . , st), for a constant t ≥ 1, represents a path-forest in
which si denotes the order of the i-th component of G, and s = s1 ≥ s2 ≥ ⋯ ≥ st. Then we perform
the following steps.

Stage 1. First, for each 1 ≤ r ≤ t − 1, we perform Stages 1.1 and 1.2:
Stage 1.1. We set MPFr

r = {(2r − 1,2r − 3, . . . ,1)}.
If (s1, s2, . . . , sr) /∈ MPFr

r, then go to the next step.

Stage 1.2. For k ≥ r + 1, we perform the following steps:

Stage 1.2.1. For each H = (l1, l2, . . . , lr−1) ∈ MPFr−1
k−1, we form the sequence H ′ = (2k −

1, l1, . . . , lr−1). We rearrange the numbers in the sequence H ′ if they do not appear in a decreasing
order, and we add it to the set MPFr

k.
If (s1, s2, . . . , sr) ⊆H ′, then finish Stage 1.2, and go to the next stage.

Stage 1.2.2. For each H = (l1, l2, . . . , lr) ∈ MPFr
k−1, and each 1 ≤ i ≤ r, we form the sequence

Hi = (l1, . . . , li−1, li + 2k − 1, li+1, . . . , lr). We rearrange the numbers in the sequences Hi if they do
not appear in a decreasing order, and we add them to the set MPFr

k.
If (s1, s2, . . . , sr) ⊆Hi, then finish Stage 1.2, and go to the next stage.

Stage 2. For r = t, we perform the following steps:

Stage 2.1. We set MPFt
t = {(2t − 1,2t − 3, . . . ,1)}.

If G ∈ MPFt
t, then stop and return b(G) = t.

Stage 2.2. For k ≥ t + 1, we perform the following steps:

Stage 2.2.1. For each H = (l1, l2, . . . , lt−1) ∈ MPFt−1
k−1, we form the sequence H ′ = (2k −

1, l1, . . . , lt−1). We rearrange the numbers in the sequence H ′ if they do not appear in a decreasing
order, and we add it to the set MPFt

k.
If G ⊆H ′, then stop and return b(G) = k.

Stage 2.2.2. For each H = (l1, l2, . . . , lt) ∈ MPFt
k−1, and for each 1 ≤ i ≤ t, we form the sequence

Hi = (l1, . . . , li−1, li+2k−1, li+1, . . . , lt). We rearrange the numbers in the sequence Hi if they do not
appear in a decreasing order, and we add it to the set MPFt

k.
If G ⊆Hi, then stop and return b(G) = k.

The algorithm works since every graph G that is not a subgraph of a graph in MPFt
i, for all

1 ≤ i < k, but G is a subgraph of a graph in MPFt
k, has burning number k. Besides, we have the

following fact about Algorithm 15.

Theorem 16. Algorithm 15 finds the burning number of G in time O(st), that is polynomial for
fixed t.

Proof. Given the graph G, suppose that for some k ≥ t, Algorithm 15 stops by recognizing G as a
subgraph of a graph in MPFt

k. Note that the order of the components of G is bounded above by
s, and t is a fixed constant in terms of s. Thus, by Theorem 4, we derive that if H = (l1, l2, . . . , lr)
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is a graph in MPFr
i (generated by Algorithm 15), with 1 ≤ r ≤ t and i ≥ r, then

b(H) ≤ ⌈
¿
ÁÁÀ

r

∑
j=1

lj⌉ + i − 1 ≤
√
st + t − 1 = O(

√
s).

On the other hand, since b(H) = i, then there is a partition of the set Oi into subsets {Aj}rj=1
such that lj = ∑a∈Aj

a, for 1 ≤ j ≤ r. It implies that lj ≤ ∑a∈Oi
a = i2 = O(s), for 1 ≤ j ≤ r. Hence,

the length of the longest lj that appears in the representation of such a graph H is of order s.
Let l = O(s) be the length of the longest component in a graph H generated by Algorithm 15.
Thus, any graph H generated by Algorithm 15 is a subgraph of the graph G0 = (l, l, . . . , l) with
t components. Since these graphs are distinct, then the total number of graphs generated by
Algorithm 15 is of order O(st).

Moreover, note that for r = t and k ≥ t, each time that we add a new graph H = (l1, l2, . . . , lt)
to MPFt

k, we check to see if G is a subgraph of H or not. We simply can do this comparison by
checking if si ≤ li, for 1 ≤ i ≤ t. Thus, the total number of steps that we perform in Algorithm 15 is
bounded above by O(tst). Since t is a fixed constant in terms of s, then Algorithm 15 is polynomial
time in the length of the input. �

In the following, we try to find the burning number of spider graphs, again using a dynamical
programming approach. First we need some facts to use for this algorithm. We state the following
lemma since we use it for proving the next theorem. Assume that G and H are two disjoint graphs,
and u ∈ G and v ∈ H are two nodes. We can make a new graph G + uv +H by adding edge uv to
G ⊍H.

Lemma 17. If G and H are two disjoint non-empty graphs then we have that

b(G + uv +H) ≤ b(G ⊍H),
where u ∈ V (G) and v ∈ V (H).

Proof. Since V (G+uv+H) = V (G⊍H), then every burning sequence for G⊍H induces a covering
for G + uv + H; in particular, any minimum burning sequence of G ⊍ H induces a covering for
G + uv +H. Therefore, b(G + uv +H) ≤ b(G ⊍H). �

The following theorem plays a key role in the algorithm that we will present, and shows that
for a spider tree we always can have an optimum burning sequence in which the first source of fire
is close to the spider head.

Theorem 18. If G is a spider graph with s ≥ 3 arms and the spider head c, then there is an
optimum burning sequence (x1, x2, . . . , xk) for G such that d(x1, c) ≤ k − 1.

Proof. We prove this by strong induction on the number of nodes in G. The smallest order spider
graph is a star with three leaves. By Theorem 6, we know that the burning number of such a star
equals 2 and in every optimum burning sequence for this graph the first fire must be the centre
that is the spider head. Hence, the theorem statement is true for this spider.

Now, suppose that the theorem statement is true for every spider graph of order at most n−1, and
G is a spider graph of order n with s ≥ 3 arms and spider head c. Also, assume that L1, L2, . . . , Ls

are the arms of G, and v1, v2, . . . , vs are their corresponding leaves. Finally, suppose that the order
of each arm Li is denoted by li. Let (x1, x2, . . . , xk) be an optimum burning sequence for G. By
equation (1), we know that

V (G) = Nk−1[x1] ∪Nk−2[x2] ∪ . . . ∪N0[xk].
If d(x1, c) ≤ k − 1, then we are done. Hence, let d(x1, c) ≥ k, and x1 ∈ Li where 1 ≤ i ≤ s. We
consider two possibilities for li: either li ≤ 2k − 2 or li ≥ 2k − 1.
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Case 1. If li ≤ 2k − 2, then it implies that d(c, vi) ≤ 2k − 2. Let x be the node in Li for which
d(x, vi) = k − 1. Therefore, we have that d(c, x) ≤ k − 1. Note that we can cover all the nodes in
Li ∪ {c} with Nk−1[x]. Hence, G −Nk−1[x] is a subforest of G −Nk−1[x1]. Thus, we still have that

V (G) = Nk−1[x] ∪Nk−2[x2] ∪ . . . ∪N0[xk].
Note that some of the fire sources xj’s, with j ≥ 2, might be in Nk−1[x]∩Li. Therefore, by Corollary
5, we have that b(G ∖Nk−1[x]) = t ≤ k − 1. Hence, we can find a burning sequence of length t such
as (x′2, x′3, . . . , x′t) for G∖Nk−1[x]. Also, for t+1 ≤ j ≤ k, we define x′j to be a node of distance j −1
from x. Thus, for t + 1 ≤ j ≤ k, d(x′j, x) ≥ j − 1, and d(x′j, xr) ≥ r − 1 + j − 1 ≥ j − r, for any 2 ≤ r ≤ t.
Therefore, the sequence (x′1 = x,x′2, . . . , x

′

k) forms a desired optimum burning sequence for G.
Case 2. If li ≥ 2k − 1, then either d(vi, x1) ≤ k − 1 or d(vi, x1) ≥ k. We claim that there

is a burning sequence for G such as (x′1, x′2, . . . , x′k) such that x′1 ∈ Li and d(x′1, vi) ≤ k − 1, or
equivalently, G∖Nk−1[x′1] is connected. If d(x1, vi) ≤ k − 1, then we are done. If d(vi, x1) ≥ k, then
G ∖Nk−1[x1] is the disjoint union of a spider graph G′ and a path P , such that P is a subpath
of Li containing vi. Let u be the leaf of G′ that is in Li, and v be the other end point of P that
probably is different from vi. We know that b(G∖Nk−1[x1]) ≤ k−1. Hence, by Lemma 17, we have
that

t = b(G′ + uv + P ) ≤ b(G′ ∪ P ) = b(G ∖Nk−1[x1]) ≤ k − 1.

Note that G′ + uv + P is a subtree of G that is (isomorphic to) a spider of the same number of
arms as G. In fact, the i-th arm of G′ + uv + P is (isomorphic to) a subpath of Li with exactly
2k − 1 less nodes than Li. Also, note that some of the fire sources xj’s, with j ≥ 2, might be in
Nk−1[x1] ∩Li. Let (x′2, x′3, . . . , x′t) be an optimum burning sequence for G′ + uv +P , and x′1 be the
node in Li with d(x′1, vi) = k − 1. Also, for t + 1 ≤ j ≤ k, we take x′j to be a node of distance j from
x′1 that is on the path connecting x′1 and vi. Thus, the sequence (x′1, x′2, . . . , x′k) forms a burning
sequence for G, such that x′1 ∈ Li, and G ∖Nk−1[x′1] is connected.

Now, by above claim, without loss of generality, we assume that Nk−1[x1] contains vi. That is,
we have a burning sequence (x1, x2, . . . , xk) for G such that G′ = G∖Nk−1[x1] is a spider graph with
smaller number of nodes than G, and with the same number of arms and the same spider head c. In
fact, for j ≠ i, and 1 ≤ j ≤ s, Lj is the j-th arm of G′ too, and the i-th arm of G′ is a subset of Li that
contains exactly 2k − 1 nodes less than Li. Hence, we have that b(G′) = t ≤ k − 1, and by induction
hypothesis, G′ must have a burning sequence (x′2, x′3, . . . , x′t) such that d(x′2, c) ≤ t − 1 ≤ k − 2. We
have two possibilities: either x′2 ∈ Li, or x′2 ∈ Lj for some j ≠ i.

If j = i, then let x be the neighbour of x′2 that is on the path which connects x′2 to vi. Also, let
x′ be the neighbour of x1 that is on the path connecting x1 to vi. Hence, we have that

G ∖ (Nk−1[x] ∪Nk−2[x′]) = G ∖ (Nk−1[x1] ∪Nk−2[x′2]).
Now, for t + 1 ≤ r ≤ k, we take x′r to be the node in Li on the path connecting vi to x′ that is
of distance r − 2 from x′. Finally, we take x′1 = x, and we redefine x′2 = x′. Thus, the sequence
(x′1, x′2, . . . , x′k) forms a burning sequence for G in which d(x′1, c) ≤ k − 1.

If j ≠ i, then let x be the neighbour of x′2 that is on the path connecting x′2 to c. Also, let x′ be
the neighbour of x1 that is closer to vi. Hence, we have that

Li ∖ (Nk−1[x] ∪Nk−2[x′]) = Li ∖ (Nk−1[x1] ∪Nk−2[x′2]),
(by isomorphism). Also,

Lj ∖ (Nk−1[x] ∪Nk−2[x′]) = Lj ∖ (Nk−1[x1] ∪Nk−2[x′2]).
But,

G ∖ (Nk−1[x] ∪Nk−2[x′]) ⊆ G ∖ (Nk−1[x1] ∪Nk−2[x′2]),
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and we know that Nt−2[x′3] ∪Nt−3[x′4] ∪ . . . ∪N0[x′t] forms a covering for G ∖ (Nk−1[x] ∪Nk−2[x′]).
In fact, G ∖ (Nk−1[x] ∪Nk−2[x′]) is an isometric subforest of G ∖ (Nk−1[x1] ∪Nk−2[x′2]). Thus, by
Corollary 5, we have that

b(G ∖ (Nk−1[x] ∪Nk−2[x′])) ≤ b(G ∖ (Nk−1[x1] ∪Nk−2[x′2]))
≤ t − 1 ≤ k − 2.

Hence, there must be an optimum burning sequence (x′′3 , x′′4 , . . . , x′′t′), where t′ ≤ t for G ∖
(Nk−1[x] ∪ Nk−2[x′]). Now, for t′ + 1 ≤ r ≤ k, we take x′′r to be the node in Li on the path
connecting vi to x′ that is of distance r − 2 from x′. Finally, we take x′′1 = x, and we define x′′2 = x′.
Thus, the sequence (x′′1 , x′′2 , . . . , x′′k) forms a burning sequence for G in which d(x′′1 , c) ≤ k − 1. �

The following lemma provides us with another key tool for finding the burning number of spider
graphs.

Lemma 19. Let G be a spider graph with spider head c. Also, suppose that for a positive integer
k and a node x ≠ c in G, G ∖Nk−1[x] is a path-forest (that is, d(x, c) ≤ k − 1) with at least two
components, and b(G∖Nk−1[x]) ≤ k−1. If the path-forest G∖Nk−1[x] is not of order (k−1)2, and
the neighbour of x on the path connecting x to c is x′, then we have that b(G ∖Nk−1[x′]) ≤ k − 1.

Proof. Assume that a spider graph G with the above conditions is given, and we have the nodes x
and x′ as mentioned in the lemma’s statement. Let x be in an arm of G called Ls. We have two
possibilities for Ls: either Ls ∖Nk−1[x] is empty or not.

First, suppose that Ls ∖Nk−1[x] is not empty. Hence, since in this case one of the components
of G ∖ Nk−1[x] is contained in Ls, then it implies that Ls is of order at least k + d(x, c). By
assumption, we know that each component of G1 = G ∖Nk−1[x] is a subset of one of the arms in
G. Let G2 be the path-forest G∖Nk−1[x′]. We know that G2 is a path-forest since by assumption,
d(x′, c) ≤ d(x, c) ≤ k − 1. Hence, each component of G2 is also a subpath of an arm in G. We call
the components of G1 and G2 that are subpaths of Ls by P and P ′, respectively. In fact, P ′ is a
superset of P with exactly one more node. Also, each non-empty component of G2 such as Q′ ≠ P ′

is a subset of the corresponding component Q ≠ P of G1, and has exactly one node less than Q.
Since by assumption, b(G1) = t ≤ k − 1, then there must be a burning sequence (x1, x2, . . . , xt)

for G1. Note that each Nt−j[xj] is a path of order at most 2(t − j) + 1. Therefore, the closed
neighbourhoods of the xi’s cover all the nodes in G2, except for probably the extra node in P ′ that
is a superset of P . We have two possibilities: either t = k − 1 or t < k − 1. If b(G1) = t < k − 1,
then let x′1 = x′, and x′i = xi−1, for 2 ≤ i ≤ t + 1. We can easily see that {Nt+1−i[x′i]}i=1t + 1 forms a
covering for the node set of G2. Hence, by Corollary 1, we conclude that b(G2) ≤ t + 1 ≤ k − 1. If
b(G1) = t = k − 1, then we have two possibilities: either there is a component Q ≠ P in G1 that is
of order one, or the order of each component Q ≠ P of G1 is of order at least two.

If there is a component Q ≠ P of G1 that is of order one and is burned by xi, then let x′i be the
extra node in P ′ ∖ P . If (x1, x2, . . . , xk−1) does not burn x′i, then (x1, . . . , xi−1, x′i, xi+1, . . . , xk−1) is
a burning sequence for G2. Thus, b(G2) ≤ k − 1.

If every component Q ≠ P of G1 is of order at least two, then we have again two possibilities:
either xk−1 is in P , or xk−1 /∈ P .

If xk−1 is in P , then let i be the smallest index for which xi ∈ P , but xi−1 is not in P . We
know that such an index i does exist, since otherwise, it means that all the xi’s must be in P ,
and consequently, it implies that P is the only component of G1, which is a contradiction. Thus,
there must an index i such that xi ∈ P , but xi−1 is in a component of G1 that we call it Q, with
Q ≠ P . Since, each Nk−1−j[xj] is a path of order at most 2(k − 1 − j) + 1, then we can assume that
Nk−1−i[xi] is potentially able to cover at least two nodes less than Nk−1−(i−1)[xi−1].
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We have two possibilities: the path P either consists of only the single node xk−1 or not. If P
contains at least two nodes, then let x′i = xi−1 and x′i−1 = xi. Therefore, we have a new covering
for G2 induced by (x1, . . . , xi−2, x′i−1, x

′

i, . . . , xk−1) in which all the nodes of P ′ plus one extra node
of Ls ∖ P ′ is covered, while we may have lost covering one node in Q. Now, by moving xk−1 to
cover such a uncovered node in Q, and shifting the place of the fire sources used for covering
P without changing their order (if it is necessary), we find a covering for G2 with k − 1 closed
neighbourhoods of restricted radii. Hence, by Corollary 1, b(G2) ≤ k − 1. If xk−1 is the only node
in P , then note that by assumption G1 is not of order (k − 1)2 and b(G1) = k − 1. Thus, G1 must
be of order less than (k − 1)2. Therefore, by Theorem 3, there is a partition for G1 induced by
{Nk−1−j[xj]}k−1j=1 . Since G1 is of order less than (k − 1)2, there must be an 1 ≤ i < k − 1 (that is,
i ≠ k − 1) for which ∣Nk−1−i[xi]∣ < 2(k − 1− i)+ 1. If we define x′i = x (= xk−1) and x′k−1 = xi, then the
sequence (x1, . . . , xi−1, x′i, xi+1, . . . , xk−1, x′k−1) induces a covering for the node set of G2. Therefore,
b(G2) ≤ k − 1.

If xt /∈ P , then there must be a component Q of G1 for which xt ∈ Q. Let Q′ be the corresponding
component of G2 that has exactly one node less than Q. By moving xt to cover the extra node in
P ′ (and shifting the place of the fire sources used for covering Q without changing their order, if
it is necessary), we find a covering for G2 by t closed neighbourhoods with restricted radii. Hence,
again in this case, b(G2) ≤ k − 1.

Now, assume that Ls ∖ Nk−1[x] is empty, and G1 = G ∖ Nk−1[x], and G2 = G ∖ Nk−1[x′]. If
Ls∖Nk−1[x′] is empty, then G2 is an isometric subforest of G1, and therefore b(G2) ≤ b(G1) ≤ k−1.

If Ls ∖Nk−1[x′] is non-empty, then it means that P ′ = Ls ∖Nk−1[x′] contains exactly one node.
Also, we know that all the non-empty components of G2 are subsets of the corresponding com-
ponents of G1, with exactly one less node. Assume that (x1, x2, . . . , xt) is an optimum burning
sequence for G1. Since, Ls ∖Nk−1[x] is empty and G1 is not of order (k − 1)2, then there must be
a non-empty component Q of G1 for which xt ∈ Q. By moving xt to cover the extra node in P ′

(and shifting the place of the fire sources used for covering Q without changing their order, if it
is necessary), we find a covering for G2 by t closed neighbourhoods with restricted radii. Hence,
again in this case we conclude that b(G2) ≤ k − 1. �

As a consequence of the above lemma we have the following result.

(a) Part (ii)

(b) Part (iii) (c) Part (iv)

Figure 3
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Lemma 20. Let G be a spider graph with spider head c. Also, suppose that for a positive integer
k and a node x in G, G ∖Nk−1[x] is a non-empty path-forest (that is, d(x, c) ≤ k − 1) with at least
one component, and b(G∖Nk−1[x]) ≤ k−1. If x ≠ c, then we have one of the following possibilities:

(i) There is a node x′ ≠ c on the path connecting x to c for which G∖Nk−1[x′] is of order (k−1)2,
and b(G ∖Nk−1[x′]) = k − 1.

(ii) There is a node x′ /∈ {x, c} on the path connecting x to c for which G ∖Nk−1[x′] has only
one component (that is a subset of Ls), and b(G ∖Nk−1[x′]) ≤ k − 1, and there is a leaf of G that
is of distance k − 1 from x′.

(iii) The graph G ∖Nk−1[c] has at least two components, and b(G ∖Nk−1[c]) ≤ k − 1.
(iv) There is a leaf in G that is of distance k−1 from c, and G∖Nk−1[c] has only one component,

and b(G ∖Nk−1[c]) ≤ k − 1.

Proof. If G ∖Nk−1[x] is of order (k − 1)2, then we have part (i); otherwise, since the spider graph
G satisfies the conditions in Lemma 19, by applying Lemma 19 for a finite number of times we
derive the desired result. In Figure 3 we see a layout of the cases (ii), (iii), and (iv) stated in the
lemma. �

A perfect spider of radius r is a spider graph G with a unique centre node c such that d(v, c) = r
for every leaf v ∈ G. We denote the set of all perfect spider trees of radius k with PSk.

A k-burning maximal spider graph, is a spider graph with spider head c that its node set can be
decomposed into a perfect spider graph F = Nk−1[s] ∈ PSk−1, where s is a node with d(s, c) ≤ k − 1,
and a graph H ∈ MPFk−1. We denote the set of all k-burning maximal spider graphs by k-BMS.
By above Lemma, we can see that there are two different types of the graphs in k-BMS like G:
either G is a graph for which the centre node s of the perfect spider graph in the decomposition
of G is the spider head, or G is a graph such that the centre node s is not the spider head. If the
latter holds, then by Lemma 20 part (ii), we conclude that the path-forest G∖Nk−1[s] must be a
single path of order (k − 1)2.

Note that the path-forest that appears in decomposing a k-BMS forms a decomposed spider as
described in Conjecture 11. Now, we have the following useful theorem that also shows the truth
of Conjecture 11 for k-BMS trees.

Theorem 21. If G is a k-BMS with spider head c, then b(G) = k.

Proof. Let G be a k-BMS with spider head c. If the centre of the perfect spider in decomposing G
equals c, then it implies that b(G ∖Nk−1[c]) = k − 1. In this case, G1 = G ∖Nk−1[c] is in MPFk−1.
By contradiction suppose that b(G) = t ≤ k − 1. Thus, by Theorem 18, there must be an optimum
burning sequence for G like (x1, x2, . . . , xt) such that d(x1, c) ≤ t − 1 ≤ k − 2.

If x1 = c, then G∖Nk−1[c] is an isometric subforest of G∖Nt−1[c], and therefore, b(G∖Nt−1[c]) ≤
t − 1 ≤ k − 2, which is a contradiction.

If x1 ≠ c, then note that all the arms of G are of length at least k − 1, and since b(G∖Nk−1[c]) =
k − 1, there must be at least one arm of G that is of length at least k − 1 + 2k − 3 = 3k − 4. Thus,
G ∖Nt−1[c] must have at least two non-empty components, and therefore, by Lemma 19, we have
that b(G∖Nt−1[c]) ≤ t− 1 ≤ k − 2, which is a contradiction, as G∖Nk−1[c] is an isometric subforest
of G ∖Nt−1[c]. Hence, in both cases we find a contradiction, and therefore, b(G) ≥ k.

If the centre of the perfect spider in decomposing G is a node s ≠ c, then as we discussed before
the theorem’s statement, the graph G1 = G ∖Nk−1[s] is a single path of order (k − 1)2. Let Ls be
the arm of G with s ∈ Ls, and assume that vs is the node in Ls such that d(s, vs) = k − 1. Also,
assume that P is the path between vs and s, and P ′ is the path connecting s to c excluding s.

By contradiction suppose that b(G) = t ≤ k−1. Thus, by Theorem 18, there must be an optimum
burning sequence for G like (x1, x2, . . . , xt) such that d(x1, c) ≤ t − 1 ≤ k − 2. We consider different
possibilities for x1 as follows:
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If x1 is in G ∖ (Ls ∖ P ′), then clearly G ∖Nk−1[s] is an isometric subforest of G ∖Nt−1[c], and
therefore, we must have b(G1) ≤ t − 1 ≤ k − 2, which is a contradiction.

If x1 is in P , then let x′ be the neighbour of s on the path connecting s to c. Note that all the
leaves of G, except for the leaf in Ls, are of distance k − 1 from s. Thus, G ∖Nt−1[x1] must have
at least two non-empty components, and therefore, by applying Lemma 19 for a finite number of
times, we have that b(G ∖Nt−1[x′]) ≤ t − 1 ≤ k − 2, which is a contradiction, as G ∖Nk−1[s] is an
isometric subforest of G ∖Nt−1[x′]. Hence, in both cases we find a contradiction, and therefore,
b(G) ≥ k. �

By the arguments in proof of Theorem 21, we can conclude that the spider graphs in 2-MBS can
be decomposed into a perfect spider SP (s,1) and a single node P1, with s ≥ 3; that is, a spider
with s − 1 arms of length one and an arm of length two. Now, we can present an algorithm for
finding the burning number of a spider tree, as follows. Note that the burning number of every
spider graph is at least two. We denote the set of all perfect spider trees of radius k with t arms
by PSt

k. We denote the set of all k-burning maximal spider graphs with t arms by k-BMSt.

Algorithm 22. Suppose that G is a spider graph with arms L1, L2, . . . , Lt, for a constant t ≥ 1,
such that the length of each arm Li is denoted by li, and l = l1 ≥ l2 ≥ ⋯ ≥ lt. Then we perform the
following steps until G ⊆H, for some H ∈ k-BMSt where k ≥ 2.

Stage 1. For the initial case k = 2, we put the graph SP (t,1) in PSt
1. Then we add a single

node to one of the arms in SP (t,1) ∈ PSt
1, and we put the resulting graph H in 2-MBSt.

If G ⊆H, then return b(G) = 2; otherwise, go to Stage 2.

Stage 2. For k ≥ 3, we perform the following steps:

Stage 2.1. For 0 ≤ i ≤ k −2, we make a spider graph with t−1 arms of length k −1− i, and then
we add an additional arm of length i+ k − 1 to it. We call the resulting spider (with t arms) by Hi

and we put it in PSt
k−1.

Stage 2.2. For 1 ≤ s ≤ k − 1, and each F ∈ MPFs
k−1 (generated by Algorithm 15 for the graph

G′ = (l1, l2, . . . , lt)), we join an end point of each component of F to a distinct leaf of H0 ∈ PSt
k−1,

and we call the resulting graph by F ′. Then we add F ′ to k-MBSt.
If G ⊆ F ′, then stop and return b(G) = k.

Stage 2.3. For 1 ≤ i ≤ k − 2, we join the end point of longest arm of Hi to a path of order
(k − 1)2 in MPF1

k−1, and we call the resulting graph by H ′

i . Then we add H ′

i to k-MBSt.
If G ⊆H ′

i , then stop and return b(G) = k.

If Algorithm 22 stops at i = k, then it means that G is a subgraph of a graph in k-MBSt. By
Theorem 21, we know that the burning number of a graph in i-MBSt equals i. Hence, by Corollary
5 from [20], we conclude that b(G) = k. We have the following theorem about the complexity of
Algorithm 22.

Theorem 23. Algorithm 22 finds the burning number of G in time O(t2lt+2), that is polynomial
for fixed t.

Proof. Given the graph G, suppose that for some k ≥ t, Algorithm 22 stops by recognizing G as a
subgraph of a graph in MBSt

k; that is, b(G) = k. Note that the length of each arm in G is bounded
above by l. In Algorithm 22, we first generate all the perfect spider graphs of radius i with t arms,
for 1 ≤ i ≤ k. Then at Stage 2.2, we need to perform Algorithm 15 for the graph (l1, l2, . . . , lt)
which satisfies all the conditions in Theorem 16. Hence, we perform at most O(tlt) steps to find
all the maximal path-forests generated by Algorithm 15 at Stage 2.2.

On the other hand, we know that k = b(G) ≤ radius(G) + 1 ≤ l + 1 = O(l). Thus, k(k+1)
2 = O(l2).

Note that the number of the perfect spider graphs that we generate in Algorithm 22 for each
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1 ≤ i ≤ k equals i. Therefore, the total number of the graphs that we create and consider by
Algorithm 22 is asymptotically of order

k

∑
i=1

kO(tlt) = k(k + 1)
2

O(tlt) = O(tlt+2).

Finally, note that each time that we add a new spider graph F to MBSt
k, for k ≥ 2, we compare

G with F . We can simply do this comparison by comparing the lengths of the arms between G
and F . Since, G and F both have t arms, then the total number of the steps that we perform
in Algorithm 22 is bounded above by O(t2lt+2). Since t is a fixed constant in terms of l, then
Algorithm 22 is polynomial time in the length of the input. �

5. Approximation

We proceed to the description of our approximation algorithm, which is inspired by the approx-
imation algorithm for the k-center problem due to Hochbaum and Shmoys [12]. The following
procedure is a central ingredient in the algorithm. For a pair (G,k), where G is a graph and k is
a positive integer, this procedure returns a sequence (x1, . . . , xk) of nodes of G.

Procedure 24. Given a pair (G,k), where G is a graph and k is a positive integer, perform the
following steps.

Stage 1. Choose an arbitrary node x1 in G.

Stage 2. For i = 2 to k, select xi as a node in G that maximizes min{d(u,xj)

k−j+1 ∶ j ∈ [i − 1]}.

Return (x1, . . . , xk).

For a given graph G, the following algorithm now applies Procedure 24 to pairs (G,k) starting
with k = 1 and repeatedly increasing k until Procedure 24 returns a sequence (x1, . . . , xk) that
satisfies (1).

Algorithm 25. Given a graph G we perform the following steps.

Stage 1. For k ≥ 1, perform Procedure 24 and set S = (x1, . . . , xk), where (x1, . . . , xk) is the
output of Procedure 24.

Stage 2. If S satisfies (1), then stop and return S = (x1, . . . , xk); otherwise go to Stage 1 for
k + 1.

Note that if G has order k, then Procedure 24 applied to (G,k) returns a sequence containing all
k nodes of G, which clearly satisfies (1). Therefore, Algorithm 25 terminates after at most ∣V (G)∣
applications of Procedure 24. The correctness of Algorithm 25 is obvious. Note that the output
of Algorithm 25 can easily be transformed in polynomial time (O(n3)) into a burning sequence by
applying the construction used in the proof of Lemma 2.

Lemma 26. Let G be a graph and let k be a positive integer. Let Procedure 24 return (x1, . . . , xk)
when applied to (G,k). If (x1, . . . , xk) does not satisfy (1), then b(G) ≥ ⌊k

3
⌋ + 1.

Proof. Since (x1, . . . , xk) does not satisfy (1), there is some node u∗ of G such that d(u∗, xj) ≥ k−j+1

for every j ∈ [k], which implies min{d(u∗,xj)

k−j+1 ∶ j ∈ [k]} ≥ 1. By the selection rule within Procedure 24,
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we obtain that

min{d(xi, xj)
k − j + 1

∶ j ∈ [i − 1]} ≥ min{d(u
∗, xj)

k − j + 1
∶ j ∈ [i − 1]}

≥ min{d(u
∗, xj)

k − j + 1
∶ j ∈ [k]}

≥ 1,

for every i in [k] ∖ [1]. For every two indices i and j in [k] with j < i, this implies d(xi, xj) ≥
k − j + 1 > k − j. Since j < i implies k − j ≥ ⌈k−j2 ⌉ + ⌈k−i2 ⌉, we obtain that the k sets

N
⌈
k−1
2

⌉
[x1],N⌈

k−2
2

⌉
[x2],N⌈

k−3
2

⌉
[x3], . . . ,N0[xk]

are pairwise disjoint.
Now by contradiction, suppose that b(G) = k′ ≤ ⌊k

3
⌋. Let (y1, . . . , yk′) be a burning sequence of

length k′. Since
⎡⎢⎢⎢⎢⎢

k − ⌊k
3
⌋ − 1

2

⎤⎥⎥⎥⎥⎥
≥ ⌊k

3
⌋ − 1 ≥ k′ − 1,

each of the ⌊k
3
⌋ + 1 sets

N
⌈
k−1
2

⌉
[x1],N⌈

k−2
2

⌉
[x2],N⌈

k−3
2

⌉
[x3], . . . ,N

⌈

k−⌊ k3 ⌋−1
2

⌉

[x
⌊
k
3
⌋+1]

contains an element of the sequence (y1, . . . , yk′). Since these sets are all disjoint, we obtain the
contradiction that (y1, . . . , yk′) contains more than k′ distinct elements. �

We finish with the following theorem.

Theorem 27. Let G be a graph. If Algorithm 25 returns a sequence of length k, then b(G) ≥ k
3 ,

that is, Algorithm 25 is a polynomial time approximation algorithm with approximation factor 3.

Proof. If Algorithm 25 returns a sequence of length k, then Procedure 24 applied to (G,k − 1)
returned a sequence of length k − 1 that did not satisfy (1). By Lemma 26, this implies b(G) ≥
⌊k−1

3
⌋ + 1 ≥ k

3 . Obviously, Algorithm 25 can be implemented to run in polynomial time. �

As you can see in Theorem 15 from [2], there is a polynomial time characterization for binary
trees with radius r that has burning number r + 1. Also, by Lemma 12, we can easily see that for
a spider graph G of radius r, b(G) = r + 1 if and only if SP (r, r) is a subtree of G. Thus, we are
motivated to make the following conjecture.

Conjecture 28. For a tree T of radius r, we can recognize in polynomial time weather or not
b(T ) = r + 1.

Acknowledgment This paper comes out of a collaborative work based on [3] and [4].
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